Files
swift-mirror/lib/SILGen/SILGenProlog.cpp
Joe Groff a7f23f5019 SIL: Canonicalize capture types with the AST function's generic signature.
When lowering closures, we avoid capturing the enclosing generic context when possible. However, the generic context may still be necessary to canonicalize types mentioned inside the closure, such as when an associated type is referred to that is same-typed to a concrete type. Fixes rdar://problem/30254048.
2017-02-03 12:08:57 -08:00

530 lines
19 KiB
C++

//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "Scope.h"
#include "swift/SIL/SILArgument.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
#include "swift/Basic/Fallthrough.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = F.begin()->createFunctionArgument(selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
unsigned ArgNo = 1; // Hardcoded for destructors.
B.createDebugValue(PrologueLoc, selfValue, {selfDecl->isLet(), ArgNo});
return selfValue;
}
namespace {
/// Cleanup that writes back to an inout argument on function exit.
class CleanupWriteBackToInOut : public Cleanup {
VarDecl *var;
SILValue inoutAddr;
public:
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
: var(var), inoutAddr(inoutAddr) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
// Assign from the local variable to the inout address with an
// 'autogenerated' copyaddr.
l.markAutoGenerated();
gen.B.createCopyAddr(l, gen.VarLocs[var].value, inoutAddr,
IsNotTake, IsNotInitialization);
}
};
} // end anonymous namespace
namespace {
class StrongReleaseCleanup : public Cleanup {
SILValue box;
public:
StrongReleaseCleanup(SILValue box) : box(box) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.emitDestroyValueOperation(l, box);
}
};
} // end anonymous namespace
namespace {
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &gen;
SILBasicBlock *parent;
SILLocation loc;
bool functionArgs;
ArrayRef<SILParameterInfo> &parameters;
EmitBBArguments(SILGenFunction &gen, SILBasicBlock *parent,
SILLocation l, bool functionArgs,
ArrayRef<SILParameterInfo> &parameters)
: gen(gen), parent(parent), loc(l), functionArgs(functionArgs),
parameters(parameters) {}
ManagedValue getManagedValue(SILValue arg, CanType t,
SILParameterInfo parameterInfo) const {
switch (parameterInfo.getConvention()) {
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_In_Guaranteed:
// If we have a guaranteed parameter, it is passed in at +0, and its
// lifetime is guaranteed. We can potentially use the argument as-is
// if the parameter is bound as a 'let' without cleaning up.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Unowned:
// An unowned parameter is passed at +0, like guaranteed, but it isn't
// kept alive by the caller, so we need to retain and manage it
// regardless.
return gen.emitManagedRetain(loc, arg);
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
// An inout parameter is +0 and guaranteed, but represents an lvalue.
return ManagedValue::forLValue(arg);
case ParameterConvention::Direct_Owned:
case ParameterConvention::Indirect_In:
// An owned or 'in' parameter is passed in at +1. We can claim ownership
// of the parameter and clean it up when it goes out of scope.
return gen.emitManagedRValueWithCleanup(arg);
}
llvm_unreachable("bad parameter convention");
}
ManagedValue visitType(CanType t) {
auto argType = gen.getLoweredType(t);
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
assert(
argType
== parent->getParent()->mapTypeIntoContext(
gen.getSILType(parameterInfo))
&& "argument does not have same type as specified by parameter info");
SILValue arg =
parent->createFunctionArgument(argType, loc.getAsASTNode<ValueDecl>());
ManagedValue mv = getManagedValue(arg, t, parameterInfo);
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getAnyOptionalObjectType())
objectType = theObjTy;
if (functionArgs
&& isa<FunctionType>(objectType)
&& cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = gen.B.createCopyBlock(loc, mv.getValue());
mv = gen.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = gen.getTypeLowering(t);
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(gen)
: element.copyUnmanaged(gen, loc).forward(gen);
elementValues.push_back(value);
}
}
auto tupleValue = gen.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: gen.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = gen.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = gen.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(gen, loc, elementBuffer);
else
element.copyInto(gen, elementBuffer, loc);
}
return gen.emitManagedRValueWithCleanup(buffer);
}
}
};
} // end anonymous namespace
namespace {
/// A helper for creating SILArguments and binding variables to the argument
/// names.
struct ArgumentInitHelper {
SILGenFunction &gen;
SILFunction &f;
SILGenBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
unsigned ArgNo = 0;
ArgumentInitHelper(SILGenFunction &gen, SILFunction &f)
: gen(gen), f(f), initB(gen.B),
parameters(f.getLoweredFunctionType()->getParameters()) {
}
unsigned getNumArgs() const { return ArgNo; }
ManagedValue makeArgument(Type ty, SILBasicBlock *parent, SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
return EmitBBArguments(gen, parent, l, /*functionArgs*/ true,
parameters).visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, VarDecl *vd) {
SILLocation loc(vd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, parent, loc);
// Create a shadow copy of inout parameters so they can be captured
// by closures. The InOutDeshadowing guaranteed optimization will
// eliminate the variable if it is not needed.
