mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
We decided we're going to want to surface fine-grained representational control of functions to the user, so move AbstractCC and the calling convention attributes into the Swift type system. Like the [thin] attribute, we don't set this in the type-checker or importer at all yet, and let SILGen set the attribute where it wants it for now. Swift SVN r5222
798 lines
28 KiB
C++
798 lines
28 KiB
C++
//===--- ASTContext.cpp - ASTContext Implementation -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ASTContext class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/ASTMutationListener.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/ExprHandle.h"
|
|
#include "swift/AST/ModuleLoader.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include <memory>
|
|
|
|
using namespace swift;
|
|
|
|
ASTMutationListener::~ASTMutationListener() { }
|
|
|
|
struct ASTContext::Implementation {
|
|
Implementation();
|
|
~Implementation();
|
|
|
|
llvm::BumpPtrAllocator Allocator; // used in later initializations
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator&> IdentifierTable;
|
|
|
|
/// \brief The various module loaders that import external modules into this
|
|
/// ASTContext.
|
|
SmallVector<llvm::IntrusiveRefCntPtr<swift::ModuleLoader>, 4> ModuleLoaders;
|
|
|
|
/// \brief The module loader used to load Clang modules.
|
|
// FIXME: We shouldn't be special-casing Clang.
|
|
llvm::IntrusiveRefCntPtr<swift::ModuleLoader> ClangModuleLoader;
|
|
|
|
/// \brief The set of AST mutation listeners.
|
|
SmallVector<ASTMutationListener *, 4> MutationListeners;
|
|
|
|
/// \brief Map from Swift declarations to the Clang nodes from which
|
|
/// they were imported.
|
|
llvm::DenseMap<swift::Decl *, ClangNode> ClangNodes;
|
|
|
|
/// \brief Structure that captures data that is segregated into different
|
|
/// arenas.
|
|
struct Arena {
|
|
llvm::FoldingSet<TupleType> TupleTypes;
|
|
llvm::DenseMap<Type, MetaTypeType*> MetaTypeTypes;
|
|
llvm::DenseMap<std::pair<Type,std::pair<Type,char>>, FunctionType*>
|
|
FunctionTypes;
|
|
llvm::DenseMap<std::pair<Type, uint64_t>, ArrayType*> ArrayTypes;
|
|
llvm::DenseMap<Type, ArraySliceType*> ArraySliceTypes;
|
|
llvm::DenseMap<Type, ParenType*> ParenTypes;
|
|
llvm::DenseMap<std::pair<Type, LValueType::Qual::opaque_type>, LValueType*>
|
|
LValueTypes;
|
|
llvm::DenseMap<std::pair<Type, Type>, SubstitutedType *> SubstitutedTypes;
|
|
llvm::FoldingSet<OneOfType> OneOfTypes;
|
|
llvm::FoldingSet<StructType> StructTypes;
|
|
llvm::FoldingSet<ClassType> ClassTypes;
|
|
llvm::FoldingSet<UnboundGenericType> UnboundGenericTypes;
|
|
llvm::FoldingSet<BoundGenericType> BoundGenericTypes;
|
|
};
|
|
|
|
llvm::DenseMap<Module*, ModuleType*> ModuleTypes;
|
|
llvm::DenseMap<unsigned, BuiltinIntegerType*> IntegerTypes;
|
|
llvm::FoldingSet<ProtocolCompositionType> ProtocolCompositionTypes;
|
|
|
|
/// \brief The permanent arena.
|
|
Arena Permanent;
|
|
|
|
/// FIXME: Move into arena.
|
|
llvm::DenseMap<BoundGenericType *, ArrayRef<Substitution>>
|
|
BoundGenericSubstitutions;
|
|
|
|
/// \brief Temporary arena used for a constraint solver.
|
|
struct ConstraintSolverArena : public Arena {
|
|
/// \brief The allocator used for all allocations within this arena.
|
|
llvm::BumpPtrAllocator &Allocator;
|
|
|
|
ConstraintSolverArena(llvm::BumpPtrAllocator &Allocator)
|
|
: Allocator(Allocator) { }
|
|
|
|
ConstraintSolverArena(const ConstraintSolverArena &) = delete;
|
|
ConstraintSolverArena(ConstraintSolverArena &&) = delete;
|
|
ConstraintSolverArena &operator=(const ConstraintSolverArena &) = delete;
|
|
ConstraintSolverArena &operator=(ConstraintSolverArena &&) = delete;
|
|
};
|
|
|
|
/// \brief The current constraint solver arena, if any.
