Files
swift-mirror/lib/IRGen/GenConstant.cpp
Joe Groff aac85cb93f SIL: Introduce a 'closure' convention for unapplied invocation functions.
We don't want the machine calling conventions for closure invocation functions to necessarily be tied to the convention for normal thin functions or methods. NFC yet; for now, 'closure' follows the same behavior as the 'method' convention, but as part of partial_apply simplification it will be a requirement that partial_apply takes a @convention(closure) function and a box and produces a @convention(thick) function from them.
2016-10-17 15:55:04 -07:00

143 lines
5.2 KiB
C++

//===--- GenConstant.cpp - Swift IR Generation For Constants --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for constant values.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constants.h"
#include "GenConstant.h"
#include "GenStruct.h"
#include "GenTuple.h"
#include "TypeInfo.h"
#include "swift/Basic/Range.h"
using namespace swift;
using namespace irgen;
llvm::Constant *irgen::emitConstantInt(IRGenModule &IGM,
IntegerLiteralInst *ILI) {
APInt value = ILI->getValue();
BuiltinIntegerWidth width
= ILI->getType().castTo<BuiltinIntegerType>()->getWidth();
// The value may need truncation if its type had an abstract size.
if (!width.isFixedWidth()) {
assert(width.isPointerWidth() && "impossible width value");
unsigned pointerWidth = IGM.getPointerSize().getValueInBits();
assert(pointerWidth <= value.getBitWidth()
&& "lost precision at AST/SIL level?!");
if (pointerWidth < value.getBitWidth())
value = value.trunc(pointerWidth);
}
return llvm::ConstantInt::get(IGM.LLVMContext, value);
}
llvm::Constant *irgen::emitConstantFP(IRGenModule &IGM, FloatLiteralInst *FLI) {
return llvm::ConstantFP::get(IGM.LLVMContext, FLI->getValue());
}
llvm::Constant *irgen::emitAddrOfConstantString(IRGenModule &IGM,
StringLiteralInst *SLI) {
switch (SLI->getEncoding()) {
case StringLiteralInst::Encoding::UTF8:
return IGM.getAddrOfGlobalString(SLI->getValue());
case StringLiteralInst::Encoding::UTF16: {
// This is always a GEP of a GlobalVariable with a nul terminator.
auto addr = IGM.getAddrOfGlobalUTF16String(SLI->getValue());
// Cast to Builtin.RawPointer.
return llvm::ConstantExpr::getBitCast(addr, IGM.Int8PtrTy);
}
case StringLiteralInst::Encoding::ObjCSelector:
llvm_unreachable("cannot get the address of an Objective-C selector");
}
llvm_unreachable("bad string encoding");
}
static llvm::Constant *emitConstantValue(IRGenModule &IGM, SILValue operand) {
if (auto *SI = dyn_cast<StructInst>(operand))
return emitConstantStruct(IGM, SI);
else if (auto *TI = dyn_cast<TupleInst>(operand))
return emitConstantTuple(IGM, TI);
else if (auto *ILI = dyn_cast<IntegerLiteralInst>(operand))
return emitConstantInt(IGM, ILI);
else if (auto *FLI = dyn_cast<FloatLiteralInst>(operand))
return emitConstantFP(IGM, FLI);
else if (auto *SLI = dyn_cast<StringLiteralInst>(operand))
return emitAddrOfConstantString(IGM, SLI);
else
llvm_unreachable("Unsupported SILInstruction in static initializer!");
}
namespace {
template <typename InstTy, typename NextIndexFunc>
llvm::Constant *emitConstantStructOrTuple(IRGenModule &IGM, InstTy inst,
NextIndexFunc nextIndex) {
auto type = inst->getType();
auto *sTy = cast<llvm::StructType>(IGM.getTypeInfo(type).getStorageType());
SmallVector<llvm::Constant *, 32> elts(sTy->getNumElements(), nullptr);
// run over the Swift initializers, putting them into the struct as
// appropriate.
for (unsigned i = 0, e = inst->getElements().size(); i != e; i++) {
auto operand = inst->getOperand(i);
unsigned index = nextIndex(IGM, type, i);
assert(elts[index] == nullptr &&
"Unexpected constant struct field overlap");
elts[index] = emitConstantValue(IGM, operand);
}
// fill in any gaps, which are the explicit padding that swiftc inserts.
for (unsigned i = 0, e = elts.size(); i != e; i++) {
auto &elt = elts[i];
if (elt == nullptr) {
auto *eltTy = sTy->getElementType(i);
assert(eltTy->isArrayTy() &&
eltTy->getArrayElementType()->isIntegerTy(8) &&
"Unexpected non-byte-array type for constant struct padding");
elt = llvm::UndefValue::get(eltTy);
}
}
return llvm::ConstantStruct::get(sTy, elts);
}
} // end anonymous namespace
llvm::Constant *irgen::emitConstantStruct(IRGenModule &IGM, StructInst *SI) {
// The only way to get a struct's stored properties (which we need to map to
// their physical/LLVM index) is to iterate over the properties
// progressively. Fortunately the iteration order matches the order of
// operands in a StructInst.
auto StoredProperties = SI->getStructDecl()->getStoredProperties();
auto Iter = StoredProperties.begin();
return emitConstantStructOrTuple(
IGM, SI, [&Iter](IRGenModule &IGM, SILType Type, unsigned _i) mutable {
(void)_i;
auto *FD = *Iter++;
return irgen::getPhysicalStructFieldIndex(IGM, Type, FD);
});
}
llvm::Constant *irgen::emitConstantTuple(IRGenModule &IGM, TupleInst *TI) {
return emitConstantStructOrTuple(IGM, TI, irgen::getTupleElementStructIndex);
}