if (auto inOutTy = vd->getType()->getAs<InOutType>()) {
SILValue address = argrv.getUnmanagedValue();
CanType objectType = inOutTy->getObjectType()->getCanonicalType();
// As a special case, don't introduce a local variable for
// Builtin.UnsafeValueBuffer, which is not copyable.
if (isa<BuiltinUnsafeValueBufferType>(objectType)) {
// FIXME: mark a debug location?
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
gen.B.createDebugValueAddr(loc, address, {vd->isLet(), ArgNo});
return;
}
assert(argrv.getType().isAddress() && "expected inout to be address");
} else {
assert(vd->isLet() && "expected parameter to be immutable!");
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
}
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(argrv.getValue());
if (argrv.getType().isAddress())
gen.B.createDebugValueAddr(loc, argrv.getValue(), {vd->isLet(), ArgNo});
else
gen.B.createDebugValue(loc, argrv.getValue(), {vd->isLet(), ArgNo});
}
void emitParam(ParamDecl *PD) {
// The contextual type of a ParamDecl has DynamicSelfType. We don't want
// that here.
auto type = PD->getType()->eraseDynamicSelfType();
++ArgNo;
if (PD->hasName()) {
makeArgumentIntoBinding(type, &*f.begin(), PD);
return;
}
emitAnonymousParam(type, PD, PD);
}
void emitAnonymousParam(Type type, SILLocation paramLoc, ParamDecl *PD) {
// Allow non-materializable tuples to be bound to anonymous parameters.
if (!type->isMaterializable()) {
if (auto tupleType = type->getAs<TupleType>()) {
for (auto eltType : tupleType->getElementTypes()) {
emitAnonymousParam(eltType, paramLoc, nullptr);
}
return;
}
}
// A value bound to _ is unused and can be immediately released.
Scope discardScope(gen.Cleanups, CleanupLocation(PD));
// Manage the parameter.
ManagedValue argrv = makeArgument(type, &*f.begin(), paramLoc);
// Don't do anything else if we don't have a parameter.
if (!PD) return;
// Emit debug information for the argument.
SILLocation loc(PD);
loc.markAsPrologue();
if (argrv.getType().isAddress())
gen.B.createDebugValueAddr(loc, argrv.getValue(), {PD->isLet(), ArgNo});
else
gen.B.createDebugValue(loc, argrv.getValue(), {PD->isLet(), ArgNo});
}
};
} // end anonymous namespace
static void makeArgument(Type ty, ParamDecl *decl,
SmallVectorImpl<SILValue> &args, SILGenFunction &gen) {
assert(ty && "no type?!");
// Destructure tuple arguments.
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, decl, args, gen);
} else {
auto arg =
gen.F.begin()->createFunctionArgument(gen.getLoweredType(ty), decl);
args.push_back(arg);
}
}
void SILGenFunction::bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> &parameters) {
for (auto param : *params) {
Type type = (param->hasType()
? param->getType()->eraseDynamicSelfType()
: F.mapTypeIntoContext(param->getInterfaceType()));
makeArgument(type, param, parameters, *this);
}
}
static void emitCaptureArguments(SILGenFunction &gen,
AnyFunctionRef closure,
CapturedValue capture,
unsigned ArgNo) {
auto *VD = capture.getDecl();
SILLocation Loc(VD);
Loc.markAsPrologue();
// Local function to get the captured variable type within the capturing
// context.
auto getVarTypeInCaptureContext = [&]() -> Type {
auto interfaceType = cast<VarDecl>(VD)->getInterfaceType();
if (!interfaceType->hasTypeParameter()) return interfaceType;
// NB: The generic signature may be elided from the lowered function type
// if the function is in a fully-specialized context, but we still need to
// canonicalize references to the generic parameters that may appear in
// non-canonical types in that context. We need the original generic
// environment from the AST for that.
auto genericEnv = closure.getGenericEnvironment();
return genericEnv->mapTypeIntoContext(gen.F.getModule().getSwiftModule(),
interfaceType);
};
switch (gen.SGM.Types.getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
auto type = getVarTypeInCaptureContext();
auto &lowering = gen.getTypeLowering(type);
// Constant decls are captured by value.
