Files
swift-mirror/SwiftCompilerSources/Sources/Optimizer/Utilities/EscapeUtils.swift
Egor Zhdan a6372e955a Merge pull request #61618 from apple/egorzhdan/scs-reapply-enums
Revert "Revert "[cxx-interop][SwiftCompilerSources] Use C++ enums directly from Swift""
2022-10-20 15:46:17 +01:00

887 lines
37 KiB
Swift

//===--- EscapeUtils.swift ------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SIL
extension ProjectedValue {
/// Returns true if the projected value escapes.
///
/// This function finds potential escape points by starting a walk at the value and
/// alternately walking in two directions:
/// * Starting at allocations, walks down from defs to uses ("Where does the value go to?")
/// * Starting at stores, walks up from uses to defs ("Were does the value come from?")
///
/// The value "escapes" if the walk reaches a point where the further flow of the value
/// cannot be tracked anymore.
/// Example:
/// \code
/// %1 = alloc_ref $X // 1. initial value: walk down to the `store`
/// %2 = alloc_stack $X // 3. walk down to %3
/// store %1 to %2 // 2. walk up to `%2`
/// %3 = load %2 // 4. continue walking down to the `return`
/// return %3 // 5. The value is escaping!
/// \endcode
///
/// The traversal stops at points where the current path doesn't match the original projection.
/// For example, let's assume this function is called on a projected value with path `s0.c1`.
/// \code
/// %value : $Struct<X> // current path == s0.c1, the initial value
/// %ref = struct_extract %value, #field0 // current path == c1
/// %addr = ref_element_addr %ref, #field2 // mismatch: `c1` != `c2` -> ignored
/// \endcode
///
/// Trivial values are ignored, even if the path matches.
///
/// The algorithm doesn't distinguish between addresses and values. Addresses are considered
/// as escaping if either:
/// * the address escapes (e.g. to an inout parameter of an unknown function)
/// * or if the value, which is stored at the address, escapes.
///
/// The provided `visitor` can be used to override the handling a certain defs and uses during
/// the walk. See `EscapeVisitor` for details.
///
func isEscaping<V: EscapeVisitor>(using visitor: V = DefaultVisitor(), _ context: PassContext) -> Bool {
var walker = EscapeWalker(visitor: visitor, analyzeAddresses: false, context)
return walker.walkUp(addressOrValue: value, path: escapePath(path)) == .abortWalk
}
/// Returns true if the projected address value escapes.
///
/// This function is similar to the non-address version: `isEscaping() -> Bool`, but
/// the projected value (which is expected to be an address) is handled differently:
/// * Loads from the addresss are ignored. So it's really about the _address_ and
/// not the value stored at the address.
/// * Addresses with trivial types are _not_ ignored.
///
func isAddressEscaping<V: EscapeVisitor>(using visitor: V = DefaultVisitor(), _ context: PassContext) -> Bool {
var walker = EscapeWalker(visitor: visitor, analyzeAddresses: true, context)
return walker.walkUp(addressOrValue: value, path: escapePath(path)) == .abortWalk
}
/// Returns true if the function argument escapes, but ignoring any potential escapes in the caller.
///
/// This function is similar to `ProjectedValue.isEscaping()`, but it ignores any potential
/// escapes which might have happened before the argument's function is called.
/// Technically, this means that the walk starts downwards instead of upwards.
///
func isEscapingWhenWalkingDown<V: EscapeVisitor>(using visitor: V = DefaultVisitor(),
_ context: PassContext) -> Bool {
var walker = EscapeWalker(visitor: visitor, analyzeAddresses: false, context)
return walker.walkDown(addressOrValue: value, path: escapePath(path)) == .abortWalk
}
/// Returns the result of the visitor if the projected value does not escape.
///
/// This function is similar to `isEscaping() -> Bool`, but instead of returning a Bool,
/// it returns the `result` of the `visitor`, if the projected value does not escape.
/// Returns nil, if the projected value escapes.
