Files
swift-mirror/stdlib/public/runtime/MetadataLookup.cpp
Joe Groff a7a3b17597 Replace nominal type descriptors with a hierarchy of context descriptors.
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
2018-01-29 16:19:25 -08:00

836 lines
28 KiB
C++

//===--- MetadataLookup.cpp - Swift Language Type Name Lookup -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implementations of runtime functions for looking up a type by name.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeDecoder.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Mutex.h"
#include "swift/Strings.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringExtras.h"
#include "Private.h"
#include "ImageInspection.h"
#include <functional>
#include <vector>
using namespace swift;
using namespace Demangle;
#if SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#endif
#pragma mark Nominal type descriptor cache
// Type Metadata Cache.
namespace {
struct TypeMetadataSection {
const TypeMetadataRecord *Begin, *End;
const TypeMetadataRecord *begin() const {
return Begin;
}
const TypeMetadataRecord *end() const {
return End;
}
};
struct NominalTypeDescriptorCacheEntry {
private:
std::string Name;
const TypeContextDescriptor *Description;
public:
NominalTypeDescriptorCacheEntry(const llvm::StringRef name,
const TypeContextDescriptor *description)
: Name(name.str()), Description(description) {}
const TypeContextDescriptor *getDescription() {
return Description;
}
int compareWithKey(llvm::StringRef aName) const {
return aName.compare(Name);
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
} // end anonymous namespace
struct TypeMetadataState {
ConcurrentMap<NominalTypeDescriptorCacheEntry> NominalCache;
std::vector<TypeMetadataSection> SectionsToScan;
Mutex SectionsToScanLock;
TypeMetadataState() {
SectionsToScan.reserve(16);
initializeTypeMetadataRecordLookup();
}
};
static Lazy<TypeMetadataState> TypeMetadataRecords;
static void
_registerTypeMetadataRecords(TypeMetadataState &T,
const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
ScopedLock guard(T.SectionsToScanLock);
T.SectionsToScan.push_back(TypeMetadataSection{begin, end});
}
void swift::addImageTypeMetadataRecordBlockCallback(const void *records,
uintptr_t recordsSize) {
assert(recordsSize % sizeof(TypeMetadataRecord) == 0
&& "weird-sized type metadata section?!");
// If we have a section, enqueue the type metadata for lookup.
auto recordBytes = reinterpret_cast<const char *>(records);
auto recordsBegin
= reinterpret_cast<const TypeMetadataRecord*>(records);
auto recordsEnd
= reinterpret_cast<const TypeMetadataRecord*>(recordBytes + recordsSize);
// Type metadata cache should always be sufficiently initialized by this
// point. Attempting to go through get() may also lead to an infinite loop,
// since we register records during the initialization of
// TypeMetadataRecords.
_registerTypeMetadataRecords(TypeMetadataRecords.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void
swift::swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
auto &T = TypeMetadataRecords.get();
_registerTypeMetadataRecords(T, begin, end);
}
bool
swift::_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node) {
if (node->getKind() == Demangle::Node::Kind::Type)
node = node->getChild(0);
while (context) {
switch (context->getKind()) {
case ContextDescriptorKind::Module: {
auto module = cast<ModuleContextDescriptor>(context);
// Match to a mangled module name.
if (node->getKind() != Demangle::Node::Kind::Module)
return false;
if (!node->getText().equals(module->Name.get()))
return false;
node = nullptr;
break;
}
case ContextDescriptorKind::Extension: {
// TODO: Check whether the extension context constraints match.
return false;
}
default:
if (auto type = llvm::dyn_cast<TypeContextDescriptor>(context)) {
auto flags = type->Flags.getKindSpecificFlags();
switch (node->getKind()) {
// If the mangled name doesn't indicate a type kind, accept anything.
