Files
swift-mirror/lib/Sema/MiscDiagnostics.cpp
Slava Pestov ab0ffe395b Merge pull request #74998 from slavapestov/global-conformance-lookup
AST: Stop pretending that conformance lookup takes the module into account
2024-07-06 17:26:46 -04:00

6732 lines
245 KiB
C++

//===--- MiscDiagnostics.cpp - AST-Level Diagnostics ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements AST-level diagnostics.
//
//===----------------------------------------------------------------------===//
#include "MiscDiagnostics.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckInvertible.h"
#include "TypeChecker.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/SaveAndRestore.h"
#define DEBUG_TYPE "Sema"
using namespace swift;
using namespace constraints;
/// Return true if this expression is an implicit promotion from T to T?.
static Expr *isImplicitPromotionToOptional(Expr *E) {
if (E->isImplicit())
if (auto IIOE = dyn_cast<InjectIntoOptionalExpr>(
E->getSemanticsProvidingExpr()))
return IIOE->getSubExpr();
return nullptr;
}
ASTWalker::PreWalkAction BaseDiagnosticWalker::walkToDeclPre(Decl *D) {
return Action::VisitNodeIf(isa<ClosureExpr>(D->getDeclContext()) &&
shouldWalkIntoDeclInClosureContext(D));
}
bool BaseDiagnosticWalker::shouldWalkIntoDeclInClosureContext(Decl *D) {
auto *closure = dyn_cast<ClosureExpr>(D->getDeclContext());
assert(closure);
if (closure->isSeparatelyTypeChecked())
return false;
// Let's not walk into declarations contained in a multi-statement
// closure because they'd be handled via `typeCheckDecl` that runs
// syntactic diagnostics.
if (!closure->hasSingleExpressionBody()) {
// Since pattern bindings get their types through solution application,
// `typeCheckDecl` doesn't touch initializers (because they are already
// fully type-checked), so pattern bindings have to be allowed to be
// walked to diagnose syntactic issues.
return isa<PatternBindingDecl>(D);
}
return true;
}
/// Diagnose syntactic restrictions of expressions.
///
/// - Module values may only occur as part of qualification.
/// - Metatype names cannot generally be used as values: they need a "T.self"
/// qualification unless used in narrow case (e.g. T() for construction).
/// - '_' may only exist on the LHS of an assignment expression.
/// - warn_unqualified_access values must not be accessed except via qualified
/// lookup.
/// - Partial application of some decls isn't allowed due to implementation
/// limitations.
/// - "&" (aka InOutExpressions) may only exist directly in function call
/// argument lists.
/// - 'self.init' and 'super.init' cannot be wrapped in a larger expression
/// or statement.
/// - Warn about promotions to optional in specific syntactic forms.
/// - Error about collection literals that default to Any collections in
/// invalid positions.
/// - Marker protocols cannot occur as the type of an as? or is expression.
/// - KeyPath expressions cannot refer to effectful properties / subscripts
/// - SingleValueStmtExprs may only appear in certain places and has
/// restrictions on the control flow allowed.
/// - Move expressions must have a declref expr subvalue.
///
static void diagSyntacticUseRestrictions(const Expr *E, const DeclContext *DC,
bool isExprStmt) {
class DiagnoseWalker : public BaseDiagnosticWalker {
SmallPtrSet<Expr*, 4> AlreadyDiagnosedMetatypes;
SmallPtrSet<DeclRefExpr*, 4> AlreadyDiagnosedBitCasts;
bool IsExprStmt;
ASTContext &Ctx;
const DeclContext *DC;
public:
DiagnoseWalker(const DeclContext *DC, bool isExprStmt)
: IsExprStmt(isExprStmt), Ctx(DC->getASTContext()), DC(DC) {}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Pattern *> walkToPatternPre(Pattern *P) override {
return Action::SkipNode(P);
}
PreWalkAction walkToTypeReprPre(TypeRepr *T) override {
return Action::Continue();
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
// See through implicit conversions of the expression. We want to be able
// to associate the parent of this expression with the ultimate callee.
auto Base = E;
while (auto Conv = dyn_cast<ImplicitConversionExpr>(Base))
Base = Conv->getSubExpr();
if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
// Verify metatype uses.
if (isa<TypeDecl>(DRE->getDecl())) {
if (isa<ModuleDecl>(DRE->getDecl()))
checkUseOfModule(DRE);
else
checkUseOfMetaTypeName(Base);
}
// Verify warn_unqualified_access uses.
checkUnqualifiedAccessUse(DRE);
// Verify that special decls are eliminated.
checkForDeclWithSpecialTypeCheckingSemantics(DRE);
// Verify that `unsafeBitCast` isn't misused.
checkForSuspiciousBitCasts(DRE, nullptr);
}
if (auto *MRE = dyn_cast<MemberRefExpr>(Base)) {
if (isa<TypeDecl>(MRE->getMember().getDecl()))
checkUseOfMetaTypeName(Base);
}
if (isa<TypeExpr>(Base))
checkUseOfMetaTypeName(Base);
if (auto *KPE = dyn_cast<KeyPathExpr>(E)) {
// raise an error if this KeyPath contains an effectful member.
checkForEffectfulKeyPath(KPE);
}
// Check function calls, looking through implicit conversions on the
// function and inspecting the arguments directly.
if (auto *Call = dyn_cast<ApplyExpr>(E)) {
// Warn about surprising implicit optional promotions.
checkOptionalPromotions(Call);
// Check the callee, looking through implicit conversions.
auto base = Call->getFn();
unsigned uncurryLevel = 0;
while (auto conv = dyn_cast<ImplicitConversionExpr>(base))
base = conv->getSubExpr();
const auto findDynamicMemberRefExpr =
[](Expr *e) -> DynamicMemberRefExpr* {
if (auto open = dyn_cast<OpenExistentialExpr>(e)) {
return dyn_cast<DynamicMemberRefExpr>(open->getSubExpr());
}
return nullptr;
};
if (auto force = dyn_cast<ForceValueExpr>(base)) {
if (auto ref = findDynamicMemberRefExpr(force->getSubExpr()))
base = ref;
} else if (auto bind = dyn_cast<BindOptionalExpr>(base)) {
if (auto ref = findDynamicMemberRefExpr(bind->getSubExpr()))
base = ref;
}
while (auto ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(base))
base = ignoredBase->getRHS();
ConcreteDeclRef callee;
if (auto *calleeDRE = dyn_cast<DeclRefExpr>(base)) {
checkForSuspiciousBitCasts(calleeDRE, Call);
callee = calleeDRE->getDeclRef();
// Otherwise, try to drill down through member calls for the purposes
// of argument-matching code below.
} else if (auto selfApply = dyn_cast<SelfApplyExpr>(base)) {
++uncurryLevel;
base = selfApply->getSemanticFn();
if (auto calleeDRE = dyn_cast<DeclRefExpr>(base))
callee = calleeDRE->getDeclRef();
// Otherwise, check for a dynamic member.
} else if (auto dynamicMRE = dyn_cast<DynamicMemberRefExpr>(base)) {
++uncurryLevel;
callee = dynamicMRE->getMember();
}
if (callee) {
auto *args = Call->getArgs();
for (auto idx : indices(*args)) {
auto *arg = args->getExpr(idx);
checkMagicIdentifierMismatch(callee, uncurryLevel, idx, arg);
// InOutExprs can be wrapped in some implicit casts.
Expr *unwrapped = arg;
if (auto *IIO = dyn_cast<InjectIntoOptionalExpr>(arg))
unwrapped = IIO->getSubExpr();
if (isa<InOutToPointerExpr>(unwrapped) ||
isa<ArrayToPointerExpr>(unwrapped) ||
isa<ErasureExpr>(unwrapped)) {
auto operand =
cast<ImplicitConversionExpr>(unwrapped)->getSubExpr();
if (auto *IOE = dyn_cast<InOutExpr>(operand))
operand = IOE->getSubExpr();
// Also do some additional work based on how the function uses
// the argument.
checkConvertedPointerArgument(callee, uncurryLevel, idx,
unwrapped, operand);
}
}
}
}
// If we have an assignment expression, scout ahead for acceptable _'s.
if (auto *AE = dyn_cast<AssignExpr>(E)) {
auto destExpr = AE->getDest();
// If the user is assigning the result of a function that returns
// Void to _ then warn, because that is redundant.
if (auto DAE = dyn_cast<DiscardAssignmentExpr>(destExpr)) {
if (auto CE = dyn_cast<CallExpr>(AE->getSrc())) {
if (getAsDecl<FuncDecl>(
CE->getCalledValue(/*skipFunctionConversions=*/true)) &&
CE->getType()->isVoid()) {
Ctx.Diags
.diagnose(DAE->getLoc(),
diag::discard_expr_void_result_redundant)
.fixItRemoveChars(DAE->getStartLoc(),
AE->getSrc()->getStartLoc());
}
}
}
}
// Diagnose 'self.init' or 'super.init' nested in another expression
// or closure.
if (auto *rebindSelfExpr = dyn_cast<RebindSelfInConstructorExpr>(E)) {
if (!Parent.isNull() || !IsExprStmt || DC->getParent()->isLocalContext()) {
bool isChainToSuper;
(void)rebindSelfExpr->getCalledConstructor(isChainToSuper);
Ctx.Diags.diagnose(E->getLoc(), diag::init_delegation_nested,
isChainToSuper, !IsExprStmt);
}
}
// Diagnose single-element tuple expressions.
if (auto *tupleExpr = dyn_cast<TupleExpr>(E)) {
if (tupleExpr->getNumElements() == 1 &&
!isa<PackExpansionExpr>(tupleExpr->getElement(0))) {
Ctx.Diags.diagnose(tupleExpr->getElementNameLoc(0),
diag::tuple_single_element)
.fixItRemoveChars(tupleExpr->getElementNameLoc(0),
tupleExpr->getElement(0)->getStartLoc());
}
}
auto diagnoseDuplicateLabels = [&](SourceLoc loc,
ArrayRef<Identifier> labels) {
llvm::SmallDenseSet<Identifier> names;
names.reserve(labels.size());
for (auto name : labels) {
if (name.empty())
continue;
auto inserted = names.insert(name).second;
if (!inserted) {
Ctx.Diags.diagnose(loc, diag::tuple_duplicate_label);
return;
}
}
};
// FIXME: Duplicate labels on enum payloads should be diagnosed
// when declared, not when called.
if (auto *CE = dyn_cast_or_null<CallExpr>(E)) {
auto calledValue = CE->getCalledValue(/*skipFunctionConversions=*/true);
if (calledValue && isa<EnumElementDecl>(calledValue)) {
auto *args = CE->getArgs();
SmallVector<Identifier, 4> scratch;
diagnoseDuplicateLabels(args->getLoc(),
args->getArgumentLabels(scratch));
}
}
if (auto *tupleExpr = dyn_cast<TupleExpr>(E)) {
// Diagnose tuple expressions with duplicate element label.
diagnoseDuplicateLabels(tupleExpr->getLoc(),
tupleExpr->getElementNames());
// Diagnose attempts to form a tuple with any noncopyable elements.
if (E->getType()->isNoncopyable()
&& !Ctx.LangOpts.hasFeature(Feature::MoveOnlyTuples)) {
auto noncopyableTy = E->getType();
assert(noncopyableTy->is<TupleType>() && "will use poor wording");
Ctx.Diags.diagnose(E->getLoc(),
diag::tuple_containing_move_only_not_supported,
noncopyableTy);
}
}
// Specially diagnose some checked casts that are illegal.
if (auto cast = dyn_cast<CheckedCastExpr>(E)) {
checkCheckedCastExpr(cast);
}
// Diagnose move expression uses where the sub expression is not a declref
// expr.
if (auto *consumeExpr = dyn_cast<ConsumeExpr>(E)) {
checkConsumeExpr(consumeExpr);
}
// Diagnose copy expression uses where the sub expression is not a declref
// expr.
if (auto *copyExpr = dyn_cast<CopyExpr>(E)) {
checkCopyExpr(copyExpr);
}
// Diagnose move expression uses where the sub expression is not a declref expr
if (auto *borrowExpr = dyn_cast<BorrowExpr>(E)) {
checkBorrowExpr(borrowExpr);
}
return Action::Continue(E);
}
/// Visit each component of the keypath and emit a diagnostic if they
/// refer to a member that has effects.
void checkForEffectfulKeyPath(KeyPathExpr *keyPath) {
for (const auto &component : keyPath->getComponents()) {
if (component.hasDeclRef()) {
auto decl = component.getDeclRef().getDecl();
if (auto asd = dyn_cast<AbstractStorageDecl>(decl)) {
if (auto getter = asd->getEffectfulGetAccessor()) {
Ctx.Diags.diagnose(component.getLoc(),
diag::effectful_keypath_component,
asd->getDescriptiveKind());
Ctx.Diags.diagnose(asd->getLoc(), diag::kind_declared_here,
asd->getDescriptiveKind());
}
}
}
}
}
void checkCheckedCastExpr(CheckedCastExpr *cast) {
Type castType = cast->getCastType();
if (!castType)
return;
if (castType->isNoncopyable()) {
// can't cast anything to move-only; there should be no valid ones.
Ctx.Diags.diagnose(cast->getLoc(), diag::noncopyable_cast);
return;
}
// no support for runtime casts from move-only types.
// as of now there is no type it could be cast to except itself, so
// there's no reason for it to happen at runtime.
if (auto fromType = cast->getSubExpr()->getType()) {
if (fromType->isNoncopyable()) {
// can't cast move-only to anything.
Ctx.Diags.diagnose(cast->getLoc(), diag::noncopyable_cast);
return;
}
}
// now, look for conditional casts to marker protocols.
if (!isa<ConditionalCheckedCastExpr>(cast) && !isa<IsExpr>(cast))
return;
if(!castType->isExistentialType())
return;
auto layout = castType->getExistentialLayout();
for (auto proto : layout.getProtocols()) {
if (proto->isMarkerProtocol() && !proto->getInvertibleProtocolKind()) {
// can't conditionally cast to a marker protocol
Ctx.Diags.diagnose(cast->getLoc(), diag::marker_protocol_cast,
proto->getName());
}
}
}
void checkConsumeExpr(ConsumeExpr *consumeExpr) {
auto diags = findSyntacticErrorForConsume(DC->getParentModule(),
consumeExpr->getLoc(),
consumeExpr->getSubExpr());
for (auto &diag : diags)
diag.emit(Ctx);
}
void checkCopyExpr(CopyExpr *copyExpr) {
// Do not allow for copy_expr to be used with pure move only types. We
// /do/ allow it to be used with no implicit copy types though.
if (copyExpr->getType()->isNoncopyable()) {
Ctx.Diags.diagnose(
copyExpr->getLoc(),
diag::copy_expression_cannot_be_used_with_noncopyable_types);
}
// We only allow for copy_expr to be applied directly to lvalues. We do
// not allow currently for it to be applied to fields.
auto *subExpr = copyExpr->getSubExpr();
if (auto *li = dyn_cast<LoadExpr>(subExpr))
subExpr = li->getSubExpr();
if (!isa<DeclRefExpr>(subExpr)) {
Ctx.Diags.diagnose(copyExpr->getLoc(),
diag::copy_expression_not_passed_lvalue);
}
}
void checkBorrowExpr(BorrowExpr *borrowExpr) {
// Allow for a chain of member_ref exprs that end in a decl_ref expr.
auto *subExpr = borrowExpr->getSubExpr();
while (auto *memberRef = dyn_cast<MemberRefExpr>(subExpr))
subExpr = memberRef->getBase();
if (!isa<DeclRefExpr>(subExpr)) {
Ctx.Diags.diagnose(borrowExpr->getLoc(),
diag::borrow_expression_not_passed_lvalue);
}
}
static Expr *lookThroughArgument(Expr *arg) {
while (1) {
if (auto conv = dyn_cast<ImplicitConversionExpr>(arg))
arg = conv->getSubExpr();
else if (auto *PE = dyn_cast<ParenExpr>(arg))
arg = PE->getSubExpr();
else
break;
}
return arg;
}
void checkConvertedPointerArgument(ConcreteDeclRef callee,
unsigned uncurryLevel,
unsigned argIndex,
Expr *pointerExpr,
Expr *storage) {
if (!isPointerIdentityArgument(callee, uncurryLevel, argIndex))
return;
// Flag that the argument is non-accessing.
if (auto inout = dyn_cast<InOutToPointerExpr>(pointerExpr)) {
inout->setNonAccessing(true);
} else if (auto array = dyn_cast<ArrayToPointerExpr>(pointerExpr)) {
array->setNonAccessing(true);
}
// TODO: warn if taking the address of 'storage' will definitely
// yield a temporary address.