///
func visit<V: EscapeVisitorWithResult>(using visitor: V, _ context: PassContext) -> V.Result? {
var walker = EscapeWalker(visitor: visitor, analyzeAddresses: false, context)
if walker.walkUp(addressOrValue: value, path: escapePath(path)) == .abortWalk {
return nil
}
return walker.visitor.result
}
/// Returns the result of the visitor if the projected address value does not escape.
///
/// This function is similar to `isAddressEscaping() -> Bool`, but instead of returning a Bool,
/// it returns the `result` of the `visitor`, if the projected address does not escape.
/// Returns nil, if the projected address escapes.
///
func visitAddress<V: EscapeVisitorWithResult>(using visitor: V, _ context: PassContext) -> V.Result? {
var walker = EscapeWalker(visitor: visitor, analyzeAddresses: true, context)
if walker.walkUp(addressOrValue: value, path: escapePath(path)) == .abortWalk {
return nil
}
return walker.visitor.result
}
/// Returns the result of the visitor if the projected value does not escape - ignoring
/// any potential escapes in the caller.
///
/// This function is similar to `isEscapingIgnoringCallerEscapes() -> Bool`, but instead
/// of returning a Bool, it returns the `result` of the `visitor`.
///
func visitByWalkingDown<V: EscapeVisitorWithResult>(using visitor: V,
_ context: PassContext) -> V.Result? {
var walker = EscapeWalker(visitor: visitor, analyzeAddresses: false, context)
if walker.walkDown(addressOrValue: value, path: escapePath(path)) == .abortWalk {
return nil
}
return walker.visitor.result
}
/// Returns true if the address can alias with `rhs`.
///
/// Example:
/// %1 = struct_element_addr %s, #field1
/// %2 = struct_element_addr %s, #field2
///
/// `%s`.canAddressAlias(with: `%1`) -> true
/// `%s`.canAddressAlias(with: `%2`) -> true
/// `%1`.canAddressAlias(with: `%2`) -> false
///
func canAddressAlias(with rhs: ProjectedValue, _ context: PassContext) -> Bool {
// self -> rhs will succeed (= return false) if self is a non-escaping "local" object,
// but not necessarily rhs.
if !isAddressEscaping(using: EscapesToValueVisitor(target: rhs), context) {
return false
}
// The other way round: rhs -> self will succeed if rhs is a non-escaping "local" object,
// but not necessarily self.
if !rhs.isAddressEscaping(using: EscapesToValueVisitor(target: self), context) {
return false
}
return true
}
}
extension Value {
/// The un-projected version of `ProjectedValue.isEscaping()`.
func isEscaping<V: EscapeVisitor>(using visitor: V = DefaultVisitor(), _ context: PassContext) -> Bool {
return self.at(SmallProjectionPath()).isEscaping(using: visitor, context)
}
func isEscapingWhenWalkingDown<V: EscapeVisitor>(using visitor: V = DefaultVisitor(),
_ context: PassContext) -> Bool {
return self.at(SmallProjectionPath()).isEscapingWhenWalkingDown(using: visitor, context)
}
/// The un-projected version of `ProjectedValue.visit()`.
func visit<V: EscapeVisitorWithResult>(using visitor: V, _ context: PassContext) -> V.Result? {
return self.at(SmallProjectionPath()).visit(using: visitor, context)
}
}
private func escapePath(_ path: SmallProjectionPath) -> EscapeUtilityTypes.EscapePath {
EscapeUtilityTypes.EscapePath(projectionPath: path, followStores: false, knownType: nil)
}
/// This protocol is used to customize `ProjectedValue.isEscaping` (and similar functions)
/// by implementing `visitUse` and `visitDef` which are called for all uses and definitions
/// encountered during a walk.
protocol EscapeVisitor {
typealias UseResult = EscapeUtilityTypes.UseVisitResult
typealias DefResult = EscapeUtilityTypes.DefVisitResult
typealias EscapePath = EscapeUtilityTypes.EscapePath
/// Called during the DefUse walk for each use
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult
/// Called during the UseDef walk for each definition
mutating func visitDef(def: Value, path: EscapePath) -> DefResult
/// Returns true if the type of `value` at `path` is relevant and should be tracked.