// Otherwise, try to match them up.
case Demangle::Node::Kind::OtherNominalType:
break;
case Demangle::Node::Kind::Structure:
if (type->getKind() != ContextDescriptorKind::Struct
&& !(flags & (uint16_t)TypeContextDescriptorFlags::IsCTag))
return false;
break;
case Demangle::Node::Kind::Class:
if (type->getKind() != ContextDescriptorKind::Class)
return false;
break;
case Demangle::Node::Kind::Enum:
if (type->getKind() != ContextDescriptorKind::Enum)
return false;
break;
case Demangle::Node::Kind::TypeAlias:
if (!(flags & (uint16_t)TypeContextDescriptorFlags::IsCTypedef))
return false;
break;
default:
return false;
}
if (!node->getChild(1)->getText().equals(type->Name.get()))
return false;
node = node->getChild(0);
break;
}
// We don't know about this kind of context, or it doesn't have a stable
// name we can match to.
return false;
}
context = context->Parent;
}
// We should have reached the top of the node tree at the same time we reached
// the top of the context tree.
if (node)
return false;
return true;
}
// returns the nominal type descriptor for the type named by typeName
static const TypeContextDescriptor *
_searchTypeMetadataRecords(const TypeMetadataState &T,
Demangle::NodePointer node) {
unsigned sectionIdx = 0;
unsigned endSectionIdx = T.SectionsToScan.size();
for (; sectionIdx < endSectionIdx; ++sectionIdx) {
auto &section = T.SectionsToScan[sectionIdx];
for (const auto &record : section) {
if (auto ntd = record.getNominalTypeDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node)) {
return ntd;
}
}
}
}
return nullptr;
}
static const TypeContextDescriptor *
_findNominalTypeDescriptor(Demangle::NodePointer node) {
const TypeContextDescriptor *foundNominal = nullptr;
auto &T = TypeMetadataRecords.get();
auto mangledName = Demangle::mangleNode(node);
// Look for an existing entry.
// Find the bucket for the metadata entry.
if (auto Value = T.NominalCache.find(mangledName))
return Value->getDescription();
// Check type metadata records
T.SectionsToScanLock.withLock([&] {
foundNominal = _searchTypeMetadataRecords(T, node);
});
// Check protocol conformances table. Note that this has no support for
// resolving generic types yet.
if (!foundNominal)
foundNominal = _searchConformancesByMangledTypeName(node);
if (foundNominal) {
T.NominalCache.getOrInsert(mangledName, foundNominal);
}
return foundNominal;
}
#pragma mark Protocol descriptor cache
namespace {
struct ProtocolSection {
const ProtocolRecord *Begin, *End;
const ProtocolRecord *begin() const {
return Begin;
}
const ProtocolRecord *end() const {
return End;
}
};
struct ProtocolDescriptorCacheEntry {
private:
std::string Name;
const ProtocolDescriptor *Description;
public:
ProtocolDescriptorCacheEntry(const llvm::StringRef name,
const ProtocolDescriptor *description)
: Name(name.str()), Description(description) {}
const ProtocolDescriptor *getDescription() {
return Description;
}
int compareWithKey(llvm::StringRef aName) const {
return aName.compare(Name);
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
struct ProtocolMetadataState {
ConcurrentMap<ProtocolDescriptorCacheEntry> ProtocolCache;
std::vector<ProtocolSection> SectionsToScan;
Mutex SectionsToScanLock;
ProtocolMetadataState() {
SectionsToScan.reserve(16);
initializeProtocolLookup();
}
};
static Lazy<ProtocolMetadataState> Protocols;
}
static void
_registerProtocols(ProtocolMetadataState &C,
const ProtocolRecord *begin,
const ProtocolRecord *end) {
ScopedLock guard(C.SectionsToScanLock);
C.SectionsToScan.push_back(ProtocolSection{begin, end});
}
void swift::addImageProtocolsBlockCallback(const void *protocols,
uintptr_t protocolsSize) {
assert(protocolsSize % sizeof(ProtocolRecord) == 0 &&
"protocols section not a multiple of ProtocolRecord");
// If we have a section, enqueue the protocols for lookup.