|
|
std::unique_ptr<ConstraintSolverArena> CurrentConstraintSolverArena;
|
|
|
|
Arena &getArena(AllocationArena arena) {
|
|
switch (arena) {
|
|
case AllocationArena::Permanent:
|
|
return Permanent;
|
|
|
|
case AllocationArena::ConstraintSolver:
|
|
assert(CurrentConstraintSolverArena && "No constraint solver active?");
|
|
return *CurrentConstraintSolverArena;
|
|
}
|
|
}
|
|
};
|
|
|
|
ASTContext::Implementation::Implementation()
|
|
: IdentifierTable(Allocator) {}
|
|
ASTContext::Implementation::~Implementation() {}
|
|
|
|
|
|
ConstraintCheckerArenaRAII::
|
|
ConstraintCheckerArenaRAII(ASTContext &self, llvm::BumpPtrAllocator &allocator)
|
|
: Self(self), Data(self.Impl.CurrentConstraintSolverArena.release())
|
|
{
|
|
Self.Impl.CurrentConstraintSolverArena.reset(
|
|
new ASTContext::Implementation::ConstraintSolverArena(allocator));
|
|
}
|
|
|
|
ConstraintCheckerArenaRAII::~ConstraintCheckerArenaRAII() {
|
|
Self.Impl.CurrentConstraintSolverArena.reset(
|
|
(ASTContext::Implementation::ConstraintSolverArena *)Data);
|
|
}
|
|
|
|
ASTContext::ASTContext(LangOptions &langOpts, llvm::SourceMgr &sourcemgr,
|
|
DiagnosticEngine &Diags)
|
|
: Impl(*new Implementation()),
|
|
LangOpts(langOpts),
|
|
SourceMgr(sourcemgr),
|
|
Diags(Diags),
|
|
TheBuiltinModule(new (*this) BuiltinModule(getIdentifier("Builtin"),*this)),
|
|
TheErrorType(new (*this, AllocationArena::Permanent) ErrorType(*this)),
|
|
TheEmptyTupleType(TupleType::get(ArrayRef<TupleTypeElt>(), *this)),
|
|
TheObjectPointerType(new (*this, AllocationArena::Permanent)
|
|
BuiltinObjectPointerType(*this)),
|
|
TheObjCPointerType(new (*this, AllocationArena::Permanent)
|
|
BuiltinObjCPointerType(*this)),
|
|
TheRawPointerType(new (*this, AllocationArena::Permanent)
|
|
BuiltinRawPointerType(*this)),
|
|
TheOpaquePointerType(new (*this, AllocationArena::Permanent)
|
|
BuiltinOpaquePointerType(*this)),
|
|
TheUnstructuredUnresolvedType(new (*this, AllocationArena::Permanent)
|
|
UnstructuredUnresolvedType(*this)),
|
|
TheIEEE32Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE32,*this)),
|
|
TheIEEE64Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE64,*this)),
|
|
TheIEEE16Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE16,*this)),
|
|
TheIEEE80Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE80,*this)),
|
|
TheIEEE128Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::IEEE128, *this)),
|
|
ThePPC128Type(new (*this, AllocationArena::Permanent)
|
|
BuiltinFloatType(BuiltinFloatType::PPC128,*this)){
|
|
}
|
|
|
|
ASTContext::~ASTContext() {
|
|
delete &Impl;
|
|
|
|
for (auto &entry : ConformsTo)
|
|
delete const_cast<ProtocolConformance*>(entry.second);
|
|
}
|
|
|
|
llvm::BumpPtrAllocator &ASTContext::getAllocator(AllocationArena arena) const {
|
|
switch (arena) {
|
|
case AllocationArena::Permanent:
|
|
return Impl.Allocator;
|
|
|
|
case AllocationArena::ConstraintSolver:
|
|
assert(Impl.CurrentConstraintSolverArena.get() != nullptr);
|
|
return Impl.CurrentConstraintSolverArena->Allocator;
|
|
}
|
|
}
|
|
|
|
/// getIdentifier - Return the uniqued and AST-Context-owned version of the
|
|
/// specified string.
|
|
Identifier ASTContext::getIdentifier(StringRef Str) {
|
|
// Make sure null pointers stay null.