func hasRelevantType(_ value: Value, at path: SmallProjectionPath, analyzeAddresses: Bool) -> Bool
}
extension EscapeVisitor {
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
return .continueWalk
}
mutating func visitDef(def: Value, path: EscapePath) -> DefResult {
return .continueWalkUp
}
func hasRelevantType(_ value: Value, at path: SmallProjectionPath, analyzeAddresses: Bool) -> Bool {
if !value.hasTrivialNonPointerType { return true }
// For selected addresses we also need to consider trivial types (`value`
// is a selected address if the path does not contain any class projections).
if analyzeAddresses && value.type.isAddress && !path.hasClassProjection { return true }
return false
}
}
/// A visitor which returns a `result`.
protocol EscapeVisitorWithResult : EscapeVisitor {
associatedtype Result
var result: Result { get }
}
/// Lets `ProjectedValue.isEscaping` return true if the value is "escaping" to the `target` value.
struct EscapesToValueVisitor : EscapeVisitor {
let target: ProjectedValue
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
if operand.value == target.value && path.projectionPath.mayOverlap(with: target.path) {
return .abort
}
if operand.instruction is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
return .continueWalk
}
}
/// Lets `ProjectedValue.isEscaping` return true if the value is "escaping" to the `target` instruction.
struct EscapesToInstructionVisitor : EscapeVisitor {
let target: Instruction
mutating func visitUse(operand: Operand, path: EscapePath) -> UseResult {
let user = operand.instruction
if user == target {
return .abort
}
if user is ReturnInst {
// Anything which is returned cannot escape to an instruction inside the function.
return .ignore
}
return .continueWalk
}
}
private struct DefaultVisitor : EscapeVisitor {}
struct EscapeUtilityTypes {
/// The EscapePath is updated and maintained during the up-walk and down-walk.
///
/// It's passed to the EscapeVisitor's `visitUse` and `visitDef`.
struct EscapePath: SmallProjectionWalkingPath {
/// During the walk, a projection path indicates where the initial value is
/// contained in an aggregate.
/// Example for a walk-down:
/// \code
/// %1 = alloc_ref // 1. initial value, path = empty
/// %2 = struct $S (%1) // 2. path = s0
/// %3 = tuple (%other, %1) // 3. path = t1.s0
/// %4 = tuple_extract %3, 1 // 4. path = s0
/// %5 = struct_extract %4, #field // 5. path = empty
/// \endcode
///
let projectionPath: SmallProjectionPath
/// This flag indicates if stored values should be included in the walk.
/// If the initial value is stored to some memory allocation, we usually don't
/// care if other values are stored to that location as well. Example:
/// \code
/// %1 = alloc_ref $X // 1. initial value, walk down to the `store`
/// %2 = alloc_stack $X // 3. walk down to the second `store`
/// store %1 to %2 // 2. walk up to %2
/// store %other to %2 // 4. ignore (followStores == false): %other doesn't impact the "escapeness" of %1
/// \endcode
///
/// But once the the up-walk sees a load, it has to follow stores from that point on.
/// Example:
/// \code
/// bb0(%function_arg): // 7. escaping! %1 escapes through %function_arg
/// %1 = alloc_ref $X // 1. initial value, walk down to the second `store`
/// %addr = alloc_stack %X // 5. walk down to the first `store`
/// store %function_arg to %addr // 6. walk up to %function_arg (followStores == true)
/// %2 = load %addr // 4. walk up to %addr, followStores = true
/// %3 = ref_element_addr %2, #f // 3. walk up to %2
/// store %1 to %3 // 2. walk up to %3
/// \endcode
///
let followStores: Bool
/// Not nil, if the exact type of the current value is know.
///
/// This is used for destructor analysis.