}
/// Is the given call argument, known to be of pointer type, just used
/// for its pointer identity?
bool isPointerIdentityArgument(ConcreteDeclRef ref, unsigned uncurryLevel,
unsigned argIndex) {
// FIXME: derive this from an attribute instead of hacking it based
// on the target name!
auto decl = ref.getDecl();
// Assume that == and != are non-accessing uses.
if (decl->isOperator()) {
auto op = decl->getBaseName();
if (op == "==" || op == "!=")
return true;
return false;
}
// NSObject.addObserver(_:forKeyPath:options:context:)
if (uncurryLevel == 1 && argIndex == 3) {
return decl->getName().isCompoundName("addObserver",
{ "", "forKeyPath",
"options", "context" });
}
// NSObject.removeObserver(_:forKeyPath:context:)
if (uncurryLevel == 1 && argIndex == 2) {
return decl->getName().isCompoundName("removeObserver",
{ "", "forKeyPath", "context" });
}
return false;
}
/// We have a collection literal with a defaulted type, e.g. of [Any]. Emit
/// an error if it was inferred to this type in an invalid context, which is
/// one in which the parent expression is not itself a collection literal.
void checkTypeDefaultedCollectionExpr(CollectionExpr *c) {
// If the parent is a non-expression, or is not itself a literal, then
// produce an error with a fixit to add the type as an explicit
// annotation.
if (c->getNumElements() == 0)
Ctx.Diags.diagnose(c->getLoc(), diag::collection_literal_empty)
.highlight(c->getSourceRange());
else {
assert(c->getType()->hasTypeRepr() &&
"a defaulted type should always be printable");
Ctx.Diags
.diagnose(c->getLoc(), diag::collection_literal_heterogeneous,
c->getType())
.highlight(c->getSourceRange())
.fixItInsertAfter(c->getEndLoc(),
" as " + c->getType()->getString());
}
}
void checkMagicIdentifierMismatch(ConcreteDeclRef callee,
unsigned uncurryLevel,
unsigned argIndex,
Expr *arg) {
// We only care about args in the arg list.
if (uncurryLevel != (callee.getDecl()->hasCurriedSelf() ? 1 : 0))
return;
// Get underlying params for both callee and caller, if declared.
auto *calleeParam = getParameterAt(callee, argIndex);
auto *callerParam = dyn_cast_or_null<ParamDecl>(
arg->getReferencedDecl(/*stopAtParenExpr=*/true).getDecl()
);
// (Otherwise, we don't need to do anything.)
if (!calleeParam || !callerParam)
return;
auto calleeDefaultArg = getMagicIdentifierDefaultArgKind(calleeParam);
auto callerDefaultArg = getMagicIdentifierDefaultArgKind(callerParam);
// If one of the parameters doesn't have a default arg, or they're both
// compatible, everything's fine.
if (!calleeDefaultArg || !callerDefaultArg ||
areMagicIdentifiersCompatible(*calleeDefaultArg, *callerDefaultArg))
return;
StringRef calleeDefaultArgString =
MagicIdentifierLiteralExpr::getKindString(*calleeDefaultArg);
StringRef callerDefaultArgString =
MagicIdentifierLiteralExpr::getKindString(*callerDefaultArg);
// Emit main warning
Ctx.Diags.diagnose(arg->getLoc(), diag::default_magic_identifier_mismatch,
callerParam->getName(), callerDefaultArgString,
calleeParam->getName(), calleeDefaultArgString);
// Add "change caller default arg" fixit
SourceLoc callerDefaultArgLoc =
callerParam->getStructuralDefaultExpr()->getLoc();
Ctx.Diags.diagnose(callerDefaultArgLoc,
diag::change_caller_default_to_match_callee,
callerParam->getName(), calleeDefaultArgString)
.fixItReplace(callerDefaultArgLoc, calleeDefaultArgString);
// Add "silence with parens" fixit
Ctx.Diags.diagnose(arg->getLoc(),
diag::silence_default_magic_identifier_mismatch)
.fixItInsert(arg->getStartLoc(), "(")
.fixItInsertAfter(arg->getEndLoc(), ")");
// Point to callee parameter
Ctx.Diags.diagnose(calleeParam, diag::decl_declared_here, calleeParam);
}
std::optional<MagicIdentifierLiteralExpr::Kind>
getMagicIdentifierDefaultArgKind(const ParamDecl *param) {
switch (param->getDefaultArgumentKind()) {
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case DefaultArgumentKind::NAME: \
return MagicIdentifierLiteralExpr::Kind::NAME;
#include "swift/AST/MagicIdentifierKinds.def"
case DefaultArgumentKind::None:
case DefaultArgumentKind::Normal:
case DefaultArgumentKind::Inherited:
case DefaultArgumentKind::NilLiteral:
case DefaultArgumentKind::EmptyArray:
case DefaultArgumentKind::EmptyDictionary:
case DefaultArgumentKind::StoredProperty:
case DefaultArgumentKind::ExpressionMacro:
return std::nullopt;
}
llvm_unreachable("Unhandled DefaultArgumentKind in "
"getMagicIdentifierDefaultArgKind");
}
static bool
areMagicIdentifiersCompatible(MagicIdentifierLiteralExpr::Kind a,
MagicIdentifierLiteralExpr::Kind b) {
if (a == b)
return true;
// The rest of this handles special compatibility rules between the
// `*SpelledAsFile` cases and various other File-related cases.
//
// The way we're going to do this is a bit magical. We will arrange the
// cases in MagicIdentifierLiteralExpr::Kind so that they sort in
// this order:
//
// #fileID < Swift 6 #file < #filePath < Swift 5 #file < others
//
// Before we continue, let's verify that this holds.
using Kind = MagicIdentifierLiteralExpr::Kind;
static_assert(Kind::FileID < Kind::FileIDSpelledAsFile,
"#fileID < Swift 6 #file");
static_assert(Kind::FileIDSpelledAsFile < Kind::FilePath,
"Swift 6 #file < #filePath");
static_assert(Kind::FilePath < Kind::FilePathSpelledAsFile,
"#filePath < Swift 5 #file");
static_assert(Kind::FilePathSpelledAsFile < Kind::Line,
"Swift 5 #file < #line");
static_assert(Kind::FilePathSpelledAsFile < Kind::Column,
"Swift 5 #file < #column");
static_assert(Kind::FilePathSpelledAsFile < Kind::Function,
"Swift 5 #file < #function");
static_assert(Kind::FilePathSpelledAsFile < Kind::DSOHandle,
"Swift 5 #file < #dsohandle");
// The rules are all commutative, so we will take the greater of the two
// kinds.
auto maxKind = std::max(a, b);
// Both Swift 6 #file and Swift 5 #file are greater than all of the cases
// they're compatible with. So if `maxCase` is one of those two, the other
// case must have been compatible with it!
return maxKind == Kind::FileIDSpelledAsFile ||
maxKind == Kind::FilePathSpelledAsFile;
}
void checkUseOfModule(DeclRefExpr *E) {
// Allow module values as a part of:
// - ignored base expressions;
// - expressions that failed to type check.
if (auto *ParentExpr = Parent.getAsExpr()) {
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
isa<UnresolvedDotExpr>(ParentExpr))
return;
}
Ctx.Diags.diagnose(E->getStartLoc(), diag::value_of_module_type);
}
// Diagnose metatype values that don't appear as part of a property,
// method, or constructor reference.
void checkUseOfMetaTypeName(Expr *E) {
// If we've already checked this at a higher level, we're done.
if (!AlreadyDiagnosedMetatypes.insert(E).second)
return;
DiagnosticBehavior behavior = DiagnosticBehavior::Error;
if (auto *ParentExpr = Parent.getAsExpr()) {
if (ParentExpr->isValidParentOfTypeExpr(E))
return;
// In Swift < 6 warn about
// - plain type name passed as an argument to a subscript, dynamic
// subscript, or ObjC literal since it used to be accepted.
// - member type expressions rooted on non-identifier types, e.g.
// '[X].Y' since they used to be accepted without the '.self'.
if (!Ctx.LangOpts.isSwiftVersionAtLeast(6)) {
if (isa<SubscriptExpr>(ParentExpr) ||
isa<DynamicSubscriptExpr>(ParentExpr) ||
isa<ObjectLiteralExpr>(ParentExpr)) {
auto *argList = ParentExpr->getArgs();
assert(argList);
if (argList->isUnlabeledUnary())
behavior = DiagnosticBehavior::Warning;
} else if (auto *TE = dyn_cast<TypeExpr>(E)) {
if (auto *QualIdentTR = dyn_cast_or_null<QualifiedIdentTypeRepr>(
TE->getTypeRepr())) {
if (!isa<UnqualifiedIdentTypeRepr>(QualIdentTR->getRoot())) {
behavior = DiagnosticBehavior::Warning;
}
}
}
}
}
// Is this a protocol metatype?
Ctx.Diags
.diagnose(E->getStartLoc(), diag::value_of_metatype_type,
behavior == DiagnosticBehavior::Warning)
.limitBehavior(behavior);
// Add fix-it to insert '()', only if this is a metatype of
// non-existential type and has any initializers.
bool isExistential = false;
if (auto metaTy = E->getType()->getAs<MetatypeType>()) {
auto instanceTy = metaTy->getInstanceType();
isExistential = instanceTy->isExistentialType();
if (!isExistential &&
instanceTy->mayHaveMembers() &&
!TypeChecker::lookupMember(const_cast<DeclContext *>(DC), instanceTy,
DeclNameRef::createConstructor()).empty()) {
Ctx.Diags.diagnose(E->getEndLoc(), diag::add_parens_to_type)
.fixItInsertAfter(E->getEndLoc(), "()");
}
}
// Add fix-it to insert ".self".
auto diag = Ctx.Diags.diagnose(E->getEndLoc(), diag::add_self_to_type);
if (E->canAppendPostfixExpression()) {
diag.fixItInsertAfter(E->getEndLoc(), ".self");
} else {
diag.fixItInsert(E->getStartLoc(), "(");
diag.fixItInsertAfter(E->getEndLoc(), ").self");
}
}
void checkUnqualifiedAccessUse(const DeclRefExpr *DRE) {
const Decl *D = DRE->getDecl();
if (!D->getAttrs().hasAttribute<WarnUnqualifiedAccessAttr>())
return;
if (auto *parentExpr = Parent.getAsExpr()) {
if (auto *ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(parentExpr)){
if (!ignoredBase->isImplicit())
return;
}
if (auto *calledBase = dyn_cast<DotSyntaxCallExpr>(parentExpr)) {
if (!calledBase->isImplicit())
return;
}
}
const auto *VD = cast<ValueDecl>(D);
const TypeDecl *declParent =
VD->getDeclContext()->getSelfNominalTypeDecl();
if (!declParent) {
// If the declaration has been validated but not fully type-checked,
// the attribute might be applied to something invalid.
if (!VD->getDeclContext()->isModuleScopeContext())
return;
declParent = VD->getDeclContext()->getParentModule();
}
Ctx.Diags.diagnose(DRE->getLoc(), diag::warn_unqualified_access,
VD->getBaseIdentifier(),
VD->getDescriptiveKind(),
declParent);
Ctx.Diags.diagnose(VD, diag::decl_declared_here, VD);
if (VD->getDeclContext()->isTypeContext()) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::fix_unqualified_access_member)
.fixItInsert(DRE->getStartLoc(), "self.");
}
DeclContext *topLevelSubcontext = DC->getModuleScopeContext();
auto descriptor = UnqualifiedLookupDescriptor(
DeclNameRef(VD->getBaseName()), topLevelSubcontext, SourceLoc());
auto lookup = evaluateOrDefault(Ctx.evaluator,
UnqualifiedLookupRequest{descriptor}, {});
// Group results by module. Pick an arbitrary result from each module.
llvm::SmallDenseMap<const ModuleDecl*,const ValueDecl*,4> resultsByModule;
for (auto &result : lookup) {
const ValueDecl *value = result.getValueDecl();
resultsByModule.insert(std::make_pair(value->getModuleContext(),value));
}
// Sort by module name.
using ModuleValuePair = std::pair<const ModuleDecl *, const ValueDecl *>;
SmallVector<ModuleValuePair, 4> sortedResults{
resultsByModule.begin(), resultsByModule.end()
};
llvm::array_pod_sort(sortedResults.begin(), sortedResults.end(),
[](const ModuleValuePair *lhs,
const ModuleValuePair *rhs) {
return lhs->first->getName().compare(rhs->first->getName());
});
auto topLevelDiag = diag::fix_unqualified_access_top_level;
if (sortedResults.size() > 1)
topLevelDiag = diag::fix_unqualified_access_top_level_multi;
for (const ModuleValuePair &pair : sortedResults) {
DescriptiveDeclKind k = pair.second->getDescriptiveKind();
SmallString<32> namePlusDot = pair.first->getName().str();
namePlusDot.push_back('.');
Ctx.Diags.diagnose(DRE->getLoc(), topLevelDiag,
namePlusDot, k, pair.first->getName())
.fixItInsert(DRE->getStartLoc(), namePlusDot);
}
}
void checkForDeclWithSpecialTypeCheckingSemantics(const DeclRefExpr *DRE) {
// Referencing type(of:) and other decls with special type-checking
// behavior as functions is not implemented. Maybe we could wrap up the
// special-case behavior in a closure someday...
if (TypeChecker::getDeclTypeCheckingSemantics(DRE->getDecl())
!= DeclTypeCheckingSemantics::Normal) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::unsupported_special_decl_ref,
DRE->getDecl()->getBaseIdentifier());
}
}
enum BitcastableNumberKind {
BNK_None = 0,
BNK_Int8,
BNK_Int16,
BNK_Int32,
BNK_Int64,
BNK_Int,
BNK_UInt8,
BNK_UInt16,
BNK_UInt32,
BNK_UInt64,
BNK_UInt,
BNK_Float,
BNK_Double,
};
BitcastableNumberKind getBitcastableNumberKind(Type t) const {
auto decl = t->getNominalOrBoundGenericNominal();
#define MATCH_DECL(type) \
if (decl == Ctx.get##type##Decl()) \
return BNK_##type;
MATCH_DECL(Int8)
MATCH_DECL(Int16)
MATCH_DECL(Int32)
MATCH_DECL(Int64)
MATCH_DECL(Int)
MATCH_DECL(UInt8)
MATCH_DECL(UInt16)
MATCH_DECL(UInt32)
MATCH_DECL(UInt64)
MATCH_DECL(UInt)
MATCH_DECL(Float)
MATCH_DECL(Double)
#undef MATCH_DECL
return BNK_None;
}
static constexpr unsigned BNKPair(BitcastableNumberKind a,
BitcastableNumberKind b) {
return (a << 8) | b;
}
void checkForSuspiciousBitCasts(DeclRefExpr *DRE,
Expr *Parent = nullptr) {
if (DRE->getDecl() != Ctx.getUnsafeBitCast())
return;
if (DRE->getDeclRef().getSubstitutions().empty())
return;
// Don't check the same use of unsafeBitCast twice.
if (!AlreadyDiagnosedBitCasts.insert(DRE).second)
return;
auto subMap = DRE->getDeclRef().getSubstitutions();
auto fromTy = subMap.getReplacementTypes()[0];
auto toTy = subMap.getReplacementTypes()[1];
// Warn about `unsafeBitCast` formulations that are undefined behavior
// or have better-defined alternative APIs that can be used instead.
// If we have a parent ApplyExpr that calls bitcast, extract the argument
// for fixits.
Expr *subExpr = nullptr;
CharSourceRange removeBeforeRange, removeAfterRange;
if (auto apply = dyn_cast_or_null<ApplyExpr>(Parent)) {
subExpr = apply->getArgs()->getExpr(0);
// Determine the fixit range from the start of the application to
// the first argument, `unsafeBitCast(`
removeBeforeRange = CharSourceRange(Ctx.SourceMgr, DRE->getLoc(),
subExpr->getStartLoc());
// Determine the fixit range from the end of the first argument to
// the end of the application, `, to: T.self)`
removeAfterRange = CharSourceRange(Ctx.SourceMgr,
Lexer::getLocForEndOfToken(Ctx.SourceMgr,
subExpr->getEndLoc()),
Lexer::getLocForEndOfToken(Ctx.SourceMgr,
apply->getEndLoc()));
}
// Casting to the same type or a superclass is a no-op.
if (toTy->isEqual(fromTy) ||
toTy->isExactSuperclassOf(fromTy)) {
auto d = Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_is_no_op,
fromTy, toTy);
if (subExpr) {
d.fixItRemoveChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd())
.fixItRemoveChars(removeAfterRange.getStart(),
removeAfterRange.getEnd());
}
return;
}
if (auto fromFnTy = fromTy->getAs<FunctionType>()) {
if (auto toFnTy = toTy->getAs<FunctionType>()) {
// Casting a nonescaping function to escaping is UB.
// `withoutActuallyEscaping` ought to be used instead.
if (fromFnTy->isNoEscape() && !toFnTy->isNoEscape()) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_away_noescape,
fromTy, toTy);
}
// Changing function representation (say, to try to force a
// @convention(c) function pointer to exist) is also unlikely to work.
if (fromFnTy->getRepresentation() != toFnTy->getRepresentation()) {
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_change_function_rep, fromTy,
toTy);
}
return;
}
}
// Unchecked casting to a subclass is better done by unsafeDowncast.
if (fromTy->isBindableToSuperclassOf(toTy)) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_to_downcast,
fromTy, toTy)
.fixItReplace(DRE->getNameLoc().getBaseNameLoc(),
"unsafeDowncast");
return;
}
// Casting among pointer types should use the Unsafe*Pointer APIs for
// rebinding typed memory or accessing raw memory instead.