auto protocolsBytes = reinterpret_cast<const char *>(protocols);
auto recordsBegin
= reinterpret_cast<const ProtocolRecord *>(protocols);
auto recordsEnd
= reinterpret_cast<const ProtocolRecord *>(protocolsBytes + protocolsSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocols(Protocols.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void swift::swift_registerProtocols(const ProtocolRecord *begin,
const ProtocolRecord *end) {
auto &C = Protocols.get();
_registerProtocols(C, begin, end);
}
static const ProtocolDescriptor *
_searchProtocolRecords(const ProtocolMetadataState &C,
const llvm::StringRef protocolName){
unsigned sectionIdx = 0;
unsigned endSectionIdx = C.SectionsToScan.size();
for (; sectionIdx < endSectionIdx; ++sectionIdx) {
auto &section = C.SectionsToScan[sectionIdx];
for (const auto &record : section) {
if (auto protocol = record.Protocol.getPointer()) {
// Drop the "S$" prefix from the protocol record. It's not used in
// the type itself.
StringRef foundProtocolName = protocol->Name;
assert(foundProtocolName.startswith("$S"));
foundProtocolName = foundProtocolName.drop_front(2);
if (foundProtocolName == protocolName)
return protocol;
}
}
}
return nullptr;
}
static const ProtocolDescriptor *
_findProtocolDescriptor(llvm::StringRef mangledName) {
const ProtocolDescriptor *foundProtocol = nullptr;
auto &T = Protocols.get();
// Look for an existing entry.
// Find the bucket for the metadata entry.
if (auto Value = T.ProtocolCache.find(mangledName))
return Value->getDescription();
// Check type metadata records
T.SectionsToScanLock.withLock([&] {
foundProtocol = _searchProtocolRecords(T, mangledName);
});
if (foundProtocol) {
T.ProtocolCache.getOrInsert(mangledName, foundProtocol);
}
return foundProtocol;
}
#pragma mark Metadata lookup via mangled name
#if SWIFT_OBJC_INTEROP
/// For a mangled node that refers to an Objective-C class or protocol,
/// return the class or protocol name.
static Optional<StringRef> getObjCClassOrProtocolName(
const Demangle::NodePointer &node) {
if (node->getKind() != Demangle::Node::Kind::Class &&
node->getKind() != Demangle::Node::Kind::Protocol)
return None;
if (node->getNumChildren() != 2)
return None;
// Check whether we have the __ObjC module.
auto moduleNode = node->getChild(0);
if (moduleNode->getKind() != Demangle::Node::Kind::Module ||
moduleNode->getText() != MANGLING_MODULE_OBJC)
return None;
// Check whether we have an identifier.
auto nameNode = node->getChild(1);
if (nameNode->getKind() != Demangle::Node::Kind::Identifier)
return None;
return nameNode->getText();
}
#endif
namespace {
/// Find the offset of the protocol requirement for an associated type with
/// the given name in the given protocol descriptor.
Optional<unsigned> findAssociatedTypeByName(const ProtocolDescriptor *protocol,
StringRef name) {
// Only Swift protocols have associated types.
if (!protocol->Flags.isSwift()) return None;
// If we don't have associated type names, there's nothing to do.
const char *associatedTypeNamesPtr = protocol->AssociatedTypeNames.get();
if (!associatedTypeNamesPtr) return None;
// Look through the list of associated type names.
StringRef associatedTypeNames(associatedTypeNamesPtr);
unsigned matchingAssocTypeIdx = 0;
bool found = false;
while (!associatedTypeNames.empty()) {
auto split = associatedTypeNames.split(' ');
if (split.first == name) {
found = true;
break;
}
++matchingAssocTypeIdx;
associatedTypeNames = split.second;
}
if (!found) return None;
// We have a match on the Nth associated type; go find the Nth associated
// type requirement.
unsigned currentAssocTypeIdx = 0;
unsigned numRequirements = protocol->NumRequirements;
const ProtocolRequirement *requirements = protocol->Requirements.get();
for (unsigned reqIdx = 0; reqIdx != numRequirements; ++reqIdx) {
if (requirements[reqIdx].Flags.getKind() !=
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction)
continue;
if (currentAssocTypeIdx == matchingAssocTypeIdx)
return reqIdx + WitnessTableFirstRequirementOffset;
++currentAssocTypeIdx;
}
swift_runtime_unreachable("associated type names don't line up");
}
/// Constructs metadata by decoding a mangled type name, for use with
/// \c TypeDecoder.
class DecodedMetadataBuilder {
public:
/// Callback used to handle the substitution of a generic parameter for
/// its metadata.
using SubstGenericParameterFn =
std::function<const Metadata *(unsigned depth, unsigned index)>;
/// Callback used to handle the lookup of dependent member types.
using LookupDependentMemberFn =
std::function<const Metadata *(const Metadata *base, StringRef assocType,
const ProtocolDescriptor *protocol)>;
private:
/// The demangler we'll use when building new nodes.