/// Example:
/// \code
/// %1 = alloc_ref $Derived // 1. initial value, knownType = $Derived
/// %2 = upcast %1 to $Base // 2. knownType = $Derived
/// destroy_value %2 : $Base // 3. We know that the destructor of $Derived is called here
/// \endcode
let knownType: Type?
func with(projectionPath: SmallProjectionPath) -> Self {
return Self(projectionPath: projectionPath, followStores: self.followStores, knownType: self.knownType)
}
func with(followStores: Bool) -> Self {
return Self(projectionPath: self.projectionPath, followStores: followStores, knownType: self.knownType)
}
func with(knownType: Type?) -> Self {
return Self(projectionPath: self.projectionPath, followStores: self.followStores, knownType: knownType)
}
func merge(with other: EscapePath) -> EscapePath {
let mergedPath = self.projectionPath.merge(with: other.projectionPath)
let mergedFollowStores = self.followStores || other.followStores
let mergedKnownType: Type?
if let ty = self.knownType {
if let otherTy = other.knownType, ty != otherTy {
mergedKnownType = nil
} else {
mergedKnownType = ty
}
} else {
mergedKnownType = other.knownType
}
return EscapePath(projectionPath: mergedPath, followStores: mergedFollowStores, knownType: mergedKnownType)
}
}
enum DefVisitResult {
case ignore
case continueWalkUp
case walkDown
case abort
}
enum UseVisitResult {
case ignore
case continueWalk
case abort
}
}
/// EscapeWalker is both a DefUse walker and UseDef walker. It implements both, the up-, and down-walk.
fileprivate struct EscapeWalker<V: EscapeVisitor> : ValueDefUseWalker,
AddressDefUseWalker,
ValueUseDefWalker,
AddressUseDefWalker {
typealias Path = EscapeUtilityTypes.EscapePath
init(visitor: V, analyzeAddresses: Bool, _ context: PassContext) {
self.calleeAnalysis = context.calleeAnalysis
self.visitor = visitor
self.analyzeAddresses = analyzeAddresses
}
//===--------------------------------------------------------------------===//
// Walking down
//===--------------------------------------------------------------------===//
mutating func walkDown(addressOrValue: Value, path: Path) -> WalkResult {
if addressOrValue.type.isAddress {
return walkDownUses(ofAddress: addressOrValue, path: path)
} else {
return walkDownUses(ofValue: addressOrValue, path: path)
}
}
mutating func cachedWalkDown(addressOrValue: Value, path: Path) -> WalkResult {
if let path = walkDownCache.needWalk(for: addressOrValue, path: path) {
return walkDown(addressOrValue: addressOrValue, path: path)
} else {
return .continueWalk
}
}
mutating func walkDown(value: Operand, path: Path) -> WalkResult {
if visitor.hasRelevantType(value.value, at: path.projectionPath, analyzeAddresses: analyzeAddresses) {
switch visitor.visitUse(operand: value, path: path) {
case .continueWalk:
return walkDownDefault(value: value, path: path)
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``ValueDefUseWalker`` conformance: called when the value def-use walk can't continue,
/// i.e. when the result of the use is not a value.
mutating func leafUse(value operand: Operand, path: Path) -> WalkResult {
let instruction = operand.instruction
switch instruction {
case let rta as RefTailAddrInst:
if let path = pop(.tailElements, from: path, yielding: rta) {
return walkDownUses(ofAddress: rta, path: path.with(knownType: nil))
}
case let rea as RefElementAddrInst:
if let path = pop(.classField, index: rea.fieldIndex, from: path, yielding: rea) {
return walkDownUses(ofAddress: rea, path: path.with(knownType: nil))
}
case let pb as ProjectBoxInst:
if let path = pop(.classField, index: pb.fieldIndex, from: path, yielding: pb) {
return walkDownUses(ofAddress: pb, path: path.with(knownType: nil))
}
case is StoreInst, is StoreWeakInst, is StoreUnownedInst:
let store = instruction as! StoringInstruction
assert(operand == store.sourceOperand )
return walkUp(address: store.destination, path: path)
case is DestroyValueInst, is ReleaseValueInst, is StrongReleaseInst:
if handleDestroy(of: operand.value, path: path) == .abortWalk {
return .abortWalk
}
case is ReturnInst:
return isEscaping
case is ApplyInst, is TryApplyInst, is BeginApplyInst:
return walkDownCallee(argOp: operand, apply: instruction as! FullApplySite, path: path)
case let pai as PartialApplyInst:
// This is a non-stack closure.
// For `stack` closures, `hasRelevantType` in `walkDown` will return false
// stopping the walk since they don't escape.