|
|
if (Str.empty()) return Identifier(0);
|
|
|
|
return Identifier(Impl.IdentifierTable.GetOrCreateValue(Str).getKeyData());
|
|
}
|
|
|
|
void ASTContext::addMutationListener(ASTMutationListener &listener) {
|
|
Impl.MutationListeners.push_back(&listener);
|
|
}
|
|
|
|
void ASTContext::removeMutationListener(ASTMutationListener &listener) {
|
|
auto known = std::find(Impl.MutationListeners.rbegin(),
|
|
Impl.MutationListeners.rend(),
|
|
&listener);
|
|
assert(known != Impl.MutationListeners.rend() && "listener not registered");
|
|
Impl.MutationListeners.erase(known.base()-1);
|
|
}
|
|
|
|
void ASTContext::addedExternalDecl(Decl *decl) {
|
|
for (auto listener : Impl.MutationListeners)
|
|
listener->addedExternalDecl(decl);
|
|
}
|
|
|
|
void ASTContext::addedExternalType(Type type) {
|
|
for (auto listener : Impl.MutationListeners)
|
|
listener->addedExternalType(type);
|
|
}
|
|
|
|
bool ASTContext::hadError() const {
|
|
return Diags.hadAnyError();
|
|
}
|
|
|
|
Optional<ArrayRef<Substitution>>
|
|
ASTContext::getSubstitutions(BoundGenericType* Bound) {
|
|
assert(Bound->isCanonical() && "Requesting non-canonical substitutions");
|
|
auto Known = Impl.BoundGenericSubstitutions.find(Bound);
|
|
if (Known == Impl.BoundGenericSubstitutions.end())
|
|
return Nothing;
|
|
|
|
return Known->second;
|
|
}
|
|
|
|
void ASTContext::setSubstitutions(BoundGenericType* Bound,
|
|
ArrayRef<Substitution> Subs) {
|
|
assert(Bound->isCanonical() && "Requesting non-canonical substitutions");
|
|
assert(Impl.BoundGenericSubstitutions.count(Bound) == 0 &&
|
|
"Already have substitutions?");
|
|
Impl.BoundGenericSubstitutions[Bound] = Subs;
|
|
}
|
|
|
|
void ASTContext::addModuleLoader(llvm::IntrusiveRefCntPtr<ModuleLoader> loader,
|
|
bool IsClang) {
|
|
Impl.ModuleLoaders.push_back(loader);
|
|
if (IsClang) {
|
|
assert(!Impl.ClangModuleLoader && "Already have a Clang module loader");
|
|
Impl.ClangModuleLoader = std::move(loader);
|
|
}
|
|
}
|
|
|
|
llvm::IntrusiveRefCntPtr<ModuleLoader> ASTContext::getClangModuleLoader() const{
|
|
return Impl.ClangModuleLoader;
|
|
}
|
|
|
|
Module *
|
|
ASTContext::getModule(ArrayRef<std::pair<Identifier, SourceLoc>> modulePath) {
|
|
assert(!modulePath.empty());
|
|
auto moduleID = modulePath[0];
|
|
|
|
// TODO: Swift submodules.
|
|
if (modulePath.size() == 1) {
|
|
if (Module *M = LoadedModules.lookup(moduleID.first.str()))
|
|
return M;
|
|
}
|
|
|
|
for (auto importer : Impl.ModuleLoaders) {
|
|
if (Module *M = importer->loadModule(moduleID.second, modulePath))
|
|
return M;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
ClangNode ASTContext::getClangNode(Decl *decl) {
|
|
auto known = Impl.ClangNodes.find(decl);
|
|
assert(known != Impl.ClangNodes.end() && "No Clang node?");
|
|
return known->second;
|
|
}
|
|
|
|
void ASTContext::setClangNode(Decl *decl, ClangNode node) {
|
|
Impl.ClangNodes[decl] = node;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type manipulation routines.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Simple accessors.
|
|
Type ErrorType::get(ASTContext &C) { return C.TheErrorType; }
|
|
Type UnstructuredUnresolvedType::get(ASTContext &C) {
|
|
return C.TheUnstructuredUnresolvedType;
|
|
}
|
|
|
|
|
|
BuiltinIntegerType *BuiltinIntegerType::get(unsigned BitWidth, ASTContext &C) {
|
|
BuiltinIntegerType *&Result = C.Impl.IntegerTypes[BitWidth];
|
|
if (Result == 0)
|
|
Result = new (C, AllocationArena::Permanent) BuiltinIntegerType(BitWidth,C);
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Retrieve the arena from which we should allocate storage for a type.