PointerTypeKind fromPTK, toPTK;
Type fromPointee = fromTy->getAnyPointerElementType(fromPTK);
Type toPointee = toTy->getAnyPointerElementType(toPTK);
if (fromPointee && toPointee) {
// Casting to a pointer to the same type or UnsafeRawPointer can use
// normal initializers on the destination type.
if (toPointee->isEqual(fromPointee)
|| isRawPointerKind(toPTK)) {
auto d = Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_change_pointer_kind,
fromTy, toTy,
toTy->getStructOrBoundGenericStruct()->getName());
if (subExpr) {
StringRef before, after;
switch (toPTK) {
case PTK_UnsafePointer:
// UnsafePointer(mutablePointer)
before = "UnsafePointer(";
after = ")";
break;
case PTK_UnsafeMutablePointer:
case PTK_AutoreleasingUnsafeMutablePointer:
before = "UnsafeMutablePointer(mutating: ";
after = ")";
break;
case PTK_UnsafeRawPointer:
// UnsafeRawPointer(pointer)
before = "UnsafeRawPointer(";
after = ")";
break;
case PTK_UnsafeMutableRawPointer:
// UnsafeMutableRawPointer(mutating: rawPointer)
before = fromPTK == PTK_UnsafeMutablePointer
? "UnsafeMutableRawPointer("
: "UnsafeMutableRawPointer(mutating: ";
after = ")";
break;
}
d.fixItReplaceChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd(),
before)
.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
after);
}
return;
}
// Casting to a different typed pointer type should use
// withMemoryRebound.
if (!isRawPointerKind(fromPTK) && !isRawPointerKind(toPTK)) {
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_change_pointee_type,
fromTy, toTy);
return;
}
// Casting a raw pointer to a typed pointer should bind the memory
// (or assume it's already bound).
assert(isRawPointerKind(fromPTK) && !isRawPointerKind(toPTK)
&& "unhandled cast combo?!");
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_give_type_to_raw_pointer,
fromTy, toTy);
if (subExpr) {
SmallString<64> fixitBuf;
{
llvm::raw_svector_ostream os(fixitBuf);
os << ".assumingMemoryBound(to: ";
toPointee->print(os);
os << ".self)";
}
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcast_assume_memory_rebound,
toPointee)
.fixItRemoveChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd())
.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
fixitBuf);
fixitBuf.clear();
{
llvm::raw_svector_ostream os(fixitBuf);
os << ".bindMemory(to: ";
toPointee->print(os);
os << ".self, capacity: <""#capacity#"">)";
}
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcast_bind_memory,
toPointee)
.fixItRemoveChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd())
.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
fixitBuf);
}
return;
}
StringRef replaceBefore, replaceAfter;
std::optional<Diag<Type, Type>> diagID;
SmallString<64> replaceBeforeBuf;
// Bitcasting among numeric types should use `bitPattern:` initializers.
auto fromBNK = getBitcastableNumberKind(fromTy);
auto toBNK = getBitcastableNumberKind(toTy);
if (fromBNK && toBNK) {
switch (BNKPair(fromBNK, toBNK)) {
// Combos that can be bitPattern-ed with a constructor
case BNKPair(BNK_Int8, BNK_UInt8):
case BNKPair(BNK_UInt8, BNK_Int8):
case BNKPair(BNK_Int16, BNK_UInt16):
case BNKPair(BNK_UInt16, BNK_Int16):
case BNKPair(BNK_Int32, BNK_UInt32):
case BNKPair(BNK_UInt32, BNK_Int32):
case BNKPair(BNK_Int64, BNK_UInt64):
case BNKPair(BNK_UInt64, BNK_Int64):
case BNKPair(BNK_Int, BNK_UInt):
case BNKPair(BNK_UInt, BNK_Int):
case BNKPair(BNK_UInt32, BNK_Float):
case BNKPair(BNK_UInt64, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
// Combos that can be bitPattern-ed with a constructor and sign flip
case BNKPair(BNK_Int32, BNK_Float):
case BNKPair(BNK_Int64, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
if (fromBNK == BNK_Int32)
os << "UInt32(bitPattern: ";
else
os << "UInt64(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
// Combos that can be bitPattern-ed with a property
case BNKPair(BNK_Float, BNK_UInt32):
case BNKPair(BNK_Double, BNK_UInt64):
diagID = diag::bitcasting_for_number_bit_pattern_property;
replaceAfter = ".bitPattern";
break;
// Combos that can be bitPattern-ed with a property and sign flip
case BNKPair(BNK_Float, BNK_Int32):
case BNKPair(BNK_Double, BNK_Int64):
diagID = diag::bitcasting_for_number_bit_pattern_property;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
// Combos that can be bitPattern-ed with a constructor once (U)Int is
// converted to a sized type.
case BNKPair(BNK_UInt, BNK_Float):
case BNKPair(BNK_Int, BNK_UInt32):
case BNKPair(BNK_UInt, BNK_Int32):
case BNKPair(BNK_Int, BNK_UInt64):
case BNKPair(BNK_UInt, BNK_Int64):
case BNKPair(BNK_UInt, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
if (fromBNK == BNK_Int)
os << "Int";
else
os << "UInt";
if (toBNK == BNK_Float
|| toBNK == BNK_Int32
|| toBNK == BNK_UInt32)
os << "32(";
else
os << "64(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
case BNKPair(BNK_Int, BNK_Float):
case BNKPair(BNK_Int, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: UInt";
if (toBNK == BNK_Float
|| toBNK == BNK_Int32
|| toBNK == BNK_UInt32)
os << "32(bitPattern: Int32(";
else
os << "64(bitPattern: Int64(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")))";
break;
// Combos that can be bitPattern-ed then converted from a sized type
// to (U)Int.
case BNKPair(BNK_Int32, BNK_UInt):
case BNKPair(BNK_UInt32, BNK_Int):
case BNKPair(BNK_Int64, BNK_UInt):
case BNKPair(BNK_UInt64, BNK_Int):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(";
if (toBNK == BNK_UInt)
os << "UInt";
else
os << "Int";
if (fromBNK == BNK_Int32 || fromBNK == BNK_UInt32)
os << "32(bitPattern: ";
else
os << "64(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
case BNKPair(BNK_Float, BNK_UInt):
case BNKPair(BNK_Double, BNK_UInt):
diagID = diag::bitcasting_for_number_bit_pattern_property;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ".bitPattern)";
break;
case BNKPair(BNK_Float, BNK_Int):
case BNKPair(BNK_Double, BNK_Int):
diagID = diag::bitcasting_for_number_bit_pattern_property;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: UInt(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ".bitPattern))";
break;
// Combos that should be done with a value-preserving initializer.
case BNKPair(BNK_Int, BNK_Int32):
case BNKPair(BNK_Int, BNK_Int64):
case BNKPair(BNK_UInt, BNK_UInt32):
case BNKPair(BNK_UInt, BNK_UInt64):
case BNKPair(BNK_Int32, BNK_Int):
case BNKPair(BNK_Int64, BNK_Int):
case BNKPair(BNK_UInt32, BNK_UInt):
case BNKPair(BNK_UInt64, BNK_UInt):
diagID = diag::bitcasting_to_change_from_unsized_to_sized_int;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << '(';
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
default:
// Leave other combos alone.
break;
}
}
// Casting a pointer to an int or back should also use bitPattern
// initializers.
if (fromPointee && toBNK) {
switch (toBNK) {
case BNK_UInt:
case BNK_Int:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
case BNK_UInt64:
case BNK_UInt32:
case BNK_Int64:
case BNK_Int32:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << '(';
if (toBNK == BNK_UInt32 || toBNK == BNK_UInt64)
os << "UInt(bitPattern: ";
else
os << "Int(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
default:
break;
}
}
if (fromBNK && toPointee) {
switch (fromBNK) {
case BNK_UInt:
case BNK_Int:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
case BNK_UInt64:
case BNK_UInt32:
case BNK_Int64:
case BNK_Int32:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
if (fromBNK == BNK_Int32 || fromBNK == BNK_Int64)
os << "Int(";
else
os << "UInt(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
default:
break;
}
}
if (diagID) {
auto d = Ctx.Diags.diagnose(DRE->getLoc(), *diagID, fromTy, toTy);
if (subExpr) {
d.fixItReplaceChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd(),
replaceBefore);
d.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
replaceAfter);
}
}
}
/// Return true if this is a 'nil' literal. This looks
/// like this if the type is Optional<T>:
///
/// (dot_syntax_call_expr type='String?'
/// (declref_expr type='(Optional<String>.Type) -> Optional<String>'
/// decl=Swift.(file).Optional.none function_ref=unapplied)
/// (argument_list implicit
/// (argument
/// (type_expr implicit type='String?.Type' typerepr='String?'))))
///
/// Or like this if it is any other ExpressibleByNilLiteral type:
///
/// (nil_literal_expr)
///
bool isTypeCheckedOptionalNil(Expr *E) {
if (dyn_cast<NilLiteralExpr>(E)) return true;
if (auto *DSCE = dyn_cast_or_null<DotSyntaxCallExpr>(E->getSemanticsProvidingExpr())) {
if (auto *DRE = dyn_cast<DeclRefExpr>(DSCE->getSemanticFn()))
return DRE->getDecl() == Ctx.getOptionalNoneDecl();
}
return false;
}
/// Warn about surprising implicit optional promotions involving operands to
/// calls. Specifically, we warn about these expressions when the 'x'
/// operand is implicitly promoted to optional:
///
/// x ?? y
/// x == nil // also !=
///
void checkOptionalPromotions(ApplyExpr *call) {
// We only care about binary expressions.
auto *BE = dyn_cast<BinaryExpr>(call);
if (!BE) return;
// Dig out the function we're calling.
auto fnExpr = call->getSemanticFn();
if (auto dotSyntax = dyn_cast<DotSyntaxCallExpr>(fnExpr))
fnExpr = dotSyntax->getSemanticFn();
if (auto *FCE = dyn_cast<FunctionConversionExpr>(fnExpr))
fnExpr = FCE->getSubExpr();
auto DRE = dyn_cast<DeclRefExpr>(fnExpr);
if (!DRE || !DRE->getDecl()->isOperator())
return;
auto lhs = BE->getLHS();
auto rhs = BE->getRHS();
auto calleeName = DRE->getDecl()->getBaseName();
Expr *subExpr = nullptr;
if (calleeName == "??" &&
(subExpr = isImplicitPromotionToOptional(lhs))) {
Ctx.Diags
.diagnose(DRE->getLoc(), diag::use_of_qq_on_non_optional_value,
subExpr->getType())
.highlight(lhs->getSourceRange())
.fixItRemoveChars(
Lexer::getLocForEndOfToken(Ctx.SourceMgr, lhs->getEndLoc()),
Lexer::getLocForEndOfToken(Ctx.SourceMgr, rhs->getEndLoc()));
return;
}
if (calleeName == "==" || calleeName == "!=" ||
calleeName == "===" || calleeName == "!==") {
if (((subExpr = isImplicitPromotionToOptional(lhs)) &&
isTypeCheckedOptionalNil(rhs)) ||
(isTypeCheckedOptionalNil(lhs) &&
(subExpr = isImplicitPromotionToOptional(rhs)))) {
bool isTrue = calleeName == "!=" || calleeName == "!==";
bool isNilLiteral = isa<NilLiteralExpr>(lhs) || isa<NilLiteralExpr>(rhs);
Ctx.Diags.diagnose(DRE->getLoc(), diag::nonoptional_compare_to_nil,
subExpr->getType(), isNilLiteral, isTrue)
.highlight(lhs->getSourceRange())
.highlight(rhs->getSourceRange());
return;
}
}
}
};
DiagnoseWalker Walker(DC, isExprStmt);
const_cast<Expr *>(E)->walk(Walker);
// Diagnose uses of collection literals with defaulted types at the top
// level.
if (auto collection =
dyn_cast<CollectionExpr>(E->getSemanticsProvidingExpr())) {
if (collection->isTypeDefaulted()) {
Walker.checkTypeDefaultedCollectionExpr(
const_cast<CollectionExpr *>(collection));
}
}
}
DeferredDiags swift::findSyntacticErrorForConsume(
ModuleDecl *module, SourceLoc loc, Expr *subExpr) {
assert(!isa<ConsumeExpr>(subExpr) && "operates on the sub-expr of a consume");
DeferredDiags result;
const bool noncopyable =
subExpr->getType()->getCanonicalType()->isNoncopyable();
bool partial = false;
Expr *current = subExpr;
while (current) {
if (auto *dre = dyn_cast<DeclRefExpr>(current)) {
if (partial & !noncopyable)
result.emplace_back(loc, diag::consume_expression_partial_copyable);
// The chain of member_ref_exprs and load_exprs terminates at a
// declref_expr. This is legal.
break;
}
// Look through loads.
if (auto *le = dyn_cast<LoadExpr>(current)) {
current = le->getSubExpr();
continue;
}
auto *mre = dyn_cast<MemberRefExpr>(current);
if (mre) {
auto *vd = dyn_cast<VarDecl>(mre->getMember().getDecl());
if (!vd) {
result.emplace_back(loc, diag::consume_expression_non_storage);
break;
}
partial = true;
AccessStrategy strategy = vd->getAccessStrategy(
mre->getAccessSemantics(), AccessKind::Read,
module, ResilienceExpansion::Minimal);
if (strategy.getKind() != AccessStrategy::Storage) {
if (noncopyable) {
result.emplace_back(loc, diag::consume_expression_non_storage);
result.emplace_back(mre->getLoc(),
diag::note_consume_expression_non_storage_property);
break;
}
result.emplace_back(loc, diag::consume_expression_partial_copyable);
break;
}
current = mre->getBase();
continue;
}
auto *ce = dyn_cast<CallExpr>(current);
if (ce) {
if (noncopyable) {
result.emplace_back(loc, diag::consume_expression_non_storage);
result.emplace_back(ce->getLoc(),
diag::note_consume_expression_non_storage_call);
break;
}
result.emplace_back(loc, diag::consume_expression_partial_copyable);
break;
}
auto *se = dyn_cast<SubscriptExpr>(current);
if (se) {
if (noncopyable) {
result.emplace_back(loc, diag::consume_expression_non_storage);
result.emplace_back(se->getLoc(),
diag::note_consume_expression_non_storage_subscript);
break;
}
result.emplace_back(loc, diag::consume_expression_partial_copyable);
break;
}
result.emplace_back(loc, diag::consume_expression_not_passed_lvalue);
break;
}
return result;
}
/// Diagnose recursive use of properties within their own accessors
static void diagRecursivePropertyAccess(const Expr *E, const DeclContext *DC) {
auto fn = dyn_cast<AccessorDecl>(DC);
if (!fn)
return;
auto var = dyn_cast<VarDecl>(fn->getStorage());
if (!var) // Ignore subscripts
return;
class DiagnoseWalker : public ASTWalker {
ASTContext &Ctx;
VarDecl *Var;
const AccessorDecl *Accessor;
public:
explicit DiagnoseWalker(VarDecl *var, const AccessorDecl *Accessor)
: Ctx(var->getASTContext()), Var(var), Accessor(Accessor) {}
/// Return true if this is an implicit reference to self.
static bool isImplicitSelfUse(Expr *E) {
auto *DRE = dyn_cast<DeclRefExpr>(E);
return DRE && DRE->isImplicit() && isa<VarDecl>(DRE->getDecl()) &&
cast<VarDecl>(DRE->getDecl())->isSelfParameter();
}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
Expr *subExpr;
bool isStore = false;
if (auto *AE = dyn_cast<AssignExpr>(E)) {
subExpr = AE->getDest();
// If we couldn't flatten this expression, don't explode.
if (!subExpr)
return Action::Continue(E);
isStore = true;
} else if (auto *IOE = dyn_cast<InOutExpr>(E)) {
subExpr = IOE->getSubExpr();
isStore = true;
} else {
subExpr = E;
}
if (auto *BOE = dyn_cast<BindOptionalExpr>(subExpr))
subExpr = BOE;
if (auto *DRE = dyn_cast<DeclRefExpr>(subExpr)) {
if (DRE->getDecl() == Var) {
// Handle local and top-level computed variables.
if (DRE->getAccessSemantics() == AccessSemantics::Ordinary) {
bool shouldDiagnose = false;
// Warn about any property access in the getter.
if (Accessor->isGetter())
shouldDiagnose = !isStore;
// Warn about stores in the setter, but allow loads.
if (Accessor->isSetter())
shouldDiagnose = isStore;
// But silence the warning if the base was explicitly qualified.
auto parentAsExpr = Parent.getAsExpr();
if (isa_and_nonnull<DotSyntaxBaseIgnoredExpr>(parentAsExpr))
shouldDiagnose = false;
if (shouldDiagnose) {
Ctx.Diags.diagnose(subExpr->getLoc(),
diag::recursive_accessor_reference,
Var->getName(), Accessor->isSetter());
}
}
// If this is a direct store in a "willSet", we reject this because
// it is about to get overwritten.
if (isStore &&
DRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
Accessor->getAccessorKind() == AccessorKind::WillSet) {
Ctx.Diags.diagnose(E->getLoc(), diag::store_in_willset,
Var->getName());
}
}
} else if (auto *MRE = dyn_cast<MemberRefExpr>(subExpr)) {
// Handle instance and type computed variables.
// Find MemberRefExprs that have an implicit "self" base.
if (MRE->getMember().getDecl() == Var &&
isa<DeclRefExpr>(MRE->getBase()) &&
isImplicitSelfUse(MRE->getBase())) {
if (MRE->getAccessSemantics() == AccessSemantics::Ordinary) {
bool shouldDiagnose = false;
// Warn about any property access in the getter.
if (Accessor->isGetter())
shouldDiagnose = !isStore;
// Warn about stores in the setter, but allow loads.
if (Accessor->isSetter())
shouldDiagnose = isStore;
if (shouldDiagnose) {
Ctx.Diags.diagnose(subExpr->getLoc(),
diag::recursive_accessor_reference,
Var->getName(), Accessor->isSetter());
Ctx.Diags.diagnose(subExpr->getLoc(),
diag::recursive_accessor_reference_silence)
.fixItInsert(subExpr->getStartLoc(), "self.");
}
}
// If this is a direct store in a "willSet", we reject this because
// it is about to get overwritten.
if (isStore &&
MRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
Accessor->getAccessorKind() == AccessorKind::WillSet) {
Ctx.Diags.diagnose(subExpr->getLoc(), diag::store_in_willset,
Var->getName());
}
}
}
return Action::Continue(E);
}
};
DiagnoseWalker walker(var, fn);
const_cast<Expr *>(E)->walk(walker);
}
/// The `weak self` capture of this closure if present
static VarDecl *weakSelfCapture(const AbstractClosureExpr *ACE) {
if (auto closureExpr = dyn_cast<ClosureExpr>(ACE)) {
if (auto selfDecl = closureExpr->getCapturedSelfDecl()) {
if (selfDecl->getInterfaceType()->is<WeakStorageType>()) {
return selfDecl;
}
}
}
return nullptr;
}
/// Whether or not this closure captures self weakly
static bool closureHasWeakSelfCapture(const AbstractClosureExpr *ACE) {
return weakSelfCapture(ACE) != nullptr;
}
// Returns true if this is an implicit self expr
static bool isImplicitSelf(const Expr *E) {
auto *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE || !DRE->isImplicit())
return false;
ASTContext &Ctx = DRE->getDecl()->getASTContext();
return DRE->getDecl()->getName().isSimpleName(Ctx.Id_self);
}
/// Look for any property references in closures that lack a 'self.' qualifier.
/// Within a closure, we require that the source code contain 'self.' explicitly
/// (or that the closure explicitly capture 'self' in the capture list) because
/// 'self' is captured, not the property value. This is a common source of
/// confusion, so we force an explicit self.
static void diagnoseImplicitSelfUseInClosure(const Expr *E,
const DeclContext *DC) {
class DiagnoseWalker : public BaseDiagnosticWalker {
ASTContext &Ctx;
SmallVector<AbstractClosureExpr *, 4> Closures;
/// A list of "implicit self" exprs from shorthand conditions
/// like `if let self` or `guard let self`. These conditions
/// have an RHS 'self' decl that is implicit, but this is not
/// the sort of "implicit self" decl that should trigger
/// these diagnostics.