// Check whether the partially applied argument can escape in the body.
if walkDownCallee(argOp: operand, apply: pai, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
// Additionally we need to follow the partial_apply value for two reasons:
// 1. the closure (with the captured values) itself can escape
// and the use "transitively" escapes
// 2. something can escape in a destructor when the context is destroyed
return walkDownUses(ofValue: pai, path: path.with(knownType: nil))
case let pta as PointerToAddressInst:
assert(operand.index == 0)
return walkDownUses(ofAddress: pta, path: path.with(knownType: nil))
case let bi as BuiltinInst:
switch bi.id {
case .DestroyArray:
// If it's not the array base pointer operand -> bail. Though, that shouldn't happen
// because the other operands (metatype, count) shouldn't be visited anyway.
if operand.index != 1 { return isEscaping }
// Class references, which are directly located in the array elements cannot escape,
// because those are passed as `self` to their deinits - and `self` cannot escape in a deinit.
if path.projectionPath.hasNoClassProjection {
return .continueWalk
}
return isEscaping
default:
return isEscaping
}
case is StrongRetainInst, is RetainValueInst, is DebugValueInst, is ValueMetatypeInst,
is InitExistentialMetatypeInst, is OpenExistentialMetatypeInst,
is ExistentialMetatypeInst, is DeallocRefInst, is SetDeallocatingInst, is FixLifetimeInst,
is ClassifyBridgeObjectInst, is BridgeObjectToWordInst, is EndBorrowInst,
is StrongRetainInst, is RetainValueInst,
is ClassMethodInst, is SuperMethodInst, is ObjCMethodInst,
is ObjCSuperMethodInst, is WitnessMethodInst, is DeallocStackRefInst:
return .continueWalk
case is DeallocStackInst:
// dealloc_stack %f : $@noescape @callee_guaranteed () -> ()
// type is a value
assert(operand.value.definingInstruction is PartialApplyInst)
return .continueWalk
default:
return isEscaping
}
return .continueWalk
}
mutating func walkDown(address: Operand, path: Path) -> WalkResult {
if visitor.hasRelevantType(address.value, at: path.projectionPath, analyzeAddresses: analyzeAddresses) {
switch visitor.visitUse(operand: address, path: path) {
case .continueWalk:
return walkDownDefault(address: address, path: path)
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``AddressDefUseWalker`` conformance: called when the address def-use walk can't continue,
/// i.e. when the result of the use is not an address.
mutating func leafUse(address operand: Operand, path: Path) -> WalkResult {
let instruction = operand.instruction
switch instruction {
case is StoreInst, is StoreWeakInst, is StoreUnownedInst:
let store = instruction as! StoringInstruction
assert(operand == store.destinationOperand)
if let si = store as? StoreInst, si.destinationOwnership == .assign {
if handleDestroy(of: operand.value, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
}
if path.followStores {
return walkUp(value: store.source, path: path)
}
case let copyAddr as CopyAddrInst:
if canIgnoreForLoadOrArgument(path) { return .continueWalk }
if operand == copyAddr.sourceOperand {
return walkUp(address: copyAddr.destination, path: path)
} else {
if !copyAddr.isInitializationOfDest {
if handleDestroy(of: operand.value, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
}
if path.followStores {
assert(operand == copyAddr.destinationOperand)
return walkUp(value: copyAddr.source, path: path)
}
}
case is DestroyAddrInst:
if handleDestroy(of: operand.value, path: path) == .abortWalk {
return .abortWalk
}
case is ReturnInst:
return isEscaping
case is ApplyInst, is TryApplyInst, is BeginApplyInst:
return walkDownCallee(argOp: operand, apply: instruction as! FullApplySite, path: path)
case let pai as PartialApplyInst:
if walkDownCallee(argOp: operand, apply: pai, path: path.with(knownType: nil)) == .abortWalk {
return .abortWalk
}
// We need to follow the partial_apply value for two reasons:
// 1. the closure (with the captured values) itself can escape
// 2. something can escape in a destructor when the context is destroyed
return walkDownUses(ofValue: pai, path: path.with(knownType: nil))
case is LoadInst, is LoadWeakInst, is LoadUnownedInst:
if canIgnoreForLoadOrArgument(path) { return .continueWalk }
let svi = instruction as! SingleValueInstruction
// Even when analyzing addresses, a loaded trivial value can be ignored.