|
|
static AllocationArena getArena(bool hasTypeVariable) {
|
|
return hasTypeVariable? AllocationArena::ConstraintSolver
|
|
: AllocationArena::Permanent;;
|
|
}
|
|
|
|
ParenType *ParenType::get(ASTContext &C, Type underlying) {
|
|
bool hasTypeVariable = underlying->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
ParenType *&Result = C.Impl.getArena(arena).ParenTypes[underlying];
|
|
if (Result == 0) {
|
|
Result = new (C, arena) ParenType(underlying, hasTypeVariable);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
Type TupleType::getEmpty(ASTContext &C) { return C.TheEmptyTupleType; }
|
|
|
|
void TupleType::Profile(llvm::FoldingSetNodeID &ID,
|
|
ArrayRef<TupleTypeElt> Fields) {
|
|
ID.AddInteger(Fields.size());
|
|
for (const TupleTypeElt &Elt : Fields) {
|
|
ID.AddPointer(Elt.getType().getPointer());
|
|
ID.AddPointer(Elt.getName().get());
|
|
ID.AddPointer(Elt.getInit());
|
|
ID.AddPointer(Elt.getVarargBaseTy().getPointer());
|
|
}
|
|
}
|
|
|
|
/// getTupleType - Return the uniqued tuple type with the specified elements.
|
|
Type TupleType::get(ArrayRef<TupleTypeElt> Fields, ASTContext &C) {
|
|
if (Fields.size() == 1 && !Fields[0].isVararg() && !Fields[0].hasName())
|
|
return ParenType::get(C, Fields[0].getType());
|
|
|
|
bool HasAnyDefaultValues = false;
|
|
bool HasTypeVariable = false;
|
|
|
|
for (const TupleTypeElt &Elt : Fields) {
|
|
if (Elt.hasInit()) {
|
|
HasAnyDefaultValues = true;
|
|
if (HasTypeVariable)
|
|
break;
|
|
}
|
|
if (Elt.getType() && Elt.getType()->hasTypeVariable()) {
|
|
HasTypeVariable = true;
|
|
if (HasAnyDefaultValues)
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto arena = getArena(HasTypeVariable);
|
|
|
|
|
|
void *InsertPos = 0;
|
|
if (!HasAnyDefaultValues) {
|
|
// Check to see if we've already seen this tuple before.
|
|
llvm::FoldingSetNodeID ID;
|
|
TupleType::Profile(ID, Fields);
|
|
|
|
if (TupleType *TT
|
|
= C.Impl.getArena(arena).TupleTypes.FindNodeOrInsertPos(ID,InsertPos))
|
|
return TT;
|
|
}
|
|
|
|
// Make a copy of the fields list into ASTContext owned memory.
|
|
TupleTypeElt *FieldsCopy =
|
|
C.AllocateCopy<TupleTypeElt>(Fields.begin(), Fields.end(), arena);
|
|
|
|
bool IsCanonical = true; // All canonical elts means this is canonical.