Demangler &demangler;
/// Substitute generic parameters.
SubstGenericParameterFn substGenericParameter;
/// Lookup dependent member types.
LookupDependentMemberFn lookupDependentMember;
public:
DecodedMetadataBuilder(Demangler &demangler,
SubstGenericParameterFn substGenericParameter
= nullptr,
LookupDependentMemberFn lookupDependentMember
= nullptr)
: demangler(demangler),
substGenericParameter(substGenericParameter),
lookupDependentMember(lookupDependentMember) { }
using BuiltType = const Metadata *;
struct BuiltNominalTypeDecl :
llvm::PointerUnion<const TypeContextDescriptor *, const Metadata *>
{
using PointerUnion::PointerUnion;
explicit operator bool() const { return !isNull(); }
};
using BuiltProtocolDecl = const ProtocolDescriptor *;
Demangle::NodeFactory &getNodeFactory() { return demangler; }
BuiltNominalTypeDecl createNominalTypeDecl(
const Demangle::NodePointer &node) const {
#if SWIFT_OBJC_INTEROP
// If we have an Objective-C class name, call into the Objective-C
// runtime to find them.
if (auto objcClassName = getObjCClassOrProtocolName(node)) {
auto objcClass = objc_getClass(objcClassName->str().c_str());
return swift_getObjCClassMetadata((const ClassMetadata *)objcClass);
}
#endif
// Look for a nominal type descriptor based on its mangled name.
return _findNominalTypeDescriptor(node);
}
BuiltProtocolDecl createProtocolDecl(
const Demangle::NodePointer &node) const {
#if SWIFT_OBJC_INTEROP
// If we have an Objective-C class name, call into the Objective-C
// runtime to find them.
if (auto objcProtocolName = getObjCClassOrProtocolName(node)) {
return (ProtocolDescriptor *)objc_getProtocol(
objcProtocolName->str().c_str());
}
#endif
auto mangledName = Demangle::mangleNode(node);
// Look for a Swift protocol with this mangled name.
if (auto protocol = _findProtocolDescriptor(mangledName))
return protocol;
#if SWIFT_OBJC_INTEROP
// Look for a Swift-defined @objc protocol with the Swift 3 mangling that
// is used for Objective-C entities.
std::string objcMangledName =
"_TtP" + mangledName.substr(0, mangledName.size()-1) + "_";
if (auto protocol = objc_getProtocol(objcMangledName.c_str()))
return (ProtocolDescriptor *)protocol;
#endif
return nullptr;
}
BuiltType createNominalType(BuiltNominalTypeDecl metadataOrTypeDecl,
BuiltType parent) const {
// Treat nominal type creation the same way as generic type creation,
// but with no generic arguments at this level.
return createBoundGenericType(metadataOrTypeDecl, { }, parent);
}
BuiltType createBoundGenericType(BuiltNominalTypeDecl metadataOrTypeDecl,
ArrayRef<BuiltType> genericArgs,
BuiltType parent) const {
// If we already have metadata, return it.
if (auto metadata = metadataOrTypeDecl.dyn_cast<const Metadata *>())
return metadata;
// Cannot specialize metadata.
if (metadataOrTypeDecl.is<const Metadata *>())
return BuiltType();
auto typeDecl = metadataOrTypeDecl.get<const TypeContextDescriptor *>();
// Gather all of the generic arguments.