SmallPtrSet<Expr *, 16> UnwrapStmtImplicitSelfExprs;
public:
explicit DiagnoseWalker(ASTContext &Ctx, AbstractClosureExpr *ACE)
: Ctx(Ctx), Closures() {
if (ACE)
Closures.push_back(ACE);
}
static bool
implicitWeakSelfReferenceIsValid510(const DeclRefExpr *DRE,
const AbstractClosureExpr *inClosure) {
ASTContext &Ctx = DRE->getDecl()->getASTContext();
// Check if the implicit self decl refers to a var in a conditional stmt
LabeledConditionalStmt *conditionalStmt = nullptr;
if (auto var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (auto parentStmt = var->getParentPatternStmt()) {
conditionalStmt = dyn_cast<LabeledConditionalStmt>(parentStmt);
}
}
if (!conditionalStmt) {
return false;
}
// Require `LoadExpr`s when validating the self binding.
// This lets us reject invalid examples like:
//
// let `self` = self ?? .somethingElse
// guard let self = self else { return }
// method() // <- implicit self is not allowed
//
return conditionalStmt->rebindsSelf(Ctx, /*requiresCaptureListRef*/ false,
/*requireLoadExpr*/ true);
}
static bool
isEnclosingSelfReference510(VarDecl *var,
const AbstractClosureExpr *inClosure) {
if (var->isSelfParameter())
return true;
// Capture variables have a DC of the parent function.
if (inClosure && var->isSelfParamCapture() &&
var->getDeclContext() != inClosure->getParent())
return true;
return false;
}
static bool
selfDeclAllowsImplicitSelf510(DeclRefExpr *DRE, Type ty,
const AbstractClosureExpr *inClosure) {
// If this is an explicit `weak self` capture, then implicit self is
// allowed once the closure's self param is unwrapped. We need to validate
// that the unwrapped `self` decl specifically refers to an unwrapped copy
// of the closure's `self` param, and not something else like in `guard
// let self = .someOptionalVariable else { return }` or `let self =
// someUnrelatedVariable`. If self hasn't been unwrapped yet and is still
// an optional, we would have already hit an error elsewhere.
if (closureHasWeakSelfCapture(inClosure)) {
return implicitWeakSelfReferenceIsValid510(DRE, inClosure);
}
// Metatype self captures don't extend the lifetime of an object.
if (ty->is<MetatypeType>())
return true;
// If self does not have reference semantics, it is very unlikely that
// capturing it will create a reference cycle.
if (!ty->hasReferenceSemantics())
return true;
if (auto closureExpr = dyn_cast<ClosureExpr>(inClosure)) {
if (auto selfDecl = closureExpr->getCapturedSelfDecl()) {
// If this capture is using the name `self` actually referring
// to some other variable (e.g. with `[self = "hello"]`)
// then implicit self is not allowed.
if (!selfDecl->isSelfParamCapture()) {
return false;
}
}
}
if (auto var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (!isEnclosingSelfReference510(var, inClosure)) {
return true;
}
}
return false;
}
/// Whether or not implicit self is allowed for self decl
static bool
selfDeclAllowsImplicitSelf(Expr *E, const AbstractClosureExpr *inClosure) {
if (!isImplicitSelf(E)) {
return true;
}
auto *DRE = cast<DeclRefExpr>(E);
// Defensive check for type. If the expression doesn't have type here, it
// should have been diagnosed somewhere else.
Type ty = DRE->getType();
assert(ty && "Implicit self parameter ref without type");
if (!ty)
return true;
// Prior to Swift 6, use the old validation logic.
auto &ctx = inClosure->getASTContext();
if (!ctx.isSwiftVersionAtLeast(6))
return selfDeclAllowsImplicitSelf510(DRE, ty, inClosure);
return selfDeclAllowsImplicitSelf(DRE->getDecl(), ty, inClosure,
/*validateParentClosures:*/ true,
/*validateSelfRebindings:*/ true);
}
/// Whether or not implicit self is allowed for this implicit self decl
static bool selfDeclAllowsImplicitSelf(const ValueDecl *selfDecl,
const Type captureType,
const AbstractClosureExpr *inClosure,
bool validateParentClosures,
bool validateSelfRebindings) {
ASTContext &ctx = inClosure->getASTContext();
auto requiresSelfQualification =
isClosureRequiringSelfQualification(inClosure);
// Metatype self captures don't extend the lifetime of an object.
if (captureType->is<MetatypeType>()) {
requiresSelfQualification = false;
}
// If self does not have reference semantics, it is very unlikely that
// capturing it will create a reference cycle.
if (!captureType->hasReferenceSemantics()) {
requiresSelfQualification = false;
}
if (auto closureExpr = dyn_cast<ClosureExpr>(inClosure)) {
auto capturedSelfDecl = closureExpr->getCapturedSelfDecl();
// If this closure doesn't capture self explicitly, but this closure
// requires self qualification, then implicit self is disallowed.
if (!capturedSelfDecl && requiresSelfQualification) {
return false;
}
// If the closure has an explicit capture using the name `self` that
// actually refers to some other variable (e.g. `[self = "hello"]`)
// then implicit self is not allowed.
if (capturedSelfDecl && !isSimpleSelfCapture(capturedSelfDecl)) {
return false;
}
}
// If the self decl comes from a conditional statement, validate
// that it is an allowed `guard let self` or `if let self` condition.
// - Even if this closure doesn't have a `weak self` capture, it could
// be a closure nested in some parent closure with a `weak self`
// capture, so we should always validate the conditional statement
// that defines self if present.
if (validateSelfRebindings) {
if (auto conditionalStmt = parentConditionalStmt(selfDecl)) {
if (!hasValidSelfRebinding(conditionalStmt, ctx)) {
return false;
}
}
}
// If this closure has a `weak self` capture, require that the
// closure unwraps self. If not, implicit self is not allowed
// in this closure or in any nested closure.
if (closureHasWeakSelfCapture(inClosure) &&
!hasValidSelfRebinding(parentConditionalStmt(selfDecl), ctx)) {
return false;
}
if (auto autoclosure = dyn_cast<AutoClosureExpr>(inClosure)) {
// Implicit self is always allowed in autoclosure thunks generated
// during type checking. An example of this is when storing an instance
// method as a closure (e.g. `let closure = someInstanceMethodOnSelf`).
auto thunkKind = autoclosure->getThunkKind();
if (thunkKind == AutoClosureExpr::Kind::SingleCurryThunk ||
thunkKind == AutoClosureExpr::Kind::DoubleCurryThunk) {
return true;
}
// Explicit self is required in escaping autoclosures
if (requiresSelfQualification) {
return false;
}
}
// Lastly, validate that there aren't any parent closures
// with invalid self bindings that should disable implicit
// self for all nested closures.
// - We have to do this for all closures, even closures that typically
// don't require self qualificationm since an invalid self capture in
// a parent closure still disallows implicit self in a nested closure.
if (validateParentClosures) {
return !implicitSelfDisallowedDueToInvalidParent(selfDecl, captureType,
inClosure);
} else {
return true;
}
}
static bool implicitSelfDisallowedDueToInvalidParent(
const ValueDecl *selfDecl, const Type captureType,
const AbstractClosureExpr *inClosure) {
return parentClosureDisallowingImplicitSelf(selfDecl, captureType,
inClosure) != nullptr;
}
static const AbstractClosureExpr *
parentClosureDisallowingImplicitSelf(const ValueDecl *selfDecl,
const Type captureType,
const AbstractClosureExpr *inClosure) {
// Find the outer decl that determines what self refers to in this
// closure.
// - If this is an escaping closure that captured self, then `selfDecl`
// refers to the self capture.
// - If this is a nonescaping closure then there is no capture,
// so selfDecl already comes from an outer context.
const ValueDecl *outerSelfDecl = selfDecl;
if (auto closureExpr = dyn_cast<ClosureExpr>(inClosure)) {
if (auto capturedSelfDecl = closureExpr->getCapturedSelfDecl()) {
// Retrieve the outer decl that the self capture refers to.
outerSelfDecl = getParentInitializerDecl(capturedSelfDecl);
}
}
if (!outerSelfDecl) {
return nullptr;
}
// Find the closest parent closure that contains the outer self decl,
// potentially also validating all intermediate closures.
auto outerClosure = inClosure;
bool validateIntermediateParents = true;
while (true) {
// We have to validate all intermediate parent closures
// to prevent cases like this from succeeding, which is
// invalid because the outer closure doesn't have an
// explicit self capture:
//
// withEscaping {
// withNonEscaping {
// x += 1 // not allowed
// }
// }
//
// On the other hand, we need to support cases like this.
// As long as the inner closure has an explicit capture,
// it is not necessary for outer closures to also have
// an explicit self capture:
//
// withEscaping {
// withEscaping { [self] in
// x += 1 // ok
// }
// }
//
// So if we reach a closure with an explicit self capture,
// we no longer need to validate each intermediate closure
// (but we still have to validate the outer closure that
// contains the outer self delf).
if (auto closureExpr = dyn_cast<ClosureExpr>(outerClosure)) {
if (closureExpr->getCapturedSelfDecl()) {
validateIntermediateParents = false;
}
}
outerClosure = parentClosure(outerClosure);
if (!outerClosure) {
// Once we reach a parent context that isn't a closure,
// the only valid self capture is the self parameter.
// This disallows cases like:
//
// let `self` = somethingElse
// withEscaping { [self] in
// method()
// }
//
auto VD = dyn_cast<VarDecl>(outerSelfDecl);
if (!VD) {
return inClosure;
}
if (!VD->isSelfParameter()) {
return inClosure;
}
return nullptr;
}
// Check if this closure contains the self decl.
// - If the self decl is defined in the closure's body, its
// decl context will be the closure itself.
// - If the self decl is defined in the closure's capture list,
// its parent capture list will reference the closure.
auto selfDeclInOuterClosureContext =
outerSelfDecl->getDeclContext() == outerClosure;
auto selfDeclInOuterClosureCaptureList = false;
if (auto selfVD = dyn_cast<VarDecl>(outerSelfDecl)) {
if (auto captureList = selfVD->getParentCaptureList()) {
selfDeclInOuterClosureCaptureList =
captureList->getClosureBody() == outerClosure;
}
}
// We can stop searching because we found the first outer closure
// that contains the outer self decl. Otherwise we continue searching
// any parent closures in the next loop iteration.
if (selfDeclInOuterClosureContext ||
selfDeclInOuterClosureCaptureList) {
// Check whether implicit self is disallowed due to this specific
// closure, or if its disallowed due to some parent of this closure,
// so we can return the specific closure that is invalid.
if (!selfDeclAllowsImplicitSelf(outerSelfDecl, captureType,
outerClosure,
/*validateParentClosures:*/ false,
/*validateSelfRebindings:*/ true)) {
return outerClosure;
}
return parentClosureDisallowingImplicitSelf(
outerSelfDecl, captureType, outerClosure);
}
// Optionally validate this intermediate closure before continuing
// to search upwards. Since we're already validating the chain of
// parent closures, we don't need to do that separate for this closure.
if (validateIntermediateParents) {
if (!selfDeclAllowsImplicitSelf(selfDecl, captureType, outerClosure,
/*validateParentClosures*/ false,
/*validateSelfRebindings*/ false)) {
return outerClosure;
}
}
}
}
static bool
hasValidSelfRebinding(const LabeledConditionalStmt *conditionalStmt,
ASTContext &ctx) {
if (!conditionalStmt) {
return false;
}
// Require that the RHS of the `let self = self` condition
// refers to a variable defined in a capture list.
// This lets us reject invalid examples like:
//
// var `self` = self ?? .somethingElse
// guard let self = self else { return }
// method() // <- implicit self is not allowed
//
return conditionalStmt->rebindsSelf(ctx, /*requiresCaptureListRef*/ true);
}
/// The `LabeledConditionalStmt` that contains the given `ValueDecl` if
/// present
static LabeledConditionalStmt *
parentConditionalStmt(const ValueDecl *selfDecl) {
if (!selfDecl) {
return nullptr;
}
if (auto var = dyn_cast<VarDecl>(selfDecl)) {
if (auto parentStmt = var->getParentPatternStmt()) {
return dyn_cast<LabeledConditionalStmt>(parentStmt);
}
}
return nullptr;
}
/// Determines whether or not this is a simple self capture by retreiving
/// the `CaptureListEntry` that contains the `selfDecl`.
/// - Unlike `selfDecl->isSelfParamCapture()`, this will return true
/// for a simple `[weak self]` capture.
static bool isSimpleSelfCapture(const VarDecl *selfDecl) {
if (!selfDecl) {
return false;
}
auto captureList = selfDecl->getParentCaptureList();
if (!captureList) {
return false;
}
for (auto capture : captureList->getCaptureList()) {
if (capture.getVar() == selfDecl) {
return capture.isSimpleSelfCapture(/*excludeWeakCaptures:*/ false);
}
}
return false;
}
// Given a `self` decl that is a closure's `self` capture,
// retrieves and returns the decl that the capture refers to.
static ValueDecl *getParentInitializerDecl(const VarDecl *selfDecl) {
if (!selfDecl) {
return nullptr;
}
auto captureList = selfDecl->getParentCaptureList();
if (!captureList) {
return nullptr;
}
for (auto capture : captureList->getCaptureList()) {
if (capture.getVar() == selfDecl && capture.PBD) {
// We've found the `CaptureListEntry` that contains the `self`
// capture, now we can retrieve and inspect its parent initializer.
auto index = capture.PBD->getPatternEntryIndexForVarDecl(selfDecl);
auto parentInitializer = capture.PBD->getInit(index);
// Look through implicit conversions like `InjectIntoOptionalExpr`
if (auto implicitConversion =
dyn_cast_or_null<ImplicitConversionExpr>(parentInitializer)) {
parentInitializer = implicitConversion->getSubExpr();
}
auto DRE = dyn_cast_or_null<DeclRefExpr>(parentInitializer);
if (!DRE) {
return nullptr;
}
return DRE->getDecl();
}
}
return nullptr;
}
/// Return true if this is a closure expression that will require explicit
/// use or capture of "self." for qualification of member references.
static bool
isClosureRequiringSelfQualification(const AbstractClosureExpr *CE,
bool ignoreWeakSelf = false) {
if (!ignoreWeakSelf && closureHasWeakSelfCapture(CE)) {
return true;
}
// If the closure's type was inferred to be noescape, then it doesn't
// need qualification.
if (isNonEscaping(CE)) {
return false;
}
if (auto autoclosure = dyn_cast<AutoClosureExpr>(CE)) {
if (autoclosure->getThunkKind() == AutoClosureExpr::Kind::AsyncLet)
return false;
}
// If the closure was used in a context where it's explicitly stated
// that it does not need "self." qualification, don't require it.
if (auto closure = dyn_cast<ClosureExpr>(CE)) {
if (closure->allowsImplicitSelfCapture())
return false;
}
return true;
}
static bool isNonEscaping(const AbstractClosureExpr *ACE) {
if (auto funcTy = ACE->getType()->getAs<FunctionType>()) {
return funcTy->isNoEscape();
}
return false;
}
/// The closure that is a parent of this closure, if present
static const ClosureExpr *
parentClosure(const AbstractClosureExpr *closure) {
auto parentContext = closure->getParent();
if (!parentContext) {
return nullptr;
}
return parentContext->getInnermostClosureForSelfCapture();
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldRecordClosure(const AbstractClosureExpr *E) {
// Record all closures in Swift 6 mode.
if (Ctx.isSwiftVersionAtLeast(6))
return true;
// Only record closures requiring self qualification prior to Swift 6
// mode.
return isClosureRequiringSelfQualification(E);
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (auto *CE = dyn_cast<AbstractClosureExpr>(E)) {
if (shouldRecordClosure(CE))
Closures.push_back(CE);
}
// If we aren't in a closure, no diagnostics will be produced.
if (Closures.size() == 0)
return Action::Continue(E);
// Diagnostics should correct the innermost closure
auto *ACE = Closures[Closures.size() - 1];
assert(ACE);
auto &Diags = Ctx.Diags;
// If this is an "implicit self" expr from the RHS of a shorthand
// condition like `guard let self` or `if let self`, then this is
// always allowed and we shouldn't run any diagnostics.
if (UnwrapStmtImplicitSelfExprs.count(E)) {
return Action::Continue(E);
}
SourceLoc memberLoc = SourceLoc();
const DeclRefExpr *selfDRE = nullptr;
if (auto *MRE = dyn_cast<MemberRefExpr>(E))
if (!selfDeclAllowsImplicitSelf(MRE->getBase(), ACE)) {
selfDRE = dyn_cast_or_null<DeclRefExpr>(MRE->getBase());
auto baseName = MRE->getMember().getDecl()->getBaseName();
memberLoc = MRE->getLoc();
Diags
.diagnose(memberLoc,
diag::property_use_in_closure_without_explicit_self,
baseName.getIdentifier())
.warnUntilSwiftVersionIf(
invalidImplicitSelfShouldOnlyWarn510(MRE->getBase(), ACE), 6);
}
// Handle method calls with a specific diagnostic + fixit.