|
|
for (const TupleTypeElt &Elt : Fields) {
|
|
if (Elt.getType().isNull() || !Elt.getType()->isCanonical()) {
|
|
IsCanonical = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Fields = ArrayRef<TupleTypeElt>(FieldsCopy, Fields.size());
|
|
|
|
TupleType *New = new (C, arena) TupleType(Fields, IsCanonical ? &C : 0,
|
|
HasTypeVariable);
|
|
if (!HasAnyDefaultValues)
|
|
C.Impl.getArena(arena).TupleTypes.InsertNode(New, InsertPos);
|
|
|
|
return New;
|
|
}
|
|
|
|
void UnboundGenericType::Profile(llvm::FoldingSetNodeID &ID,
|
|
NominalTypeDecl *TheDecl, Type Parent) {
|
|
ID.AddPointer(TheDecl);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
UnboundGenericType* UnboundGenericType::get(NominalTypeDecl *TheDecl,
|
|
Type Parent,
|
|
ASTContext &C) {
|
|
llvm::FoldingSetNodeID ID;
|
|
UnboundGenericType::Profile(ID, TheDecl, Parent);
|
|
void *InsertPos = 0;
|
|
bool hasTypeVariable = Parent && Parent->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
if (auto unbound = C.Impl.getArena(arena).UnboundGenericTypes
|
|
.FindNodeOrInsertPos(ID, InsertPos))
|
|
return unbound;
|
|
|
|
auto result = new (C, arena) UnboundGenericType(TheDecl, Parent, C,
|
|
hasTypeVariable);
|
|
C.Impl.getArena(arena).UnboundGenericTypes.InsertNode(result, InsertPos);
|
|
return result;
|
|
}
|
|
|
|
void BoundGenericType::Profile(llvm::FoldingSetNodeID &ID,
|
|
NominalTypeDecl *TheDecl, Type Parent,
|
|
ArrayRef<Type> GenericArgs,
|
|
bool &hasTypeVariable) {
|
|
ID.AddPointer(TheDecl);
|
|
ID.AddPointer(Parent.getPointer());
|
|
if (Parent && Parent->hasTypeVariable())
|
|
hasTypeVariable = true;
|
|
ID.AddInteger(GenericArgs.size());
|
|
for (Type Arg : GenericArgs) {
|
|
ID.AddPointer(Arg.getPointer());
|
|
if (Arg->hasTypeVariable())
|
|
hasTypeVariable = true;
|
|
}
|
|
}
|
|
|
|
BoundGenericType::BoundGenericType(TypeKind theKind,
|
|
NominalTypeDecl *theDecl,
|
|
Type parent,
|
|
ArrayRef<Type> genericArgs,
|
|
ASTContext *context,
|
|
bool hasTypeVariable)
|
|
: TypeBase(theKind, context, /*Unresolved=*/false,
|
|
hasTypeVariable),
|
|
TheDecl(theDecl), Parent(parent), GenericArgs(genericArgs)
|
|
{
|
|
// Determine whether this type is unresolved.
|
|
if (parent && parent->isUnresolvedType())
|
|
setUnresolved();
|
|
else for (Type arg : genericArgs) {
|
|
if (arg->isUnresolvedType()) {
|
|
setUnresolved();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BoundGenericType *BoundGenericType::get(NominalTypeDecl *TheDecl,
|
|
Type Parent,
|
|
ArrayRef<Type> GenericArgs) {
|
|
ASTContext &C = TheDecl->getDeclContext()->getASTContext();
|
|
llvm::FoldingSetNodeID ID;
|
|
bool HasTypeVariable = false;
|
|
BoundGenericType::Profile(ID, TheDecl, Parent, GenericArgs, HasTypeVariable);
|
|
|
|
auto arena = getArena(HasTypeVariable);
|
|
|
|
void *InsertPos = 0;
|
|
if (BoundGenericType *BGT =
|
|
C.Impl.getArena(arena).BoundGenericTypes.FindNodeOrInsertPos(ID,
|
|
InsertPos))
|
|
return BGT;
|
|
|
|
ArrayRef<Type> ArgsCopy = C.AllocateCopy(GenericArgs, arena);
|
|
bool IsCanonical = !Parent || Parent->isCanonical();
|
|
if (IsCanonical) {
|
|
for (Type Arg : GenericArgs) {
|
|
if (!Arg->isCanonical()) {
|
|
IsCanonical = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BoundGenericType *newType;
|
|
if (auto theClass = dyn_cast<ClassDecl>(TheDecl)) {
|
|
newType = new (C, arena) BoundGenericClassType(theClass, Parent, ArgsCopy,
|
|
IsCanonical ? &C : 0,
|
|
HasTypeVariable);
|
|
} else if (auto theStruct = dyn_cast<StructDecl>(TheDecl)) {
|
|
newType = new (C, arena) BoundGenericStructType(theStruct, Parent, ArgsCopy,
|
|
IsCanonical ? &C : 0,
|
|
HasTypeVariable);
|
|
} else {
|
|
auto theOneOf = cast<OneOfDecl>(TheDecl);
|
|
newType = new (C, arena) BoundGenericOneOfType(theOneOf, Parent, ArgsCopy,
|
|
IsCanonical ? &C : 0,
|