SILType ty = lowering.getLoweredType();
SILValue val = gen.F.begin()->createFunctionArgument(ty, VD);
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = gen.emitTemporaryAllocation(VD, ty);
lowering.emitStore(gen.B, VD, val, addr, StoreOwnershipQualifier::Init);
val = addr;
}
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (auto *AllocStack = dyn_cast<AllocStackInst>(val))
AllocStack->setArgNo(ArgNo);
else
gen.B.createDebugValue(Loc, val, {/*Constant*/true, ArgNo});
// TODO: Closure contexts should always be guaranteed.
if (!gen.SGM.M.getOptions().EnableGuaranteedClosureContexts
&& !lowering.isTrivial())
gen.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as a retained @box that owns
// the captured value.
auto type = getVarTypeInCaptureContext();
auto boxTy = gen.SGM.Types.getContextBoxTypeForCapture(VD,
gen.getLoweredType(type).getSwiftRValueType(),
gen.F.getGenericEnvironment(), /*mutable*/ true);
SILValue box = gen.F.begin()->createFunctionArgument(
SILType::getPrimitiveObjectType(boxTy), VD);
SILValue addr = gen.B.createProjectBox(VD, box, 0);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/false, ArgNo});
if (!gen.SGM.M.getOptions().EnableGuaranteedClosureContexts)
gen.Cleanups.pushCleanup<StrongReleaseCleanup>(box);
break;
}
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
auto type = getVarTypeInCaptureContext();
SILType ty = gen.getLoweredType(type).getAddressType();
SILValue addr = gen.F.begin()->createFunctionArgument(ty, VD);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/true, ArgNo});
break;
}
}
}
void SILGenFunction::emitProlog(AnyFunctionRef TheClosure,
ArrayRef<ParameterList*> paramPatterns,
Type resultType, bool throws) {
unsigned ArgNo = emitProlog(paramPatterns, resultType,
TheClosure.getAsDeclContext(), throws);
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
auto captureInfo = SGM.Types.getLoweredLocalCaptures(TheClosure);
for (auto capture : captureInfo.getCaptures()) {
if (capture.isDynamicSelfMetadata()) {
auto selfMetatype = MetatypeType::get(
captureInfo.getDynamicSelfType()->getSelfType(),
MetatypeRepresentation::Thick)
->getCanonicalType();
SILType ty = SILType::getPrimitiveObjectType(selfMetatype);
SILValue val = F.begin()->createFunctionArgument(ty);
(void) val;
return;
}
emitCaptureArguments(*this, TheClosure, capture, ++ArgNo);
}
}
static void emitIndirectResultParameters(SILGenFunction &gen, Type resultType,
DeclContext *DC) {
// Expand tuples.
if (auto tupleType = resultType->getAs<TupleType>()) {
for (auto eltType : tupleType->getElementTypes()) {
emitIndirectResultParameters(gen, eltType, DC);
}
return;
}
// If the return type is address-only, emit the indirect return argument.
const TypeLowering &resultTI =
gen.getTypeLowering(DC->mapTypeIntoContext(resultType));
if (!SILModuleConventions::isReturnedIndirectlyInSIL(
resultTI.getLoweredType(), gen.SGM.M)) {
return;
}
auto &ctx = gen.getASTContext();
auto var = new (ctx) ParamDecl(/*IsLet*/ false, SourceLoc(), SourceLoc(),
ctx.getIdentifier("$return_value"), SourceLoc(),
ctx.getIdentifier("$return_value"), Type(),
DC);
var->setInterfaceType(resultType);
auto *arg =
gen.F.begin()->createFunctionArgument(resultTI.getLoweredType(), var);
(void)arg;
}
unsigned SILGenFunction::emitProlog(ArrayRef<ParameterList *> paramLists,
Type resultType, DeclContext *DC,
bool throws) {
// Create the indirect result parameters.
if (auto *genericSig = DC->getGenericSignatureOfContext()) {
resultType = genericSig->getCanonicalTypeInContext(
resultType, *SGM.M.getSwiftModule());
}
emitIndirectResultParameters(*this, resultType, DC);
// Emit the argument variables in calling convention order.
ArgumentInitHelper emitter(*this, F);
for (ParameterList *paramList : reversed(paramLists)) {
// Add the SILArguments and use them to initialize the local argument
// values.
for (auto &param : *paramList)
emitter.emitParam(param);
}
// Record the ArgNo of the artificial $error inout argument.
unsigned ArgNo = emitter.getNumArgs();
if (throws) {
RegularLocation Loc{SourceLoc()};
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(DC))
Loc = AFD->getThrowsLoc();
else if (auto *ACE = dyn_cast<AbstractClosureExpr>(DC))
Loc = ACE->getLoc();
auto NativeErrorTy = SILType::getExceptionType(getASTContext());
ManagedValue Undef = emitUndef(Loc, NativeErrorTy);
B.createDebugValue(Loc, Undef.getValue(),
{"$error", /*Constant*/ false, ++ArgNo});
}
return ArgNo;
}