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(E))
if (!selfDeclAllowsImplicitSelf(DSCE->getBase(), ACE) &&
isa<DeclRefExpr>(DSCE->getFn())) {
selfDRE = dyn_cast_or_null<DeclRefExpr>(DSCE->getBase());
auto MethodExpr = cast<DeclRefExpr>(DSCE->getFn());
memberLoc = DSCE->getLoc();
Diags
.diagnose(DSCE->getLoc(),
diag::method_call_in_closure_without_explicit_self,
MethodExpr->getDecl()->getBaseIdentifier())
.warnUntilSwiftVersionIf(
invalidImplicitSelfShouldOnlyWarn510(DSCE->getBase(), ACE),
6);
}
if (memberLoc.isValid()) {
const AbstractClosureExpr *parentDisallowingImplicitSelf = nullptr;
if (Ctx.isSwiftVersionAtLeast(6) && selfDRE && selfDRE->getDecl()) {
parentDisallowingImplicitSelf = parentClosureDisallowingImplicitSelf(
selfDRE->getDecl(), selfDRE->getType(), ACE);
}
emitFixIts(Diags, memberLoc, parentDisallowingImplicitSelf, ACE);
return Action::SkipNode(E);
}
if (!selfDeclAllowsImplicitSelf(E, ACE)) {
Diags.diagnose(E->getLoc(), diag::implicit_use_of_self_in_closure)
.warnUntilSwiftVersionIf(
invalidImplicitSelfShouldOnlyWarn510(E, ACE), 6);
}
return Action::Continue(E);
}
PostWalkResult<Expr *> walkToExprPost(Expr *E) override {
auto *ACE = dyn_cast<AbstractClosureExpr>(E);
if (!ACE) {
return Action::Continue(E);
}
if (shouldRecordClosure(ACE)) {
assert(Closures.size() > 0);
Closures.pop_back();
}
return Action::Continue(E);
}
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
/// Conditions like `if let self` or `guard let self`
/// have an RHS 'self' decl that is implicit, but this is not
/// the sort of "implicit self" decl that should trigger
/// these diagnostics. Track these DREs in a list so we can
/// avoid running diagnostics on them when we see them later.
auto conditionalStmt = dyn_cast<LabeledConditionalStmt>(S);
if (!conditionalStmt) {
return Action::Continue(S);
}
for (auto cond : conditionalStmt->getCond()) {
if (cond.getKind() != StmtConditionElement::CK_PatternBinding) {
continue;
}
if (auto OSP = dyn_cast<OptionalSomePattern>(cond.getPattern())) {
if (OSP->getSubPattern()->getBoundName() != Ctx.Id_self) {
continue;
}
auto E = cond.getInitializer();
// Peer through any implicit conversions like a LoadExpr
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(E)) {
E = ICE->getSubExpr();
}
if (isImplicitSelf(E)) {
UnwrapStmtImplicitSelfExprs.insert(E);
}
}
}
return Action::Continue(S);
}
/// Emit any fix-its for this error.
void emitFixIts(DiagnosticEngine &Diags, SourceLoc memberLoc,
const AbstractClosureExpr *parentDisallowingImplicitSelf,
const AbstractClosureExpr *ACE) {
// These fix-its have to be diagnosed on the closure that requires,
// but is currently missing, self qualification. It's possible that
// ACE doesn't require self qualification (e.g. because it's
// non-escaping) but is nested inside a closure that does require self
// qualification. In that case we have to emit the fixit for the parent
// closure.
// - Even if this closure requires self qualification, if there's an
// invalid parent we emit the diagnostic on that parent first.
// To enable implicit self you'd have to fix the parent anyway.
// This lets us avoid bogus diagnostics on this closure when
// it's actually _just_ the parent that's invalid.
auto closureForDiagnostics = ACE;
if (parentDisallowingImplicitSelf) {
// Don't do this for escaping autoclosures, which are never allowed
// to use implicit self, even after fixing any invalid parents.
auto isEscapingAutoclosure =
isa<AutoClosureExpr>(ACE) &&
isClosureRequiringSelfQualification(ACE);
if (!isEscapingAutoclosure) {
closureForDiagnostics = parentDisallowingImplicitSelf;
}
}
// This error can be fixed by either capturing self explicitly (if in an
// explicit closure), or referencing self explicitly.
if (auto *CE = dyn_cast<const ClosureExpr>(closureForDiagnostics)) {
if (diagnoseAlmostMatchingCaptures(Diags, memberLoc, CE)) {
// Bail on the rest of the diagnostics. Offering the option to
// capture 'self' explicitly will result in an error, and using
// 'self.' explicitly will be accessing something other than the
// self param.
return;
}
emitFixItsForExplicitClosure(Diags, memberLoc, CE);
} else {
// If this wasn't an explicit closure, just offer the fix-it to
// reference self explicitly.
Diags.diagnose(memberLoc, diag::note_reference_self_explicitly)
.fixItInsert(memberLoc, "self.");
}
}
/// Diagnose any captures which might have been an attempt to capture
/// \c self strongly, but do not actually enable implicit \c self. Returns
/// whether there were any such captures to diagnose.
bool diagnoseAlmostMatchingCaptures(DiagnosticEngine &Diags,
SourceLoc memberLoc,
const ClosureExpr *closureExpr) {
// If we've already captured something with the name "self" other than
// the actual self param, offer special diagnostics.
if (auto *VD = closureExpr->getCapturedSelfDecl()) {
if (!VD->getInterfaceType()->is<WeakStorageType>()) {
Diags.diagnose(VD->getLoc(), diag::note_other_self_capture);
}
return true;
}
return false;
}
/// Emit fix-its for invalid use of implicit \c self in an explicit closure.
/// The error can be solved by capturing self explicitly,
/// or by using \c self. explicitly.
void emitFixItsForExplicitClosure(DiagnosticEngine &Diags,
SourceLoc memberLoc,
const ClosureExpr *closureExpr) {
Diags.diagnose(memberLoc, diag::note_reference_self_explicitly)
.fixItInsert(memberLoc, "self.");
auto diag = Diags.diagnose(closureExpr->getLoc(),
diag::note_capture_self_explicitly);
// There are four different potential fix-its to offer based on the
// closure signature:
// 1. There is an existing capture list which already has some
// entries. We need to insert 'self' into the capture list along
// with a separating comma.
// 2. There is an existing capture list, but it is empty (just '[]').
// We can just insert 'self'.
// 3. Arguments or types are already specified in the signature,
// but there is no existing capture list. We will need to insert
// the capture list, but 'in' will already be present.
// 4. The signature empty so far. We must insert the full capture
// list as well as 'in'.
const auto brackets = closureExpr->getBracketRange();
if (brackets.isValid()) {
emitInsertSelfIntoCaptureListFixIt(brackets, diag);
}
else {
emitInsertNewCaptureListFixIt(closureExpr, diag);
}
}
/// Emit a fix-it for inserting \c self into in existing capture list, along
/// with a trailing comma if needed. The fix-it will be attached to the
/// provided diagnostic \c diag.
void emitInsertSelfIntoCaptureListFixIt(SourceRange brackets,
InFlightDiagnostic &diag) {
// Look for any non-comment token. If there's anything before the
// closing bracket, we assume that it is a valid capture list entry and
// insert 'self,'. If it wasn't a valid entry, then we will at least not
// be introducing any new errors/warnings...
const auto locAfterBracket = brackets.Start.getAdvancedLoc(1);
const auto nextAfterBracket = Lexer::getTokenAtLocation(
Ctx.SourceMgr, locAfterBracket, CommentRetentionMode::None);
if (nextAfterBracket.getLoc() != brackets.End)
diag.fixItInsertAfter(brackets.Start, "self, ");
else
diag.fixItInsertAfter(brackets.Start, "self");
}
/// Emit a fix-it for inserting a capture list into a closure that does not
/// already have one, along with a trailing \c in if necessary. The fix-it
/// will be attached to the provided diagnostic \c diag.
void emitInsertNewCaptureListFixIt(const ClosureExpr *closureExpr,
InFlightDiagnostic &diag) {
if (closureExpr->getInLoc().isValid()) {
diag.fixItInsertAfter(closureExpr->getLoc(), " [self]");
return;
}
// If there's a (non-comment) token immediately following the
// opening brace of the closure, we may need to pad the fix-it
// with a space.
const auto nextLoc = closureExpr->getLoc().getAdvancedLoc(1);
const auto next =
Lexer::getTokenAtLocation(Ctx.SourceMgr, nextLoc,
CommentRetentionMode::None);
std::string trailing = next.getLoc() == nextLoc ? " " : "";
diag.fixItInsertAfter(closureExpr->getLoc(), " [self] in" + trailing);
}
/// Whether or not this invalid usage of implicit self should be a warning
/// in Swift 5 mode, to preserve source compatibility.
bool invalidImplicitSelfShouldOnlyWarn510(Expr *selfRef,
AbstractClosureExpr *ACE) {
auto DRE = dyn_cast_or_null<DeclRefExpr>(selfRef);
if (!DRE)
return false;
auto selfDecl = dyn_cast_or_null<VarDecl>(DRE->getDecl());
if (!selfDecl)
return false;
// If this implicit self decl is from a closure that captured self
// weakly, then we should always emit an error, since implicit self was
// only allowed starting in Swift 5.8 and later.
if (closureHasWeakSelfCapture(ACE)) {
// Implicit self was incorrectly permitted for weak self captures
// in non-escaping closures in Swift 5.7, so in that case we can
// only warn until Swift 6.
return !isClosureRequiringSelfQualification(ACE,
/*ignoreWeakSelf*/ true);
}
return !selfDecl->isSelfParameter();
}
};
auto &ctx = DC->getASTContext();
AbstractClosureExpr *ACE = nullptr;
if (DC->isLocalContext()) {
while (DC->getParent()->isLocalContext() && !ACE) {
// FIXME: This is happening too early, because closure->getType() isn't set.
if (auto *closure = dyn_cast<AbstractClosureExpr>(DC))
if (closure->getType())
if (DiagnoseWalker::isClosureRequiringSelfQualification(closure))
ACE = const_cast<AbstractClosureExpr *>(closure);
DC = DC->getParent();
}
}
const_cast<Expr *>(E)->walk(DiagnoseWalker(ctx, ACE));
}
bool TypeChecker::getDefaultGenericArgumentsString(
SmallVectorImpl<char> &buf,
const swift::GenericTypeDecl *typeDecl,
llvm::function_ref<Type(const GenericTypeParamDecl *)> getPreferredType) {
llvm::raw_svector_ostream genericParamText{buf};
genericParamText << "<";
auto printGenericParamSummary =
[&](GenericTypeParamType *genericParamTy) {
const GenericTypeParamDecl *genericParam = genericParamTy->getDecl();
if (Type result = getPreferredType(genericParam)) {
result.print(genericParamText);
return;
}
auto genericSig = typeDecl->getGenericSignature();
auto concreteTy = genericSig->getConcreteType(genericParamTy);
if (concreteTy) {
genericParamText << concreteTy;
return;
}
auto upperBound = genericSig->getUpperBound(
genericParamTy,
/*forExistentialSelf=*/false,
/*withParameterizedProtocols=*/false);
if (upperBound->isObjCExistentialType() || upperBound->isAny()) {
genericParamText << upperBound;
return;
}
genericParamText << "<#" << genericParam->getName() << ": ";
genericParamText << upperBound << "#>";
};
llvm::interleave(typeDecl->getInnermostGenericParamTypes(),
printGenericParamSummary,
[&] { genericParamText << ", "; });
genericParamText << ">";
return true;
}
/// Diagnose an argument labeling issue, returning true if we successfully
/// diagnosed the issue.
bool swift::diagnoseArgumentLabelError(ASTContext &ctx,
const ArgumentList *argList,
ArrayRef<Identifier> newNames,
ParameterContext paramContext,
InFlightDiagnostic *existingDiag) {
std::optional<InFlightDiagnostic> diagOpt;
auto getDiag = [&]() -> InFlightDiagnostic & {
if (existingDiag)
return *existingDiag;
return *diagOpt;
};
auto &diags = ctx.Diags;
argList = argList->getOriginalArgs();
// Figure out how many extraneous, missing, and wrong labels are in
// the call.
unsigned numExtra = 0, numMissing = 0, numWrong = 0;
unsigned n = std::max(argList->size(), (unsigned)newNames.size());
llvm::SmallString<16> missingBuffer;
llvm::SmallString<16> extraBuffer;
for (unsigned i = 0; i != n; ++i) {
// oldName and newName are
// - None if i is out of bounds for the argument list
// - nullptr for an argument without a label
// - have a value if the argument has a label
std::optional<Identifier> oldName;
if (i < argList->size())
oldName = argList->getLabel(i);
std::optional<Identifier> newName;
if (i < newNames.size())
newName = newNames[i];
assert(oldName || newName && "We can't have oldName and newName out of "
"bounds, otherwise n would be smaller");
if (oldName == newName || argList->isUnlabeledTrailingClosureIndex(i))
continue;
if (!oldName.has_value() && newName.has_value()) {
++numMissing;
missingBuffer += newName->str();
missingBuffer += ':';
} else if (oldName.has_value() && !newName.has_value()) {
++numExtra;
extraBuffer += oldName->str();
extraBuffer += ':';
} else if (oldName->empty()) {
// In the cases from here onwards oldValue and newValue are not null
++numMissing;
missingBuffer += newName->str();
missingBuffer += ":";
} else if (newName->empty()) {
++numExtra;
extraBuffer += oldName->str();
extraBuffer += ':';
} else {
++numWrong;
}
}
// Emit the diagnostic.
assert(numMissing > 0 || numExtra > 0 || numWrong > 0);
llvm::SmallString<16> haveBuffer; // note: diagOpt has references to this
llvm::SmallString<16> expectedBuffer; // note: diagOpt has references to this
// If we had any wrong labels, or we have both missing and extra labels,
// emit the catch-all "wrong labels" diagnostic.
if (!existingDiag) {
bool plural = (numMissing + numExtra + numWrong) > 1;
if (numWrong > 0 || (numMissing > 0 && numExtra > 0)) {
for (unsigned i = 0, n = argList->size(); i != n; ++i) {
auto haveName = argList->getLabel(i);
if (haveName.empty())
haveBuffer += '_';
else
haveBuffer += haveName.str();
haveBuffer += ':';
}
for (auto expected : newNames) {
if (expected.empty())
expectedBuffer += '_';
else
expectedBuffer += expected.str();
expectedBuffer += ':';
}
StringRef haveStr = haveBuffer;
StringRef expectedStr = expectedBuffer;
diagOpt.emplace(diags.diagnose(argList->getLoc(),
diag::wrong_argument_labels,
plural, haveStr, expectedStr,
static_cast<unsigned>(paramContext)));
} else if (numMissing > 0) {
StringRef missingStr = missingBuffer;
diagOpt.emplace(diags.diagnose(argList->getLoc(),
diag::missing_argument_labels,
plural, missingStr,
static_cast<unsigned>(paramContext)));
} else {
assert(numExtra > 0);
StringRef extraStr = extraBuffer;
diagOpt.emplace(diags.diagnose(argList->getLoc(),
diag::extra_argument_labels,
plural, extraStr,
static_cast<unsigned>(paramContext)));
}
}
// Emit Fix-Its to correct the names.
auto &diag = getDiag();
for (unsigned i = 0, n = argList->size(); i != n; ++i) {
Identifier oldName = argList->getLabel(i);
Identifier newName;
if (i < newNames.size())
newName = newNames[i];
if (oldName == newName || argList->isUnlabeledTrailingClosureIndex(i))
continue;
if (newName.empty()) {
// If this is a labeled trailing closure, we need to replace with '_'.
if (argList->isLabeledTrailingClosureIndex(i)) {
diag.fixItReplace(argList->getLabelLoc(i), "_");
continue;
}
// Otherwise, delete the old name.
diag.fixItRemoveChars(argList->getLabelLoc(i),
argList->getExpr(i)->getStartLoc());
continue;
}
bool newNameIsReserved = !canBeArgumentLabel(newName.str());
llvm::SmallString<16> newStr;
if (newNameIsReserved)
newStr += "`";
newStr += newName.str();
if (newNameIsReserved)
newStr += "`";
// If the argument was previously unlabeled, insert the new label. Note that
// we don't do this for labeled trailing closures as they write unlabeled
// args as '_:', and therefore need replacement.
if (oldName.empty() && !argList->isLabeledTrailingClosureIndex(i)) {
// Insert the name.
newStr += ": ";
diag.fixItInsert(argList->getExpr(i)->getStartLoc(), newStr);
continue;
}
// Change the name.
diag.fixItReplace(argList->getLabelLoc(i), newStr);
}
// If the diagnostic is local, flush it before returning.
// This makes sure it's emitted before the message text buffers are destroyed.
diagOpt.reset();
return true;
}
static const Expr *lookThroughExprsToImmediateDeallocation(const Expr *E) {
// Look through various expressions that don't affect the fact that the user
// will be assigning a class instance that will be immediately deallocated.
while (true) {
E = E->getValueProvidingExpr();
// We don't currently deal with tuple destructuring.
if (isa<DestructureTupleExpr>(E))
return E;
// If we have a TupleElementExpr with a child TupleExpr, dig into that
// element.
if (auto *TEE = dyn_cast<TupleElementExpr>(E)) {
auto *subExpr = lookThroughExprsToImmediateDeallocation(TEE->getBase());
if (auto *TE = dyn_cast<TupleExpr>(subExpr)) {
auto *element = TE->getElements()[TEE->getFieldNumber()];
return lookThroughExprsToImmediateDeallocation(element);
}
return subExpr;
}
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(E)) {
E = ICE->getSubExpr();
continue;
}
if (auto *CE = dyn_cast<CoerceExpr>(E)) {
E = CE->getSubExpr();
continue;
}
if (auto *OEE = dyn_cast<OpenExistentialExpr>(E)) {
E = OEE->getSubExpr();
continue;
}
// Look through optional evaluations, we still want to diagnose on
// things like initializers called through optional chaining and the
// unwrapping of failable initializers.
if (auto *OEE = dyn_cast<OptionalEvaluationExpr>(E)) {
E = OEE->getSubExpr();
continue;
}
if (auto *OBE = dyn_cast<BindOptionalExpr>(E)) {
E = OBE->getSubExpr();
continue;
}
if (auto *FOE = dyn_cast<ForceValueExpr>(E)) {
E = FOE->getSubExpr();
continue;
}
if (auto *ATE = dyn_cast<AnyTryExpr>(E)) {
E = ATE->getSubExpr();
continue;
}
if (auto *DSBIE = dyn_cast<DotSyntaxBaseIgnoredExpr>(E)) {
E = DSBIE->getRHS();
continue;
}
return E;
}
}
static void diagnoseUnownedImmediateDeallocationImpl(ASTContext &ctx,
const VarDecl *varDecl,
const Expr *initExpr,
SourceLoc diagLoc,
SourceRange diagRange) {
auto *ownershipAttr =
varDecl->getAttrs().getAttribute<ReferenceOwnershipAttr>();
if (!ownershipAttr || ownershipAttr->isInvalid())
return;
// Only diagnose for non-owning ownerships such as 'weak' and 'unowned'.
// Zero is the default/strong ownership strength.
if (ReferenceOwnership::Strong == ownershipAttr->get() ||
isLessStrongThan(ReferenceOwnership::Strong, ownershipAttr->get()))
return;
// Try to find a call to a constructor.
initExpr = lookThroughExprsToImmediateDeallocation(initExpr);
auto *CE = dyn_cast<CallExpr>(initExpr);
if (!CE)
return;
auto *CRCE = dyn_cast<ConstructorRefCallExpr>(CE->getFn());
if (!CRCE)
return;
auto *DRE = dyn_cast<DeclRefExpr>(CRCE->getFn());
if (!DRE)
return;
auto *constructorDecl = dyn_cast<ConstructorDecl>(DRE->getDecl());
if (!constructorDecl)
return;
// Make sure the constructor constructs an instance that allows ownership.