|
HasTypeVariable);
|
|
}
|
|
C.Impl.getArena(arena).BoundGenericTypes.InsertNode(newType, InsertPos);
|
|
|
|
return newType;
|
|
}
|
|
|
|
NominalType *NominalType::get(NominalTypeDecl *D, Type Parent, ASTContext &C) {
|
|
switch (D->getKind()) {
|
|
case DeclKind::OneOf:
|
|
return OneOfType::get(cast<OneOfDecl>(D), Parent, C);
|
|
case DeclKind::Struct:
|
|
return StructType::get(cast<StructDecl>(D), Parent, C);
|
|
case DeclKind::Class:
|
|
return ClassType::get(cast<ClassDecl>(D), Parent, C);
|
|
case DeclKind::Protocol:
|
|
return D->getDeclaredType()->castTo<ProtocolType>();
|
|
|
|
default:
|
|
llvm_unreachable("Not a nominal declaration!");
|
|
}
|
|
}
|
|
|
|
OneOfType::OneOfType(OneOfDecl *TheDecl, Type Parent, ASTContext &C,
|
|
bool HasTypeVariable)
|
|
: NominalType(TypeKind::OneOf, &C, TheDecl, Parent, HasTypeVariable) { }
|
|
|
|
OneOfType *OneOfType::get(OneOfDecl *D, Type Parent, ASTContext &C) {
|
|
llvm::FoldingSetNodeID id;
|
|
OneOfType::Profile(id, D, Parent);
|
|
|
|
bool hasTypeVariable = Parent && Parent->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
void *insertPos = 0;
|
|
if (auto oneOfTy
|
|
= C.Impl.getArena(arena).OneOfTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return oneOfTy;
|
|
|
|
auto oneOfTy = new (C, arena) OneOfType(D, Parent, C, hasTypeVariable);
|
|
C.Impl.getArena(arena).OneOfTypes.InsertNode(oneOfTy, insertPos);
|
|
return oneOfTy;
|
|
}
|
|
|
|
void OneOfType::Profile(llvm::FoldingSetNodeID &ID, OneOfDecl *D, Type Parent) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
StructType::StructType(StructDecl *TheDecl, Type Parent, ASTContext &C,
|
|
bool HasTypeVariable)
|
|
: NominalType(TypeKind::Struct, &C, TheDecl, Parent, HasTypeVariable) { }
|
|
|
|
StructType *StructType::get(StructDecl *D, Type Parent, ASTContext &C) {
|
|
llvm::FoldingSetNodeID id;
|
|
StructType::Profile(id, D, Parent);
|
|
|
|
bool hasTypeVariable = Parent && Parent->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
void *insertPos = 0;
|
|
if (auto structTy
|
|
= C.Impl.getArena(arena).StructTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return structTy;
|
|
|
|
auto structTy = new (C, arena) StructType(D, Parent, C, hasTypeVariable);
|
|
C.Impl.getArena(arena).StructTypes.InsertNode(structTy, insertPos);
|
|
return structTy;
|
|
}
|
|
|
|
void StructType::Profile(llvm::FoldingSetNodeID &ID, StructDecl *D, Type Parent) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
ClassType::ClassType(ClassDecl *TheDecl, Type Parent, ASTContext &C,
|
|
bool HasTypeVariable)
|
|
: NominalType(TypeKind::Class, &C, TheDecl, Parent, HasTypeVariable) { }
|
|
|
|
ClassType *ClassType::get(ClassDecl *D, Type Parent, ASTContext &C) {
|
|
llvm::FoldingSetNodeID id;
|
|
ClassType::Profile(id, D, Parent);
|
|
|
|
bool hasTypeVariable = Parent && Parent->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
void *insertPos = 0;
|
|
if (auto classTy
|
|
= C.Impl.getArena(arena).ClassTypes.FindNodeOrInsertPos(id, insertPos))
|
|
return classTy;
|
|
|
|
auto classTy = new (C, arena) ClassType(D, Parent, C, hasTypeVariable);
|
|
C.Impl.getArena(arena).ClassTypes.InsertNode(classTy, insertPos);
|
|
return classTy;
|
|
}
|
|
|
|
void ClassType::Profile(llvm::FoldingSetNodeID &ID, ClassDecl *D, Type Parent) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(Parent.getPointer());
|
|
}
|
|
|
|
IdentifierType *IdentifierType::getNew(ASTContext &C,
|
|
MutableArrayRef<Component> Components) {
|
|
Components = C.AllocateCopy(Components);
|
|
return new (C, AllocationArena::Permanent) IdentifierType(Components);
|
|
}
|
|
|
|
ProtocolCompositionType *
|
|
ProtocolCompositionType::build(ASTContext &C, ArrayRef<Type> Protocols) {
|
|
// Check to see if we've already seen this protocol composition before.