// FIXME: Need to also gather generic requirements.
std::vector<BuiltType> allGenericArgsVec;
ArrayRef<BuiltType> allGenericArgs;
if (typeDecl->Parent->isGeneric()) {
// TODO: The parent's generic arguments may not be a prefix of ours
// if there are same type or protocol requirements.
auto parentNominal = parent->getTypeContextDescriptor();
if (!parentNominal) return BuiltType();
auto parentGenericArgs = parent->getGenericArgs();
// TODO: Handle generic arguments with protocol requirements or
// same type constraints.
if (parentGenericArgs
&& parentNominal->getGenericContextHeader().getNumArguments() !=
parentNominal->getGenericContextHeader().NumParams)
return nullptr;
if (parentGenericArgs) {
allGenericArgsVec.insert(
allGenericArgsVec.end(),
parentGenericArgs,
parentGenericArgs + parentNominal->getGenericContextHeader().NumParams);
}
// Add the generic arguments for this type.
allGenericArgsVec.insert(allGenericArgsVec.end(),
genericArgs.begin(), genericArgs.end());
allGenericArgs = allGenericArgsVec;
} else {
// Only one level of generic arguments to consider.
allGenericArgs = genericArgs;
}
// FIXME: We don't want the number of "primary" parameters, we want the
// total number of parameters.
if (typeDecl->isGeneric()
&& typeDecl->getGenericContextHeader().NumParams
!= typeDecl->getGenericContextHeader().getNumArguments())
return BuiltType();
// Call the access function.
auto accessFunction = typeDecl->AccessFunction.get();
if (!accessFunction) return BuiltType();
static_assert(NumDirectGenericTypeMetadataAccessFunctionArgs == 3,
"Need to account for change in number of direct arguments");
switch (allGenericArgs.size()) {
case 0:
return accessFunction();
case 1:
using GenericMetadataAccessFunction1 = const Metadata *(const void *);
return ((GenericMetadataAccessFunction1 *)accessFunction)(
allGenericArgs[0]);
case 2:
using GenericMetadataAccessFunction2 =
const Metadata *(const void *, const void *);
return ((GenericMetadataAccessFunction2 *)accessFunction)(
allGenericArgs[0],
allGenericArgs[1]);
case 3:
using GenericMetadataAccessFunction3 =
const Metadata *(const void *, const void *, const void *);
return ((GenericMetadataAccessFunction3 *)accessFunction)(
allGenericArgs[0],
allGenericArgs[1],
allGenericArgs[2]);
default:
using GenericMetadataAccessFunction4 =
const Metadata *(const void *, const void *, const void *,
const void *);
return ((GenericMetadataAccessFunction4 *)accessFunction)(
allGenericArgs[0],
allGenericArgs[1],
allGenericArgs[2],
allGenericArgs.data());
}
}
BuiltType createBuiltinType(StringRef mangledName) const {
#define BUILTIN_TYPE(Symbol, _) \
if (mangledName.equals(#Symbol)) \
return &METADATA_SYM(Symbol).base;
#include "swift/Runtime/BuiltinTypes.def"
return BuiltType();
}
BuiltType createMetatypeType(BuiltType instance, bool wasAbstract) const {
return swift_getMetatypeMetadata(instance);
}
BuiltType createExistentialMetatypeType(BuiltType instance) const {
return swift_getExistentialMetatypeMetadata(instance);
}
BuiltType createProtocolCompositionType(ArrayRef<BuiltProtocolDecl> protocols,
BuiltType superclass,
bool isClassBound) const {
// Determine whether we have a class bound.
ProtocolClassConstraint classConstraint = ProtocolClassConstraint::Any;
if (isClassBound || superclass) {
classConstraint = ProtocolClassConstraint::Class;
} else {
for (auto protocol : protocols) {
if (protocol->Flags.getClassConstraint()
== ProtocolClassConstraint::Class) {
classConstraint = ProtocolClassConstraint::Class;
break;
}
}
}
return swift_getExistentialTypeMetadata(classConstraint, superclass,
protocols.size(), protocols.data());
}
BuiltType createGenericTypeParameterType(unsigned depth,
unsigned index) const {
// Use the callback, when provided.