// This is to ensure we don't diagnose on constructors such as
// Optional.init(nilLiteral:).
auto selfType = constructorDecl->getDeclContext()->getSelfTypeInContext();
if (!selfType->allowsOwnership())
return;
// This must stay in sync with
// diag::unowned_assignment_immediate_deallocation.
enum {
SK_Variable = 0,
SK_Property
} storageKind = SK_Variable;
if (varDecl->getDeclContext()->isTypeContext())
storageKind = SK_Property;
// TODO: The DiagnoseLifetimeIssuesPass prints a similar warning in this
// situation. We should only print one warning.
ctx.Diags.diagnose(diagLoc, diag::unowned_assignment_immediate_deallocation,
varDecl->getName(), ownershipAttr->get(),
unsigned(storageKind))
.highlight(diagRange);
ctx.Diags.diagnose(diagLoc, diag::unowned_assignment_requires_strong)
.highlight(diagRange);
ctx.Diags.diagnose(varDecl, diag::decl_declared_here, varDecl);
}
void swift::diagnoseUnownedImmediateDeallocation(ASTContext &ctx,
const AssignExpr *assignExpr) {
auto *destExpr = assignExpr->getDest()->getValueProvidingExpr();
auto *initExpr = assignExpr->getSrc();
// Try to find a referenced VarDecl.
const VarDecl *VD = nullptr;
if (auto *DRE = dyn_cast<DeclRefExpr>(destExpr)) {
VD = dyn_cast<VarDecl>(DRE->getDecl());
} else if (auto *MRE = dyn_cast<MemberRefExpr>(destExpr)) {
VD = dyn_cast<VarDecl>(MRE->getMember().getDecl());
}
if (VD)
diagnoseUnownedImmediateDeallocationImpl(ctx, VD, initExpr,
assignExpr->getLoc(),
initExpr->getSourceRange());
}
void swift::diagnoseUnownedImmediateDeallocation(ASTContext &ctx,
const Pattern *pattern,
SourceLoc equalLoc,
const Expr *initExpr) {
pattern = pattern->getSemanticsProvidingPattern();
if (auto *TP = dyn_cast<TuplePattern>(pattern)) {
initExpr = lookThroughExprsToImmediateDeallocation(initExpr);
// If we've found a matching tuple initializer with the same number of
// elements as our pattern, diagnose each element individually.
auto TE = dyn_cast<TupleExpr>(initExpr);
if (TE && TE->getNumElements() == TP->getNumElements()) {
for (unsigned i = 0, e = TP->getNumElements(); i != e; ++i) {
const TuplePatternElt &elt = TP->getElement(i);
const Pattern *subPattern = elt.getPattern();
Expr *subInitExpr = TE->getElement(i);
diagnoseUnownedImmediateDeallocation(ctx, subPattern, equalLoc,
subInitExpr);
}
}
} else if (auto *NP = dyn_cast<NamedPattern>(pattern)) {
diagnoseUnownedImmediateDeallocationImpl(ctx, NP->getDecl(), initExpr,
equalLoc,
initExpr->getSourceRange());
}
}
namespace {
enum NoteKind_t {
FixItReplace,
FixItInsert,
};
static bool fixItOverrideDeclarationTypesImpl(
ValueDecl *decl, const ValueDecl *base,
SmallVectorImpl<std::tuple<NoteKind_t, SourceRange, std::string>> &notes) {
// For now, just rewrite cases where the base uses a value type and the
// override uses a reference type, and the value type is bridged to the
// reference type. This is a way to migrate code that makes use of types
// that previously were not bridged to value types.
auto checkValueReferenceType =
[&](Type overrideTy, ParamDecl::Specifier overrideSpec,
Type baseTy, ParamDecl::Specifier baseSpec,
SourceRange typeRange) -> bool {
if (typeRange.isInvalid())
return false;
auto normalizeType = [](Type &ty, ParamDecl::Specifier spec) -> Type {
Type normalizedTy = ty;
if (Type unwrappedTy = normalizedTy->getOptionalObjectType())
normalizedTy = unwrappedTy;
if (spec == ParamDecl::Specifier::InOut)
ty = InOutType::get(ty);
return normalizedTy;
};
// Is the base type bridged?
Type normalizedBaseTy = normalizeType(baseTy, baseSpec);
const DeclContext *DC = decl->getDeclContext();
ASTContext &ctx = decl->getASTContext();
// ...and just knowing that it's bridged isn't good enough if we don't
// know what it's bridged /to/. Also, don't do this check for trivial
// bridging---that doesn't count.
Type bridged;
if (normalizedBaseTy->isAny()) {
bridged = ctx.getAnyObjectType();
} else {
bridged = ctx.getBridgedToObjC(DC, normalizedBaseTy);
}
if (!bridged || bridged->isEqual(normalizedBaseTy))
return false;
// ...and is it bridged to the overridden type?
Type normalizedOverrideTy = normalizeType(overrideTy, overrideSpec);
if (!bridged->isEqual(normalizedOverrideTy)) {
// If both are nominal types, check again, ignoring generic arguments.
auto *overrideNominal = normalizedOverrideTy->getAnyNominal();
if (!overrideNominal || bridged->getAnyNominal() != overrideNominal) {
return false;
}
}
Type newOverrideTy = baseTy;
// Preserve optionality if we're dealing with a simple type.
if (Type unwrappedTy = newOverrideTy->getOptionalObjectType())
newOverrideTy = unwrappedTy;
if (overrideTy->getOptionalObjectType())
newOverrideTy = OptionalType::get(newOverrideTy);
SmallString<32> baseTypeBuf;
llvm::raw_svector_ostream baseTypeStr(baseTypeBuf);
PrintOptions options;
options.SynthesizeSugarOnTypes = true;
newOverrideTy->print(baseTypeStr, options);
notes.emplace_back(FixItReplace, typeRange, baseTypeStr.str().str());
return true;
};
// Check if overriding fails because we lack @escaping attribute on the function
// type repr.
auto checkTypeMissingEscaping = [&](Type overrideTy, Type baseTy,
SourceRange typeRange) -> bool {
// Fix-it needs position to apply.
if (typeRange.isInvalid())
return false;
auto overrideFnTy = overrideTy->getAs<AnyFunctionType>();
auto baseFnTy = baseTy->getAs<AnyFunctionType>();
// Both types should be function.
if (overrideFnTy && baseFnTy &&
// The overriding function type should be no escaping.
overrideFnTy->getExtInfo().isNoEscape() &&
// The overridden function type should be escaping.
!baseFnTy->getExtInfo().isNoEscape()) {
notes.emplace_back(FixItInsert, typeRange, "@escaping ");
return true;
}
return false;
};
auto checkType = [&](Type overrideTy, ParamDecl::Specifier overrideSpec,
Type baseTy, ParamDecl::Specifier baseSpec,
SourceRange typeRange) -> bool {
return checkValueReferenceType(overrideTy, overrideSpec,
baseTy, baseSpec, typeRange) ||
checkTypeMissingEscaping(overrideTy, baseTy, typeRange);
};
if (auto *param = dyn_cast<ParamDecl>(decl)) {
SourceRange typeRange = param->getTypeSourceRangeForDiagnostics();
auto *baseParam = cast<ParamDecl>(base);
return checkType(param->getInterfaceType(), param->getSpecifier(),
baseParam->getInterfaceType(), baseParam->getSpecifier(),
typeRange);
}
if (auto *var = dyn_cast<VarDecl>(decl)) {
SourceRange typeRange = var->getTypeSourceRangeForDiagnostics();
auto *baseVar = cast<VarDecl>(base);
return checkType(var->getInterfaceType(), ParamDecl::Specifier::Default,
baseVar->getInterfaceType(), ParamDecl::Specifier::Default,
typeRange);
}
if (auto *fn = dyn_cast<AbstractFunctionDecl>(decl)) {
auto *baseFn = cast<AbstractFunctionDecl>(base);
bool fixedAny = false;
if (fn->getParameters()->size() ==
baseFn->getParameters()->size()) {
for_each(*fn->getParameters(),
*baseFn->getParameters(),
[&](ParamDecl *param, const ParamDecl *baseParam) {
fixedAny |= fixItOverrideDeclarationTypesImpl(param, baseParam, notes);
});
}
if (auto *method = dyn_cast<FuncDecl>(decl)) {
auto resultType = method->mapTypeIntoContext(
method->getResultInterfaceType());
auto *baseMethod = cast<FuncDecl>(base);
auto baseResultType = baseMethod->mapTypeIntoContext(
baseMethod->getResultInterfaceType());
fixedAny |= checkType(resultType, ParamDecl::Specifier::Default,
baseResultType, ParamDecl::Specifier::Default,
method->getResultTypeSourceRange());
}
return fixedAny;
}
if (auto *subscript = dyn_cast<SubscriptDecl>(decl)) {
auto *baseSubscript = cast<SubscriptDecl>(base);
bool fixedAny = false;
if (subscript->getIndices()->size() ==
baseSubscript->getIndices()->size()) {
for_each(*subscript->getIndices(),
*baseSubscript->getIndices(),
[&](ParamDecl *param, const ParamDecl *baseParam) {
fixedAny |= fixItOverrideDeclarationTypesImpl(param, baseParam, notes);
});
}
auto resultType =
subscript->mapTypeIntoContext(subscript->getElementInterfaceType());
auto baseResultType = baseSubscript->mapTypeIntoContext(
baseSubscript->getElementInterfaceType());
fixedAny |= checkType(resultType, ParamDecl::Specifier::Default,
baseResultType, ParamDecl::Specifier::Default,
subscript->getElementTypeSourceRange());
return fixedAny;
}
llvm_unreachable("unknown overridable member");
}
}
bool swift::computeFixitsForOverriddenDeclaration(
ValueDecl *decl, const ValueDecl *base,
llvm::function_ref<std::optional<InFlightDiagnostic>(bool)> diag) {
SmallVector<std::tuple<NoteKind_t, SourceRange, std::string>, 4> Notes;
bool hasNotes = ::fixItOverrideDeclarationTypesImpl(decl, base, Notes);
std::optional<InFlightDiagnostic> diagnostic = diag(hasNotes);
if (!diagnostic) return hasNotes;
for (const auto &note : Notes) {
if (std::get<0>(note) == FixItReplace) {
diagnostic->fixItReplace(std::get<1>(note), std::get<2>(note));
} else {
diagnostic->fixItInsert(std::get<1>(note).Start, std::get<2>(note));
}
}
return hasNotes;
}
//===----------------------------------------------------------------------===//
// Per func/init diagnostics
//===----------------------------------------------------------------------===//
namespace {
class VarDeclUsageChecker : public ASTWalker {
DeclContext *DC;
DiagnosticEngine &Diags;
// Keep track of some information about a variable.
enum {
RK_Defined = 1, ///< Whether it was ever defined in this scope.
RK_Read = 2, ///< Whether it was ever read.
RK_Written = 4, ///< Whether it was ever written or passed inout.
RK_CaptureList = 8 ///< Var is an entry in a capture list.
};
/// These are all of the variables that we are tracking. VarDecls get added
/// to this when the declaration is seen. We use a MapVector to keep the
/// diagnostics emission in deterministic order.
llvm::SmallMapVector<VarDecl*, unsigned, 32> VarDecls;
/// This is a mapping from an OpaqueValue to the expression that initialized
/// it.
llvm::SmallDenseMap<OpaqueValueExpr *, Expr *> OpaqueValueMap;
/// The first reference to the given property.
llvm::SmallDenseMap<VarDecl *, Expr *> AssociatedGetterRefExpr;
/// This is a mapping from VarDecls to the if/while/guard statement that they
/// occur in, when they are in a pattern in a StmtCondition.
llvm::SmallDenseMap<VarDecl*, LabeledConditionalStmt*> StmtConditionForVD;
#ifndef NDEBUG
llvm::SmallPtrSet<Expr*, 32> AllExprsSeen;
#endif
bool sawError = false;
VarDeclUsageChecker(const VarDeclUsageChecker &) = delete;
void operator=(const VarDeclUsageChecker &) = delete;
public:
VarDeclUsageChecker(DeclContext *DC,
DiagnosticEngine &Diags) : DC(DC), Diags(Diags) {}
// After we have scanned the entire region, diagnose variables that could be
// declared with a narrower usage kind.
~VarDeclUsageChecker() override;
/// Check to see if the specified VarDecl is part of a larger
/// PatternBindingDecl, where some other bound variable was mutated. In this
/// case we don't want to generate a "variable never mutated" warning, because
/// it would require splitting up the destructuring of the tuple, which is
/// more code turmoil than the warning is worth.
bool isVarDeclPartOfPBDThatHadSomeMutation(VarDecl *VD) {
auto *PBD = VD->getParentPatternBinding();
if (!PBD) return false;
bool sawMutation = false;
for (auto idx : range(PBD->getNumPatternEntries())) {
PBD->getPattern(idx)->forEachVariable([&](VarDecl *VD) {
auto it = VarDecls.find(VD);
sawMutation |= it != VarDecls.end() && (it->second & RK_Written);
});
}
return sawMutation;
}
bool shouldTrackVarDecl(VarDecl *VD) {
// If the variable is implicit, ignore it.
if (VD->isImplicit() || VD->getLoc().isInvalid())
return false;
// If the variable is computed, ignore it.
if (!VD->hasStorage())
return false;
// If the variable was invalid, ignore it and notice that the code is
// malformed.
if (VD->isInvalid()) {
sawError = true;
return false;
}
// If the variable is already unnamed, ignore it.
if (!VD->hasName() || VD->getName().str() == "_")
return false;
return true;
}
void addMark(Decl *D, unsigned Flag) {
auto *vd = dyn_cast<VarDecl>(D);
if (!vd) return;
VarDecls[vd] |= Flag;
}
void markBaseOfStorageUse(Expr *E, ConcreteDeclRef decl, unsigned flags);
void markBaseOfStorageUse(Expr *E, bool isMutating);
void markStoredOrInOutExpr(Expr *E, unsigned Flags);
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
// We generally walk into declarations, other than types and nested functions.
// FIXME: peek into capture lists of nested functions.
PreWalkAction walkToDeclPre(Decl *D) override {
if (isa<TypeDecl>(D))
return Action::SkipNode();
// The body of #if clauses are not walked into, we need custom processing
// for them.
if (auto *ICD = dyn_cast<IfConfigDecl>(D))
handleIfConfig(ICD);
// If this is a VarDecl, then add it to our list of things to track.
if (auto *vd = dyn_cast<VarDecl>(D)) {
if (shouldTrackVarDecl(vd)) {
unsigned flags = RK_Defined;
if (vd->isCaptureList())
flags |= RK_CaptureList;
if (auto childVd = vd->getCorrespondingCaseBodyVariable()) {
// Child vars are never in capture lists.
assert(flags == RK_Defined);
addMark(childVd.get(), flags);
}
addMark(vd, flags);
}
}
// Don't walk into implicit accessors, since eg. an observer's setter
// references the variable, but we don't want to consider it as a real
// "use".
if (isa<AccessorDecl>(D) && D->isImplicit())
return Action::SkipNode();
if (auto *afd = dyn_cast<AbstractFunctionDecl>(D)) {
// If this AFD is a setter, track the parameter and the getter for
// the containing property so if newValue isn't used but the getter is used
// an error can be reported.
if (auto FD = dyn_cast<AccessorDecl>(afd)) {
if (FD->getAccessorKind() == AccessorKind::Set) {
if (isa<VarDecl>(FD->getStorage())) {
auto arguments = FD->getParameters();
VarDecls[arguments->get(0)] = RK_Defined;
}
}
}
if (afd->isBodyTypeChecked())
return Action::Continue();
// Don't walk into a body that has not yet been type checked. This should
// only occur for top-level code.
VarDecls.clear();
return Action::SkipNode();
}
if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D)) {
// If this is a TopLevelCodeDecl, scan for global variables
auto *body = TLCD->getBody();
for (auto node : body->getElements()) {
if (node.is<Decl *>()) {
// Flag all variables in a PatternBindingDecl
Decl *D = node.get<Decl *>();
auto *PBD = dyn_cast<PatternBindingDecl>(D);
if (!PBD) continue;
for (auto idx : range(PBD->getNumPatternEntries())) {
PBD->getPattern(idx)->forEachVariable([&](VarDecl *VD) {
VarDecls[VD] = RK_Read|RK_Written|RK_Defined;
});
}
} else if (node.is<Stmt *>()) {
// Flag all variables in guard statements
Stmt *S = node.get<Stmt *>();
auto *GS = dyn_cast<GuardStmt>(S);
if (!GS) continue;
for (StmtConditionElement SCE : GS->getCond()) {
if (auto pattern = SCE.getPatternOrNull()) {
pattern->forEachVariable([&](VarDecl *VD) {
VarDecls[VD] = RK_Read|RK_Written|RK_Defined;
});
}
}
}
}
}
// Note that we ignore the initialization behavior of PatternBindingDecls,
// but we do want to walk into them, because we want to see any uses or
// other things going on in the initializer expressions.
return Action::Continue();
}
/// The heavy lifting happens when visiting expressions.
PreWalkResult<Expr *> walkToExprPre(Expr *E) override;
/// handle #if directives.
void handleIfConfig(IfConfigDecl *ICD);
/// Custom handling for statements.