if svi.hasTrivialNonPointerType { return .continueWalk }
return walkDownUses(ofValue: svi, path: path.with(knownType: nil))
case let atp as AddressToPointerInst:
return walkDownUses(ofValue: atp, path: path.with(knownType: nil))
case let ia as IndexAddrInst:
assert(operand.index == 0)
return walkDownUses(ofAddress: ia, path: path.with(knownType: nil))
case is DeallocStackInst, is InjectEnumAddrInst, is FixLifetimeInst, is EndBorrowInst, is EndAccessInst,
is DebugValueInst:
return .continueWalk
default:
return isEscaping
}
return .continueWalk
}
/// Check whether the value escapes through the deinitializer
private func handleDestroy(of value: Value, path: Path) -> WalkResult {
// Even if this is a destroy_value of a struct/tuple/enum, the called destructor(s) only take a
// single class reference as parameter.
let p = path.projectionPath.popAllValueFields()
if p.isEmpty {
// The object to destroy (= the argument of the destructor) cannot escape itself.
return .continueWalk
}
if analyzeAddresses && p.matches(pattern: SmallProjectionPath(.anyValueFields).push(.anyClassField)) {
// Any address of a class property of the object to destroy cannot esacpe the destructor.
// (Whereas a value stored in such a property could escape.)
return .continueWalk
}
if path.followStores {
return isEscaping
}
if let exactTy = path.knownType {
guard let destructor = calleeAnalysis.getDestructor(ofExactType: exactTy) else {
return isEscaping
}
if destructor.effects.escapeEffects.canEscape(argumentIndex: 0, path: p, analyzeAddresses: analyzeAddresses) {
return isEscaping
}
} else {
// We don't know the exact type, so get all possible called destructure from
// the callee analysis.
guard let destructors = calleeAnalysis.getDestructors(of: value.type) else {
return isEscaping
}
for destructor in destructors {
if destructor.effects.escapeEffects.canEscape(argumentIndex: 0, path: p, analyzeAddresses: analyzeAddresses) {
return isEscaping
}
}
}
return .continueWalk
}
/// Handle an apply (full or partial) during the walk-down.
private mutating
func walkDownCallee(argOp: Operand, apply: ApplySite, path: Path) -> WalkResult {
guard let argIdx = apply.argumentIndex(of: argOp) else {
// The callee or a type dependent operand of the apply does not let escape anything.
return .continueWalk
}
if canIgnoreForLoadOrArgument(path) { return .continueWalk }
// Argument effects do not consider any potential stores to the argument (or it's content).
// Therefore, if we need to track stores, the argument effects do not correctly describe what we need.
// For example, argument 0 in the following function is marked as not-escaping, although there
// is a store to the argument:
//
// sil [escapes !%0.**] @callee(@inout X, @owned X) -> () {
// bb0(%0 : $*X, %1 : $X):
// store %1 to %0 : $*X
// }
if path.followStores { return isEscaping }
guard let callees = calleeAnalysis.getCallees(callee: apply.callee) else {
// The callees are not know, e.g. if the callee is a closure, class method, etc.
return isEscaping
}
let calleeArgIdx = apply.calleeArgIndex(callerArgIndex: argIdx)
for callee in callees {
let effects = callee.effects
if !effects.escapeEffects.canEscape(argumentIndex: calleeArgIdx, path: path.projectionPath, analyzeAddresses: analyzeAddresses) {
continue
}
if walkDownArgument(calleeArgIdx: calleeArgIdx, argPath: path,
apply: apply, effects: effects) == .abortWalk {
return .abortWalk
}
}
return .continueWalk
}
/// Handle `.escaping` effects for an apply argument during the walk-down.
private mutating
func walkDownArgument(calleeArgIdx: Int, argPath: Path,
apply: ApplySite, effects: FunctionEffects) -> WalkResult {
var matched = false
for effect in effects.escapeEffects.arguments {
switch effect.kind {
case .escapingToArgument(let toArgIdx, let toPath, let exclusive):
if effect.matches(calleeArgIdx, argPath.projectionPath) {
guard let callerToIdx = apply.callerArgIndex(calleeArgIndex: toArgIdx) else {
return isEscaping
}
// Continue at the destination of an arg-to-arg escape.