|
|
void *InsertPos = 0;
|
|
llvm::FoldingSetNodeID ID;
|
|
ProtocolCompositionType::Profile(ID, Protocols);
|
|
if (ProtocolCompositionType *Result
|
|
= C.Impl.ProtocolCompositionTypes.FindNodeOrInsertPos(ID, InsertPos))
|
|
return Result;
|
|
|
|
bool isCanonical = true;
|
|
for (Type t : Protocols) {
|
|
if (!t->isCanonical())
|
|
isCanonical = false;
|
|
}
|
|
|
|
// Create a new protocol composition type.
|
|
ProtocolCompositionType *New
|
|
= new (C, AllocationArena::Permanent)
|
|
ProtocolCompositionType(isCanonical ? &C : nullptr,
|
|
C.AllocateCopy(Protocols));
|
|
C.Impl.ProtocolCompositionTypes.InsertNode(New, InsertPos);
|
|
return New;
|
|
}
|
|
|
|
|
|
MetaTypeType *MetaTypeType::get(Type T, ASTContext &C) {
|
|
bool hasTypeVariable = T->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
MetaTypeType *&Entry = C.Impl.getArena(arena).MetaTypeTypes[T];
|
|
if (Entry) return Entry;
|
|
|
|
return Entry = new (C, arena) MetaTypeType(T, T->isCanonical() ? &C : 0,
|
|
hasTypeVariable);
|
|
}
|
|
|
|
MetaTypeType::MetaTypeType(Type T, ASTContext *C, bool HasTypeVariable)
|
|
: TypeBase(TypeKind::MetaType, C, T->isUnresolvedType(), HasTypeVariable),
|
|
InstanceType(T) {
|
|
}
|
|
|
|
ModuleType *ModuleType::get(Module *M) {
|
|
ASTContext &C = M->getASTContext();
|
|
|
|
ModuleType *&Entry = C.Impl.ModuleTypes[M];
|
|
if (Entry) return Entry;
|
|
|
|
return Entry = new (C, AllocationArena::Permanent) ModuleType(M, C);
|
|
}
|
|
|
|
static char getFuncAttrKey(bool isAutoClosure, bool isBlock, bool isThin,
|
|
AbstractCC cc) {
|
|
return isAutoClosure | (isBlock << 1) | (isThin << 2)
|
|
| (unsigned(cc) << 3);
|
|
}
|
|
|
|
/// FunctionType::get - Return a uniqued function type with the specified
|
|
/// input and result.
|
|
FunctionType *FunctionType::get(Type Input, Type Result,
|
|
bool isAutoClosure, bool isBlock, bool isThin,
|
|
AbstractCC cc,
|
|
ASTContext &C) {
|
|
bool hasTypeVariable = Input->hasTypeVariable() || Result->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
char attrKey = getFuncAttrKey(isAutoClosure, isBlock, isThin, cc);
|
|
|
|
FunctionType *&Entry
|
|
= C.Impl.getArena(arena).FunctionTypes[{Input, {Result, attrKey} }];
|
|
if (Entry) return Entry;
|
|
|
|
return Entry = new (C, arena) FunctionType(Input, Result,
|
|
isAutoClosure,
|
|
isBlock,
|
|
hasTypeVariable,
|
|
isThin,
|
|
cc);
|
|
}
|
|
|
|
// If the input and result types are canonical, then so is the result.
|
|
FunctionType::FunctionType(Type input, Type output,
|
|
bool isAutoClosure, bool isBlock,
|
|
bool hasTypeVariable, bool isThin,
|
|
AbstractCC cc)
|
|
: AnyFunctionType(TypeKind::Function,
|
|
(input->isCanonical() && output->isCanonical()) ?
|
|
&input->getASTContext() : 0,
|
|
input, output,
|
|
(input->isUnresolvedType() || output->isUnresolvedType()),
|
|
hasTypeVariable,
|
|
isThin,
|
|
cc),
|
|
AutoClosure(isAutoClosure),
|
|
Block(isBlock)
|
|
{ }
|
|
|
|
|
|
/// FunctionType::get - Return a uniqued function type with the specified
|
|
/// input and result.
|
|
PolymorphicFunctionType *PolymorphicFunctionType::get(Type input, Type output,
|
|
GenericParamList *params,
|
|
bool isThin,
|
|
AbstractCC cc,
|
|
ASTContext &C) {
|
|
// FIXME: one day we should do canonicalization properly.