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
// Keep track of an association between vardecls and the StmtCondition that
// they are bound in for IfStmt, GuardStmt, WhileStmt, etc.
if (auto LCS = dyn_cast<LabeledConditionalStmt>(S)) {
for (auto &cond : LCS->getCond()) {
if (auto pat = cond.getPatternOrNull()) {
pat->forEachVariable([&](VarDecl *VD) {
StmtConditionForVD[VD] = LCS;
});
}
}
}
// A fallthrough dest case's bound variable means the source case's
// var of the same name is read.
if (auto *fallthroughStmt = dyn_cast<FallthroughStmt>(S)) {
if (auto *sourceCase = fallthroughStmt->getFallthroughSource()) {
SmallVector<VarDecl *, 4> sourceVars;
auto sourcePattern = sourceCase->getCaseLabelItems()[0].getPattern();
sourcePattern->collectVariables(sourceVars);
auto destCase = fallthroughStmt->getFallthroughDest();
auto destPattern = destCase->getCaseLabelItems()[0].getPattern();
destPattern->forEachVariable([&](VarDecl *V) {
if (!V->hasName())
return;
for (auto *var : sourceVars) {
if (var->hasName() && var->getName() == V->getName()) {
VarDecls[var] |= RK_Read;
break;
}
}
});
}
}
// Make sure that we setup our case body variables.
if (auto *caseStmt = dyn_cast<CaseStmt>(S)) {
for (auto *vd : caseStmt->getCaseBodyVariablesOrEmptyArray()) {
VarDecls[vd] |= RK_Defined;
}
}
return Action::Continue(S);
}
};
/// An AST walker that determines the underlying type of an opaque return decl
/// from its associated function body.
class OpaqueUnderlyingTypeChecker : public ASTWalker {
using Candidate = std::tuple<Expr *, SubstitutionMap, /*isUnique=*/bool>;
using AvailabilityContext = IfStmt *;
ASTContext &Ctx;
AbstractFunctionDecl *Implementation;
OpaqueTypeDecl *OpaqueDecl;
BraceStmt *Body;
/// A set of all candidates with unique signatures.
SmallPtrSet<const void *, 4> UniqueSignatures;
/// Represents a current availability context. `nullptr` means that
/// there are no restrictions.
AvailabilityContext CurrentAvailability = nullptr;
/// All of the candidates together with their availability.
///
/// If a candidate is found in non-`if #available` context or
/// `if #available` has other dynamic conditions, it covers 'all'
/// versions and the context is set to `nullptr`.
SmallVector<std::pair<AvailabilityContext, Candidate>, 4> Candidates;
bool HasInvalidReturn = false;
public:
OpaqueUnderlyingTypeChecker(AbstractFunctionDecl *Implementation,
OpaqueTypeDecl *OpaqueDecl, BraceStmt *Body)
: Ctx(Implementation->getASTContext()), Implementation(Implementation),
OpaqueDecl(OpaqueDecl), Body(Body) {}
void check() {
Body->walk(*this);
// If given function has any invalid `return`s in the body
// let's not try to validate the types, since it wouldn't
// be accurate.
if (HasInvalidReturn)
return;
// If there are no candidates, then the body has no return statements, and
// we have nothing to infer the underlying type from.
if (Candidates.empty()) {
Implementation->diagnose(diag::opaque_type_no_underlying_type_candidates);
// We try to find if the last element of the `Body` multi element
// `BraceStmt` is an expression that produces a value that satisfies all
// the opaque type requirements and if that is the case, it means we can
// suggest a fix-it note to add an explicit `return`.
if (Body->getNumElements() > 1) {
auto element = Body->getLastElement();
// Let's see if the last statement would make for a valid return value.
if (auto expr = element.dyn_cast<Expr *>()) {
auto exprType = expr->getType();
// Function body might not be valid and we cannot reply on
// \c typeCheckStmt here to propagate HadError because its
// unreliable.
if (!exprType || exprType->hasError())
return;
bool conforms = llvm::all_of(
OpaqueDecl->getOpaqueInterfaceGenericSignature()
.getRequirements(),
[&exprType](auto requirement) {
if (requirement.getKind() == RequirementKind::Conformance) {
auto conformance = ModuleDecl::checkConformance(
exprType->getRValueType(),
requirement.getProtocolDecl(),
/*allowMissing=*/false);
return !conformance.isInvalid();
}
// If we encounter any requirements other than `Conformance`, we
// do not attempt to type check the expression.
return false;
});
// If all requirements are fulfilled, we offer to insert `return` to
// fix the issue.
if (conforms) {
Ctx.Diags
.diagnose(expr->getStartLoc(),
diag::opaque_type_missing_return_last_expr_note)
.fixItInsert(expr->getStartLoc(), "return ");
}
}
}
return;
}
if (Candidates.size() == 1) {
finalizeUnique(Candidates.front().second);
return;
}
// Check whether all of the underlying type candidates match up.
// TODO [OPAQUE SUPPORT]: diagnose multiple opaque types
// There is a single unique signature, which means that all returns
// matched.
if (llvm::count_if(Candidates, [](const auto &entry) {
const auto &candidate = entry.second;
return std::get<2>(candidate); // isUnique field.
}) == 1) {
finalizeUnique(Candidates.front().second);
return;
}
SmallVector<Candidate, 4> universallyUniqueCandidates;
for (const auto &entry : Candidates) {
AvailabilityContext availability = entry.first;
const auto &candidate = entry.second;
// Unique candidate without availability context.
if (!availability && std::get<2>(candidate))
universallyUniqueCandidates.push_back(candidate);
}
// TODO(diagnostics): Need a tailored diagnostic for this case.
if (universallyUniqueCandidates.empty()) {
Implementation->diagnose(diag::opaque_type_no_underlying_type_candidates);
return;
}
// If there is a single universally available unique candidate
// the underlying type would have to be determined at runtime
// based on the results of availability checks.
if (universallyUniqueCandidates.size() == 1) {
finalizeOpaque(universallyUniqueCandidates.front());
return;
}
// A list of all mismatches discovered across all candidates.
// If there are any mismatches in availability contexts, they
// are not diagnosed but propagated to the declaration.
std::optional<std::pair<unsigned, GenericTypeParamType *>> mismatch;
auto opaqueParams = OpaqueDecl->getOpaqueGenericParams();
SubstitutionMap underlyingSubs = std::get<1>(Candidates.front().second);
for (auto index : indices(opaqueParams)) {
auto *genericParam = opaqueParams[index];
Type underlyingType = Type(genericParam).subst(underlyingSubs);
bool found = false;
for (const auto &candidate : universallyUniqueCandidates) {
Type otherType = Type(genericParam).subst(std::get<1>(candidate));
if (!underlyingType->isEqual(otherType)) {
mismatch.emplace(index, genericParam);
found = true;
break;
}
}
if (found)
break;
}
assert(mismatch.has_value());
if (auto genericParam =
OpaqueDecl->getExplicitGenericParam(mismatch->first)) {
Implementation
->diagnose(
diag::opaque_type_mismatched_underlying_type_candidates_named,
genericParam->getName())
.highlight(genericParam->getLoc());
} else {
TypeRepr *opaqueRepr =
OpaqueDecl->getOpaqueReturnTypeReprs()[mismatch->first];
Implementation
->diagnose(diag::opaque_type_mismatched_underlying_type_candidates,
opaqueRepr)
.highlight(opaqueRepr->getSourceRange());
}
for (const auto &candidate : universallyUniqueCandidates) {
Ctx.Diags.diagnose(std::get<0>(candidate)->getLoc(),
diag::opaque_type_underlying_type_candidate_here,
Type(mismatch->second).subst(std::get<1>(candidate)));
}
}
bool isSelfReferencing(const Candidate &candidate) {
auto substitutions = std::get<1>(candidate);
// The underlying type can't be defined recursively
// in terms of the opaque type itself.
auto opaqueTypeInContext = Implementation->mapTypeIntoContext(
OpaqueDecl->getDeclaredInterfaceType());
for (auto genericParam : OpaqueDecl->getOpaqueGenericParams()) {
auto underlyingType = Type(genericParam).subst(substitutions);
auto isSelfReferencing = underlyingType.findIf(
[&](Type t) -> bool { return t->isEqual(opaqueTypeInContext); });
if (isSelfReferencing) {
Ctx.Diags.diagnose(std::get<0>(candidate)->getLoc(),
diag::opaque_type_self_referential_underlying_type,
underlyingType);
return true;
}
}
return false;
}
// A single unique underlying substitution.
void finalizeUnique(const Candidate &candidate) {
// If we have one successful candidate, then save it as the underlying
// substitutions of the opaque decl.
OpaqueDecl->setUniqueUnderlyingTypeSubstitutions(
std::get<1>(candidate).mapReplacementTypesOutOfContext());
}
// There is no clear winner here since there are candidates within
// limited availability contexts.
void finalizeOpaque(const Candidate &universallyAvailable) {
using AvailabilityCondition = OpaqueTypeDecl::AvailabilityCondition;
SmallVector<OpaqueTypeDecl::ConditionallyAvailableSubstitutions *, 4>
conditionalSubstitutions;
for (const auto &entry : Candidates) {
auto availabilityContext = entry.first;
const auto &candidate = entry.second;
if (!availabilityContext)
continue;
SmallVector<AvailabilityCondition, 4> conditions;
for (const auto &elt : availabilityContext->getCond()) {
auto condition = elt.getAvailability();
auto availabilityRange = condition->getAvailableRange();
// If there is no lower endpoint it means that the
// current platform is unrelated to this condition
// and we can ignore it.
if (!availabilityRange.hasLowerEndpoint())
continue;
conditions.push_back(
{availabilityRange, condition->isUnavailability()});
}
if (conditions.empty())
continue;
conditionalSubstitutions.push_back(
OpaqueTypeDecl::ConditionallyAvailableSubstitutions::get(
Ctx, conditions,
std::get<1>(candidate).mapReplacementTypesOutOfContext()));
}
// Add universally available choice as the last one.
conditionalSubstitutions.push_back(
OpaqueTypeDecl::ConditionallyAvailableSubstitutions::get(
Ctx, {{VersionRange::empty(), /*unavailable=*/false}},
std::get<1>(universallyAvailable)
.mapReplacementTypesOutOfContext()));
OpaqueDecl->setConditionallyAvailableSubstitutions(
conditionalSubstitutions);
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (auto underlyingToOpaque = dyn_cast<UnderlyingToOpaqueExpr>(E)) {
auto subMap = underlyingToOpaque->substitutions;
auto key = subMap.getCanonical().getOpaqueValue();
auto isUnique = UniqueSignatures.insert(key).second;
auto candidate =
std::make_tuple(underlyingToOpaque->getSubExpr(), subMap, isUnique);
if (isSelfReferencing(candidate)) {
HasInvalidReturn = true;
return Action::Stop();
}
if (subMap.hasDynamicSelf()) {
Ctx.Diags.diagnose(E->getLoc(),
diag::opaque_type_cannot_contain_dynamic_self);
HasInvalidReturn = true;
return Action::Stop();
}
Candidates.push_back({CurrentAvailability, candidate});
return Action::SkipNode(E);
}
return Action::Continue(E);
}
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
if (auto *If = dyn_cast<IfStmt>(S)) {
if (Parent.getAsStmt() != Body) {
// If this is not a top-level `if`, let's drop
// contextual information that has been set previously.
CurrentAvailability = nullptr;
return Action::Continue(S);
}
// If this is `if #(un)available` statement with no other dynamic
// conditions, let's check if it returns opaque type directly.
if (llvm::all_of(If->getCond(), [&](const auto &condition) {
return condition.getKind() == StmtConditionElement::CK_Availability;
})) {
// Check return statement directly with availability context set.
if (auto *Then = dyn_cast<BraceStmt>(If->getThenStmt())) {
llvm::SaveAndRestore<ParentTy> parent(Parent, Then);
for (auto element : Then->getElements()) {
auto *Return = getAsStmt<ReturnStmt>(element);
// If this is not a direct return statement, walk into it
// without setting contextual availability because we want
// to find all `return`s.
if (!(Return && Return->hasResult())) {
element.walk(*this);
continue;
}
// Note that we are about to walk into a return statement
// that is located in a `if #available` without any other
// conditions.
llvm::SaveAndRestore<AvailabilityContext> context(
CurrentAvailability, If);
Return->getResult()->walk(*this);
}
}
// Walk the else branch directly as well.
if (auto *Else = If->getElseStmt()) {
llvm::SaveAndRestore<ParentTy> parent(Parent, If);
Else->walk(*this);
}
return Action::SkipNode(S);
}
}
if (auto *RS = dyn_cast<ReturnStmt>(S)) {
if (RS->hasResult()) {
auto resultTy = RS->getResult()->getType();
// If expression associated with return statement doesn't have
// a type or type has an error, checking opaque types is going
// to produce incorrect diagnostics.
HasInvalidReturn |= resultTy.isNull() || resultTy->hasError();
}
}
return Action::Continue(S);
}
// Don't descend into nested decls.
PreWalkAction walkToDeclPre(Decl *D) override {
return Action::SkipNode();
}
};
class ReturnTypePlaceholderReplacer : public ASTWalker {
FuncDecl *Implementation;
BraceStmt *Body;
SmallVector<Type, 4> Candidates;
bool HasInvalidReturn = false;
public:
ReturnTypePlaceholderReplacer(FuncDecl *Implementation, BraceStmt *Body)
: Implementation(Implementation), Body(Body) {}
void check() {
auto *resultRepr = Implementation->getResultTypeRepr();
if (!resultRepr) {
return;
}
Implementation->getASTContext()
.Diags
.diagnose(resultRepr->getLoc(),
diag::placeholder_type_not_allowed_in_return_type)
.highlight(resultRepr->getSourceRange());
Body->walk(*this);
// If given function has any invalid returns in the body
// let's not try to validate the types, since it wouldn't
// be accurate.
if (HasInvalidReturn)
return;
auto writtenType = Implementation->getResultInterfaceType();
llvm::SmallPtrSet<TypeBase *, 8> seenTypes;
for (auto candidate : Candidates) {
if (!seenTypes.insert(candidate.getPointer()).second) {
continue;
}
TypeChecker::notePlaceholderReplacementTypes(writtenType, candidate);
}
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override { return Action::Continue(E); }
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
if (auto *RS = dyn_cast<ReturnStmt>(S)) {
if (RS->hasResult()) {
auto resultTy = RS->getResult()->getType();
HasInvalidReturn |= resultTy.isNull() || resultTy->hasError();
Candidates.push_back(resultTy);
}
}
return Action::Continue(S);
}
// Don't descend into nested decls.
PreWalkAction walkToDeclPre(Decl *D) override {
return Action::SkipNode();
}
};
} // end anonymous namespace
SourceLoc swift::getFixItLocForVarToLet(VarDecl *var) {
// Try to find the location of the 'var' so we can produce a fixit. If
// this is a simple PatternBinding, use its location.
if (auto *PBD = var->getParentPatternBinding()) {
if (PBD->getSingleVar() == var)
return PBD->getLoc();
} else if (auto *pattern = var->getParentPattern()) {
BindingPattern *foundVP = nullptr;
pattern->forEachNode([&](Pattern *P) {
if (auto *VP = dyn_cast<BindingPattern>(P))
if (VP->getSingleVar() == var)
foundVP = VP;
});
if (foundVP && foundVP->getIntroducer() != VarDecl::Introducer::Let) {
return foundVP->getLoc();
}
}
return SourceLoc();
}
// After we have scanned the entire region, diagnose variables that could be
// declared with a narrower usage kind.
VarDeclUsageChecker::~VarDeclUsageChecker() {
// If we saw an ErrorExpr somewhere in the body, then we have a malformed AST
// and we know stuff got dropped. Instead of producing these diagnostics,
// lets let the bigger issues get resolved first.
if (sawError)
return;
for (auto p : VarDecls) {
VarDecl *var;
unsigned access;
std::tie(var, access) = p;
// If the variable was not defined in this scope, we can safely ignore it.
if (!(access & RK_Defined))
continue;
if (auto *caseStmt =
dyn_cast_or_null<CaseStmt>(var->getRecursiveParentPatternStmt())) {
// Only diagnose VarDecls from the first CaseLabelItem in CaseStmts, as
// the remaining items must match it anyway.
auto caseItems = caseStmt->getCaseLabelItems();
assert(!caseItems.empty() &&
"If we have any case stmt var decls, we should have a case item");
if (!caseItems.front().getPattern()->containsVarDecl(var))
continue;
auto *childVar = var->getCorrespondingCaseBodyVariable().get();
access |= VarDecls[childVar];
}
// If the setter parameter is not used, but the property is read, report
// a warning. Otherwise, parameters should not generate usage warnings. It
// is common to name a parameter and not use it (e.g. because you are an
// override or want the named keyword, etc). Warning to rewrite it to _ is
// more annoying than it is useful.
if (auto param = dyn_cast<ParamDecl>(var)) {
auto FD = dyn_cast<AccessorDecl>(param->getDeclContext());
if (FD && FD->getAccessorKind() == AccessorKind::Set) {
auto VD = dyn_cast<VarDecl>(FD->getStorage());
if ((access & RK_Read) == 0) {
auto found = AssociatedGetterRefExpr.find(VD);
if (found != AssociatedGetterRefExpr.end()) {
auto *DRE = found->second;
Diags.diagnose(DRE->getLoc(), diag::unused_setter_parameter,
var->getName());
Diags.diagnose(DRE->getLoc(), diag::fixit_for_unused_setter_parameter,
var->getName())
.fixItReplace(DRE->getSourceRange(), var->getName().str());
}
}
}
continue;
}
// If this is a 'let' value, any stores to it are actually initializations,
// not mutations.
auto isWrittenLet = false;
if (var->isLet()) {
isWrittenLet = (access & RK_Written) != 0;
access &= ~RK_Written;
}
// If this variable has WeakStorageType, then it can be mutated in ways we
// don't know.
if (var->getInterfaceType()->is<WeakStorageType>())
access |= RK_Written;
// Diagnose variables that were never used (other than their
// initialization).
//
if ((access & (RK_Read|RK_Written)) == 0) {
// If this is a member in a capture list, just say it is unused. We could
// produce a fixit hint with a parent map, but this is a lot of effort for
// a narrow case.
if (access & RK_CaptureList) {
Diags.diagnose(var->getLoc(), diag::capture_never_used,
var->getName());
continue;
}
// If the source of the VarDecl is a trivial PatternBinding with only a
// single binding, rewrite the whole thing into an assignment.