if (substGenericParameter)
return substGenericParameter(depth, index);
return BuiltType();
}
BuiltType createFunctionType(
ArrayRef<Demangle::FunctionParam<BuiltType>> params,
BuiltType result, FunctionTypeFlags flags) const {
std::vector<BuiltType> paramTypes;
std::vector<uint32_t> paramFlags;
// Fill in the parameters.
paramTypes.reserve(params.size());
if (flags.hasParameterFlags())
paramFlags.reserve(params.size());
for (const auto &param : params) {
paramTypes.push_back(param.getType());
if (flags.hasParameterFlags())
paramFlags.push_back(param.getFlags().getIntValue());
}
return swift_getFunctionTypeMetadata(flags, paramTypes.data(),
flags.hasParameterFlags()
? paramFlags.data()
: nullptr,
result);
}
BuiltType createTupleType(ArrayRef<BuiltType> elements,
std::string labels,
bool variadic) const {
// TODO: 'variadic' should no longer exist
auto flags = TupleTypeFlags().withNumElements(elements.size());
if (!labels.empty())
flags = flags.withNonConstantLabels(true);
return swift_getTupleTypeMetadata(flags, elements.data(),
labels.empty() ? nullptr : labels.c_str(),
/*proposedWitnesses=*/nullptr);
}
BuiltType createDependentMemberType(StringRef name, BuiltType base,
BuiltProtocolDecl protocol) const {
if (lookupDependentMember)
return lookupDependentMember(base, name, protocol);
return BuiltType();
}
BuiltType createUnownedStorageType(BuiltType base) const {
// FIXME: Implement.
return BuiltType();
}
BuiltType createUnmanagedStorageType(BuiltType base) const {
// FIXME: Implement.
return BuiltType();
}
BuiltType createWeakStorageType(BuiltType base) const {
// FIXME: Implement.
return BuiltType();
}
BuiltType createSILBoxType(BuiltType base) const {
// FIXME: Implement.
return BuiltType();
}
};
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const Metadata * _Nullable
swift_getTypeByMangledName(const char *typeNameStart, size_t typeNameLength,
size_t numberOfLevels,
size_t *parametersPerLevel,
const Metadata * const *flatSubstitutions) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
Demangler demangler;
NodePointer node;
// Check whether this is the convenience syntax "ModuleName.ClassName".
size_t dotPos = typeName.find('.');
if (dotPos != llvm::StringRef::npos &&
typeName.find('.', dotPos + 1) == llvm::StringRef::npos) {
// Form a demangle tree for this class.
NodePointer classNode = demangler.createNode(Node::Kind::Class);
NodePointer moduleNode = demangler.createNode(Node::Kind::Module,
typeName.substr(0, dotPos));
NodePointer nameNode = demangler.createNode(Node::Kind::Identifier,
typeName.substr(dotPos + 1));
classNode->addChild(moduleNode, demangler);
classNode->addChild(nameNode, demangler);
node = classNode;
} else {
// Demangle the type name.
node = demangler.demangleType(typeName);
if (!node) return nullptr;
}
DecodedMetadataBuilder builder(demangler,
[&](unsigned depth, unsigned index) -> const Metadata * {
if (depth >= numberOfLevels)
return nullptr;
if (index >= parametersPerLevel[depth])
return nullptr;
unsigned flatIndex = index;
for (unsigned i = 0; i < depth; ++i)
flatIndex += parametersPerLevel[i];
return flatSubstitutions[flatIndex];
},
[](const Metadata *base, StringRef assocType,
const ProtocolDescriptor *protocol) -> const Metadata * {
// Look for a conformance of the base type to the protocol.
auto witnessTable = swift_conformsToProtocol(base, protocol);
if (!witnessTable) return nullptr;
// Look for the named associated type within the protocol.
auto assocTypeReqIndex = findAssociatedTypeByName(protocol, assocType);
if (!assocTypeReqIndex) return nullptr;
// Call the associated type access function.
using AssociatedTypeAccessFn =
const Metadata *(*)(const Metadata *base, const WitnessTable *);
return ((const AssociatedTypeAccessFn *)witnessTable)[*assocTypeReqIndex]
(base, witnessTable);
});
return Demangle::decodeMangledType(builder, node);
}