|
|
bool hasTypeVariable = input->hasTypeVariable() || output->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
return new (C, arena) PolymorphicFunctionType(input, output, params,
|
|
isThin, cc, C);
|
|
}
|
|
|
|
PolymorphicFunctionType::PolymorphicFunctionType(Type input, Type output,
|
|
GenericParamList *params,
|
|
bool isThin,
|
|
AbstractCC cc,
|
|
ASTContext &C)
|
|
: AnyFunctionType(TypeKind::PolymorphicFunction,
|
|
(input->isCanonical() && output->isCanonical()) ?&C : 0,
|
|
input, output,
|
|
(input->isUnresolvedType() || output->isUnresolvedType()),
|
|
/*HasTypeVariable=*/false,
|
|
isThin, cc),
|
|
Params(params)
|
|
{
|
|
assert(!input->hasTypeVariable() && !output->hasTypeVariable());
|
|
}
|
|
|
|
/// Return a uniqued array type with the specified base type and the
|
|
/// specified size.
|
|
ArrayType *ArrayType::get(Type BaseType, uint64_t Size, ASTContext &C) {
|
|
assert(Size != 0);
|
|
|
|
bool hasTypeVariable = BaseType->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
ArrayType *&Entry
|
|
= C.Impl.getArena(arena).ArrayTypes[std::make_pair(BaseType, Size)];
|
|
if (Entry) return Entry;
|
|
|
|
return Entry = new (C, arena) ArrayType(BaseType, Size, hasTypeVariable);
|
|
}
|
|
|
|
ArrayType::ArrayType(Type base, uint64_t size, bool hasTypeVariable)
|
|
: TypeBase(TypeKind::Array,
|
|
base->isCanonical() ? &base->getASTContext() : 0,
|
|
base->isUnresolvedType(), hasTypeVariable),
|
|
Base(base), Size(size) {}
|
|
|
|
|
|
/// Return a uniqued array slice type with the specified base type.
|
|
ArraySliceType *ArraySliceType::get(Type base, ASTContext &C) {
|
|
bool hasTypeVariable = base->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
ArraySliceType *&entry = C.Impl.getArena(arena).ArraySliceTypes[base];
|
|
if (entry) return entry;
|
|
|
|
return entry = new (C, arena) ArraySliceType(base, hasTypeVariable);
|
|
}
|
|
|
|
ProtocolType::ProtocolType(ProtocolDecl *TheDecl, ASTContext &Ctx)
|
|
: NominalType(TypeKind::Protocol, &Ctx, TheDecl, /*Parent=*/Type(),
|
|
/*HasTypeVariable=*/false) { }
|
|
|
|
LValueType *LValueType::get(Type objectTy, Qual quals, ASTContext &C) {
|
|
bool hasTypeVariable = objectTy->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
auto key = std::make_pair(objectTy, quals.getOpaqueData());
|
|
auto &entry = C.Impl.getArena(arena).LValueTypes[key];
|
|
if (entry)
|
|
return entry;
|
|
|
|
ASTContext *canonicalContext = (objectTy->isCanonical() ? &C : nullptr);
|
|
return entry = new (C, arena) LValueType(objectTy, quals, canonicalContext,
|
|
hasTypeVariable);
|
|
}
|
|
|
|
/// Return a uniqued substituted type.
|
|
SubstitutedType *SubstitutedType::get(Type Original, Type Replacement,
|
|
ASTContext &C) {
|
|
bool hasTypeVariable = Replacement->hasTypeVariable();
|
|
auto arena = getArena(hasTypeVariable);
|
|
|
|
SubstitutedType *&Known
|
|
= C.Impl.getArena(arena).SubstitutedTypes[{Original, Replacement}];
|
|
if (!Known) {
|
|
Known = new (C, arena) SubstitutedType(Original, Replacement,
|
|
hasTypeVariable);
|
|
}
|
|
return Known;
|
|
}
|
|
|
|
void *ExprHandle::operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
|
|
ExprHandle *ExprHandle::get(ASTContext &Context, Expr *E) {
|
|
return new (Context) ExprHandle(E);
|
|
}
|
|
|
|
void TypeLoc::setInvalidType(ASTContext &C) {
|
|
T = ErrorType::get(C);
|
|
}
|