let arg = apply.arguments[callerToIdx]
let p = Path(projectionPath: toPath, followStores: false, knownType: nil)
if walkUp(addressOrValue: arg, path: p) == .abortWalk {
return .abortWalk
}
matched = true
} else if toArgIdx == calleeArgIdx && argPath.projectionPath.matches(pattern: toPath) {
// Handle the reverse direction of an arg-to-arg escape.
guard let callerArgIdx = apply.callerArgIndex(calleeArgIndex: effect.argumentIndex) else {
return isEscaping
}
if !exclusive { return isEscaping }
let arg = apply.arguments[callerArgIdx]
let p = Path(projectionPath: effect.pathPattern, followStores: false, knownType: nil)
if walkUp(addressOrValue: arg, path: p) == .abortWalk {
return .abortWalk
}
matched = true
}
case .escapingToReturn(let toPath, let exclusive):
if effect.matches(calleeArgIdx, argPath.projectionPath) {
guard let fas = apply as? FullApplySite, let result = fas.singleDirectResult else {
return isEscaping
}
let p = Path(projectionPath: toPath, followStores: false, knownType: exclusive ? argPath.knownType : nil)
if walkDownUses(ofValue: result, path: p) == .abortWalk {
return .abortWalk
}
matched = true
}
case .notEscaping:
break
}
}
if !matched { return isEscaping }
return .continueWalk
}
//===--------------------------------------------------------------------===//
// Walking up
//===--------------------------------------------------------------------===//
mutating func walkUp(addressOrValue: Value, path: Path) -> WalkResult {
if addressOrValue.type.isAddress {
return walkUp(address: addressOrValue, path: path)
} else {
return walkUp(value: addressOrValue, path: path)
}
}
mutating func walkUp(value: Value, path: Path) -> WalkResult {
if visitor.hasRelevantType(value, at: path.projectionPath, analyzeAddresses: analyzeAddresses) {
switch visitor.visitDef(def: value, path: path) {
case .continueWalkUp:
return walkUpDefault(value: value, path: path)
case .walkDown:
return cachedWalkDown(addressOrValue: value, path: path.with(knownType: nil))
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``ValueUseDefWalker`` conformance: called when the value use-def walk can't continue,
/// i.e. when the operand (if any) of the instruction of a definition is not a value.
mutating func rootDef(value def: Value, path: Path) -> WalkResult {
switch def {
case is AllocRefInst, is AllocRefDynamicInst:
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: def.type))
case is AllocBoxInst:
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: nil))
case let arg as BlockArgument:
let block = arg.block
switch block.singlePredecessor!.terminator {
case let ta as TryApplyInst:
if block != ta.normalBlock { return isEscaping }
return walkUpApplyResult(apply: ta, path: path.with(knownType: nil))
default:
return isEscaping
}
case let ap as ApplyInst:
return walkUpApplyResult(apply: ap, path: path.with(knownType: nil))
case is LoadInst, is LoadWeakInst, is LoadUnownedInst:
return walkUp(address: (def as! UnaryInstruction).operand,
path: path.with(followStores: true).with(knownType: nil))
case let atp as AddressToPointerInst:
return walkUp(address: atp.operand, path: path.with(knownType: nil))
default:
return isEscaping
}
}
mutating func walkUp(address: Value, path: Path) -> WalkResult {
if visitor.hasRelevantType(address, at: path.projectionPath, analyzeAddresses: analyzeAddresses) {
switch visitor.visitDef(def: address, path: path) {
case .continueWalkUp:
return walkUpDefault(address: address, path: path)
case .walkDown:
return cachedWalkDown(addressOrValue: address, path: path)
case .ignore:
return .continueWalk
case .abort:
return .abortWalk
}
}
return .continueWalk
}
/// ``AddressUseDefWalker`` conformance: called when the address use-def walk can't continue,
/// i.e. when the operand (if any) of the instruction of a definition is not an address.
mutating func rootDef(address def: Value, path: Path) -> WalkResult {
switch def {
case is AllocStackInst:
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: nil))
case let arg as FunctionArgument:
if canIgnoreForLoadOrArgument(path) && arg.convention.isExclusiveIndirect && !path.followStores {
return cachedWalkDown(addressOrValue: def, path: path.with(knownType: nil))
} else {
return isEscaping
}
case is PointerToAddressInst, is IndexAddrInst:
return walkUp(value: (def as! SingleValueInstruction).operands[0].value, path: path.with(knownType: nil))
case let rta as RefTailAddrInst:
return walkUp(value: rta.operand, path: path.push(.tailElements, index: 0).with(knownType: nil))
case let rea as RefElementAddrInst:
return walkUp(value: rea.operand, path: path.push(.classField, index: rea.fieldIndex).with(knownType: nil))
case let pb as ProjectBoxInst:
return walkUp(value: pb.operand, path: path.push(.classField, index: pb.fieldIndex).with(knownType: nil))
default:
return isEscaping
}
}
/// Walks up from the return to the source argument if there is an "exclusive"
/// escaping effect on an argument.
private mutating
func walkUpApplyResult(apply: FullApplySite,
path: Path) -> WalkResult {
guard let callees = calleeAnalysis.getCallees(callee: apply.callee) else {
return .abortWalk
}
for callee in callees {
var matched = false
for effect in callee.effects.escapeEffects.arguments {
switch effect.kind {
case .escapingToReturn(let toPath, let exclusive):
if exclusive && path.projectionPath.matches(pattern: toPath) {
let arg = apply.arguments[effect.argumentIndex]
let p = Path(projectionPath: effect.pathPattern, followStores: path.followStores, knownType: nil)
if walkUp(addressOrValue: arg, path: p) == .abortWalk {
return .abortWalk
}
matched = true
}
case .notEscaping, .escapingToArgument:
break
}
}
if !matched {
return isEscaping
}
}
return .continueWalk
}
//===--------------------------------------------------------------------===//
// private state
//===--------------------------------------------------------------------===//
var visitor: V
// The caches are not only useful for performance, but are need to avoid infinite
// recursions of walkUp-walkDown cycles.
var walkDownCache = WalkerCache<Path>()
var walkUpCache = WalkerCache<Path>()
/// Differences when analyzing address-escapes (instead of value-escapes):
/// * also addresses with trivial types are tracked
/// * loads of addresses are ignored
/// * it can be assumed that addresses cannot escape a function (e.g. indirect parameters)
private var analyzeAddresses = false
private let calleeAnalysis: CalleeAnalysis
//===--------------------------------------------------------------------===//
// private utility functions
//===--------------------------------------------------------------------===//
/// Returns true if the selected address/value at `path` can be ignored for loading from
/// that address or for passing that address/value to a called function.
///
/// Passing the selected address (or a value loaded from the selected address) directly
/// to a function, cannot let the selected address escape:
/// * if it's passed as address: indirect parameters cannot escape a function
/// * a load from the address does not let the address escape
///
/// Example (continued from the previous example):
/// apply %other_func1(%selected_addr) // cannot let %selected_addr escape (path == v**)
/// %l = load %selected_addr
/// apply %other_func2(%l) // cannot let %selected_addr escape (path == v**)
/// apply %other_func3(%ref) // can let %selected_addr escape! (path == c*.v**)
///
/// Also, we can ignore loads from the selected address, because a loaded value does not
/// let the address escape.
private func canIgnoreForLoadOrArgument(_ path: Path) -> Bool {
return analyzeAddresses && path.projectionPath.hasNoClassProjection
}
/// Tries to pop the given projection from path, if the projected `value` has a relevant type.
private func pop(_ kind: Path.FieldKind, index: Int? = nil, from path: Path, yielding value: Value) -> Path? {
if let newPath = path.popIfMatches(kind, index: index),
visitor.hasRelevantType(value, at: newPath.projectionPath, analyzeAddresses: analyzeAddresses) {
return newPath
}
return nil
}
// Set a breakpoint here to debug when a value is escaping.
private var isEscaping: WalkResult { .abortWalk }
}