// let x = foo()
// ->
// _ = foo()
if (auto *pbd = var->getParentPatternBinding()) {
if (pbd->getSingleVar() == var && pbd->getInit(0) != nullptr &&
!isa<TypedPattern>(pbd->getPattern(0))) {
unsigned varKind = var->isLet();
SourceRange replaceRange(
pbd->getStartLoc(),
pbd->getPattern(0)->getEndLoc());
Diags.diagnose(var->getLoc(), diag::pbd_never_used,
var->getName(), varKind)
.fixItReplace(replaceRange, "_");
continue;
}
}
// If the variable is defined in a pattern in an if/while/guard statement,
// see if we can produce a tuned fixit. When we have something like:
//
// if let x = <expr> {
//
// we prefer to rewrite it to:
//
// if <expr> != nil {
//
if (auto SC = StmtConditionForVD[var]) {
// We only handle the "if let" case right now, since it is vastly the
// most common situation that people run into.
if (SC->getCond().size() == 1) {
auto pattern = SC->getCond()[0].getPattern();
if (auto OSP = dyn_cast<OptionalSomePattern>(pattern))
if (auto LP = dyn_cast<BindingPattern>(OSP->getSubPattern()))
if (isa<NamedPattern>(LP->getSubPattern())) {
auto initExpr = SC->getCond()[0].getInitializer();
if (initExpr->getStartLoc().isValid()) {
unsigned noParens = initExpr->canAppendPostfixExpression();
// If the subexpr is an "as?" cast, we can rewrite it to
// be an "is" test.
ConditionalCheckedCastExpr *CCE = nullptr;
// initExpr can be wrapped inside parens or try expressions.
if (auto ccExpr = dyn_cast<ConditionalCheckedCastExpr>(
initExpr->getValueProvidingExpr())) {
if (!ccExpr->isImplicit()) {
CCE = ccExpr;
noParens = true;
}
}
// In cases where the value is optional, the cast expr is
// wrapped inside OptionalEvaluationExpr. Unwrap it to get
// ConditionalCheckedCastExpr.
if (auto oeExpr = dyn_cast<OptionalEvaluationExpr>(
initExpr->getValueProvidingExpr())) {
if (auto ccExpr = dyn_cast<ConditionalCheckedCastExpr>(
oeExpr->getSubExpr()->getValueProvidingExpr())) {
if (!ccExpr->isImplicit()) {
CCE = ccExpr;
noParens = true;
}
}
}
auto diagIF = Diags.diagnose(var->getLoc(),
diag::pbd_never_used_stmtcond,
var->getName());
auto introducerLoc = SC->getCond()[0].getIntroducerLoc();
diagIF.fixItReplaceChars(introducerLoc,
initExpr->getStartLoc(),
&"("[noParens]);
if (CCE) {
// If this was an "x as? T" check, rewrite it to "x is T".
diagIF.fixItReplace(SourceRange(CCE->getLoc(),
CCE->getQuestionLoc()),
"is");
} else {
diagIF.fixItInsertAfter(initExpr->getEndLoc(),
&") != nil"[noParens]);
}
continue;
}
}
}
}
// If the variable is defined in a pattern that isn't one of the usual
// conditional statements, try to detect and rewrite "simple" binding
// patterns:
// case .pattern(let x):
// ->
// case .pattern(_):
if (auto *pattern = var->getParentPattern()) {
BindingPattern *foundVP = nullptr;
pattern->forEachNode([&](Pattern *P) {
if (auto *VP = dyn_cast<BindingPattern>(P))
if (VP->getSingleVar() == var)
foundVP = VP;
});
if (foundVP) {
unsigned varKind = var->isLet();
Diags
.diagnose(var->getLoc(), diag::variable_never_used,
var->getName(), varKind)
.fixItReplace(foundVP->getSourceRange(), "_");
continue;
}
}
// Otherwise, this is something more complex, perhaps
// let (a,b) = foo()
if (isWrittenLet) {
Diags.diagnose(var->getLoc(),
diag::immutable_value_never_used_but_assigned,
var->getName());
} else {
unsigned varKind = var->isLet();
// Just rewrite the one variable with a _.
Diags.diagnose(var->getLoc(), diag::variable_never_used,
var->getName(), varKind)
.fixItReplace(var->getLoc(), "_");
}
continue;
}
// If this is a mutable 'var', and it was never written to, suggest
// upgrading to 'let'.
if (var->getIntroducer() == VarDecl::Introducer::Var
&& (access & RK_Written) == 0 &&
// Don't warn if we have something like "let (x,y) = ..." and 'y' was
// never mutated, but 'x' was.
!isVarDeclPartOfPBDThatHadSomeMutation(var)) {
SourceLoc FixItLoc = getFixItLocForVarToLet(var);
// If this is a parameter explicitly marked 'var', remove it.
if (FixItLoc.isInvalid()) {
Diags.diagnose(var->getLoc(), diag::variable_never_mutated,
var->getName(), true);
}
else {
bool suggestLet = true;
if (auto *stmt = var->getRecursiveParentPatternStmt()) {
// Don't try to suggest 'var' -> 'let' conversion
// in case of 'for' loop because it's an implicitly
// immutable context.
suggestLet = !isa<ForEachStmt>(stmt);
}
auto diag = Diags.diagnose(var->getLoc(), diag::variable_never_mutated,
var->getName(), suggestLet);
if (suggestLet)
diag.fixItReplace(FixItLoc, "let");
else
diag.fixItRemove(FixItLoc);
continue;
}
}
// If this is a variable that was only written to, emit a warning.
if ((access & RK_Read) == 0) {
Diags.diagnose(var->getLoc(), diag::variable_never_read, var->getName());
continue;
}
}
}
/// Handle a use of "x.y" or "x[0]" where 'base' is the expression for x and
/// 'decl' is the property or subscript.
///
/// TODO: Rip this out and just rely on LValueAccessKind.
void VarDeclUsageChecker::markBaseOfStorageUse(Expr *base, ConcreteDeclRef decl,
unsigned flags) {
// If the base is an rvalue, then we know that this is a non-mutating access.
// Note that we can have mutating accesses even when the base has class or
// metatype type due to protocols and protocol extensions.
if (!base->getType()->hasLValueType() &&
!base->isSemanticallyInOutExpr()) {
base->walk(*this);
return;
}
// Compute whether this access is to a mutating member.
auto *ASD = dyn_cast_or_null<AbstractStorageDecl>(decl.getDecl());
bool isMutating = false;
if (!ASD) {
// If there's no abstract storage declaration (which should hopefully
// only happen with invalid code), treat the base access as mutating if
// the subobject is being mutated and the base type is not a class
// or metatype.
if (flags & RK_Written) {
Type type = base->getType()->getRValueType()->getInOutObjectType();
if (!type->isAnyClassReferenceType() && !type->is<AnyMetatypeType>())
isMutating = true;
}
} else {
// Otherwise, consider whether the accessors are mutating.
if (flags & RK_Read)
isMutating |= ASD->isGetterMutating();
if (flags & RK_Written)
isMutating |= ASD->isSettable(nullptr) && ASD->isSetterMutating();
}
markBaseOfStorageUse(base, isMutating);
}
void VarDeclUsageChecker::markBaseOfStorageUse(Expr *base, bool isMutating) {
// CSApply sometimes wraps the base in an InOutExpr just because the
// base is an l-value; look through that so we can get more precise
// checking.
if (auto *ioe = dyn_cast<InOutExpr>(base))
base = ioe->getSubExpr();
if (!isMutating) {
base->walk(*this);
return;
}
// Otherwise this is a read and write of the base.
return markStoredOrInOutExpr(base, RK_Written|RK_Read);
}
void VarDeclUsageChecker::markStoredOrInOutExpr(Expr *E, unsigned Flags) {
// Sema leaves some subexpressions null, which seems really unfortunate. It
// should replace them with ErrorExpr.
if (E == nullptr || !E->getType() || E->getType()->hasError()) {
sawError = true;
return;
}
// Ignore parens and other easy cases.
E = E->getSemanticsProvidingExpr();
// If we found a decl that is being assigned to, then mark it.
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
addMark(DRE->getDecl(), Flags);
return;
}
if (auto *TE = dyn_cast<TupleExpr>(E)) {
for (auto &elt : TE->getElements())
markStoredOrInOutExpr(elt, Flags);
return;
}
// If this is an assignment into a mutating subscript lvalue expr, then we
// are mutating the base expression. We also need to visit the index
// expressions as loads though.
if (auto *SE = dyn_cast<SubscriptExpr>(E)) {
// The arguments of a subscript are evaluated as rvalues.
SE->getArgs()->walk(*this);
markBaseOfStorageUse(SE->getBase(), SE->getDecl(), Flags);
return;
}
// Likewise for key path applications. An application of a WritableKeyPath
// reads and writes its base; an application of a ReferenceWritableKeyPath
// only reads its base; the other KeyPath types cannot be written at all.
if (auto *KPA = dyn_cast<KeyPathApplicationExpr>(E)) {
KPA->getKeyPath()->walk(*this);
bool isMutating =
(Flags & RK_Written) &&
KPA->getKeyPath()->getType()->isWritableKeyPath();
markBaseOfStorageUse(KPA->getBase(), isMutating);
return;
}
if (auto *ioe = dyn_cast<InOutExpr>(E))
return markStoredOrInOutExpr(ioe->getSubExpr(), RK_Written|RK_Read);
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
markBaseOfStorageUse(MRE->getBase(), MRE->getMember(), Flags);
return;
}
if (auto *TEE = dyn_cast<TupleElementExpr>(E))
return markStoredOrInOutExpr(TEE->getBase(), Flags);
if (auto *FVE = dyn_cast<ForceValueExpr>(E))
return markStoredOrInOutExpr(FVE->getSubExpr(), Flags);
if (auto *BOE = dyn_cast<BindOptionalExpr>(E))
return markStoredOrInOutExpr(BOE->getSubExpr(), Flags);
// Bind existential expressions.
if (auto *OEE = dyn_cast<OpenExistentialExpr>(E)) {
OpaqueValueMap[OEE->getOpaqueValue()] = OEE->getExistentialValue();
return markStoredOrInOutExpr(OEE->getSubExpr(), Flags);
}
// If this is an OpaqueValueExpr that we've seen a mapping for, jump to the
// mapped value.
if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
if (auto *expr = OpaqueValueMap[OVE])
return markStoredOrInOutExpr(expr, Flags);
// If we don't know what kind of expression this is, assume it's a reference
// and mark it as a read.
E->walk(*this);
}
/// The heavy lifting happens when visiting expressions.
ASTWalker::PreWalkResult<Expr *> VarDeclUsageChecker::walkToExprPre(Expr *E) {
STATISTIC(VarDeclUsageCheckerExprVisits,
"# of times VarDeclUsageChecker::walkToExprPre is called");
++VarDeclUsageCheckerExprVisits;
// Sema leaves some subexpressions null, which seems really unfortunate. It
// should replace them with ErrorExpr.
if (E == nullptr || !E->getType() || E->getType()->hasError()) {
sawError = true;
return Action::SkipNode(E);
}
assert(AllExprsSeen.insert(E).second && "duplicate traversal");
// If this is a DeclRefExpr found in a random place, it is a load of the
// vardecl.
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
addMark(DRE->getDecl(), RK_Read);
// If the Expression is a read of a getter, track for diagnostics
if (auto VD = dyn_cast<VarDecl>(DRE->getDecl())) {
AssociatedGetterRefExpr.insert(std::make_pair(VD, DRE));
}
}
// If the Expression is a member reference, see if it is a read of the getter
// to track for diagnostics.
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
if (auto VD = dyn_cast<VarDecl>(MRE->getMember().getDecl())) {
AssociatedGetterRefExpr.insert(std::make_pair(VD, MRE));
markBaseOfStorageUse(MRE->getBase(), MRE->getMember(), RK_Read);
return Action::SkipNode(E);
}
}
if (auto SE = dyn_cast<SubscriptExpr>(E)) {
SE->getArgs()->walk(*this);
markBaseOfStorageUse(SE->getBase(), SE->getDecl(), RK_Read);
return Action::SkipNode(E);
}
// If this is an AssignExpr, see if we're mutating something that we know
// about.
if (auto *assign = dyn_cast<AssignExpr>(E)) {
markStoredOrInOutExpr(assign->getDest(), RK_Written);
// Don't walk into the LHS of the assignment, only the RHS.
assign->getSrc()->walk(*this);
return Action::SkipNode(E);
}
// '&x' is a read and write of 'x'.
if (auto *io = dyn_cast<InOutExpr>(E)) {
markStoredOrInOutExpr(io->getSubExpr(), RK_Read|RK_Written);
// Don't bother walking into this.
return Action::SkipNode(E);
}
// If we see an OpenExistentialExpr, remember the mapping for its OpaqueValue
// and only walk the subexpr.
if (auto *oee = dyn_cast<OpenExistentialExpr>(E)) {
OpaqueValueMap[oee->getOpaqueValue()] = oee->getExistentialValue();
oee->getSubExpr()->walk(*this);
return Action::SkipNode(E);
}
// Visit bindings.
if (auto ove = dyn_cast<OpaqueValueExpr>(E)) {
if (auto mapping = OpaqueValueMap.lookup(ove))
mapping->walk(*this);
return Action::SkipNode(E);
}
// If we saw an ErrorExpr, take note of this.
if (isa<ErrorExpr>(E))
sawError = true;
return Action::Continue(E);
}
/// handle #if directives. All of the active clauses are already walked by the
/// AST walker, but we also want to handle the inactive ones to avoid false
/// positives.
void VarDeclUsageChecker::handleIfConfig(IfConfigDecl *ICD) {
struct ConservativeDeclMarker : public ASTWalker {
VarDeclUsageChecker &VDUC;
SourceFile *SF;
ConservativeDeclMarker(VarDeclUsageChecker &VDUC)
: VDUC(VDUC), SF(VDUC.DC->getParentSourceFile()) {}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Arguments;
}
PostWalkResult<Expr *> walkToExprPost(Expr *E) override {
// If we see a bound reference to a decl in an inactive #if block, then
// conservatively mark it read and written. This will silence "variable
// unused" and "could be marked let" warnings for it.
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
VDUC.addMark(DRE->getDecl(), RK_Read | RK_Written);
else if (auto *declRef = dyn_cast<UnresolvedDeclRefExpr>(E)) {
auto name = declRef->getName();
auto loc = declRef->getLoc();
if (name.isSimpleName() && loc.isValid()) {
auto *varDecl = dyn_cast_or_null<VarDecl>(
ASTScope::lookupSingleLocalDecl(SF, name.getFullName(), loc));
if (varDecl)
VDUC.addMark(varDecl, RK_Read|RK_Written);
}
}
return Action::Continue(E);
}
};
for (auto &clause : ICD->getClauses()) {
// Active clauses are handled by the normal AST walk.
if (clause.isActive) continue;
for (auto elt : clause.Elements)
elt.walk(ConservativeDeclMarker(*this));
}
}
namespace {
class SingleValueStmtUsageChecker final : public ASTWalker {
ASTContext &Ctx;
DiagnosticEngine &Diags;
llvm::DenseSet<SingleValueStmtExpr *> ValidSingleValueStmtExprs;
public:
SingleValueStmtUsageChecker(
ASTContext &ctx, ASTNode root,
std::optional<ContextualTypePurpose> contextualPurpose)
: Ctx(ctx), Diags(ctx.Diags) {
assert(!root.is<Expr *>() || contextualPurpose &&
"Must provide contextual purpose for expr");
// If we have a contextual purpose, this is for an expression. Check if it's
// an expression in a valid position.
if (contextualPurpose) {
markAnyValidTopLevelSingleValueStmt(root.get<Expr *>(),
*contextualPurpose);
}
}
private:
/// Mark a given expression as a valid position for a SingleValueStmtExpr.
void markValidSingleValueStmt(Expr *E) {
if (!E)
return;
if (auto *SVE = SingleValueStmtExpr::tryDigOutSingleValueStmtExpr(E))
ValidSingleValueStmtExprs.insert(SVE);
}
/// Mark a valid top-level expression with a given contextual purpose.
void markAnyValidTopLevelSingleValueStmt(Expr *E, ContextualTypePurpose ctp) {
// Allowed in returns, throws, and bindings.
switch (ctp) {
case CTP_ReturnStmt:
case CTP_ThrowStmt:
case CTP_Initialization:
markValidSingleValueStmt(E);
break;
default:
break;
}
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
AssignExpr *findAssignment(Expr *E) const {
// Don't consider assignments if we have a parent expression (as otherwise
// this would be effectively allowing it in an arbitrary expression
// position).
if (Parent.getAsExpr())
return nullptr;
// Look through optional exprs, which are present for e.g x?.y = z, as
// we wrap the entire assign in the optional evaluation of the destination.
if (auto *OEE = dyn_cast<OptionalEvaluationExpr>(E)) {
E = OEE->getSubExpr();
while (auto *IIO = dyn_cast<InjectIntoOptionalExpr>(E))
E = IIO->getSubExpr();
}
return dyn_cast<AssignExpr>(E);
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (auto *SVE = dyn_cast<SingleValueStmtExpr>(E)) {
// Diagnose a SingleValueStmtExpr in a context that we do not currently
// support. If we start allowing these in arbitrary places, we'll need
// to ensure that autoclosures correctly contextualize them.
if (!ValidSingleValueStmtExprs.contains(SVE)) {
Diags.diagnose(SVE->getLoc(), diag::single_value_stmt_out_of_place,
SVE->getStmt()->getKind());
}
// Diagnose invalid SingleValueStmtExprs. This should only happen for
// expressions in positions that we didn't support before
// (e.g assignment or *explicit* return).
auto *S = SVE->getStmt();
auto mayProduceSingleValue = S->mayProduceSingleValue(Ctx);
switch (mayProduceSingleValue.getKind()) {
case IsSingleValueStmtResult::Kind::Valid:
break;
case IsSingleValueStmtResult::Kind::UnterminatedBranches: {
for (auto *branch : mayProduceSingleValue.getUnterminatedBranches()) {
if (auto *BS = dyn_cast<BraceStmt>(branch)) {
if (BS->empty()) {
Diags.diagnose(branch->getStartLoc(),
diag::single_value_stmt_branch_empty,
S->getKind());
continue;
}
}
// TODO: The wording of this diagnostic will need tweaking if either
// implicit last expressions or 'then' statements are enabled by
// default.
Diags.diagnose(branch->getEndLoc(),
diag::single_value_stmt_branch_must_end_in_result,
S->getKind());
}
break;
}
case IsSingleValueStmtResult::Kind::NonExhaustiveIf: {
Diags.diagnose(S->getStartLoc(),
diag::if_expr_must_be_syntactically_exhaustive);
break;
}
case IsSingleValueStmtResult::Kind::NonExhaustiveDoCatch: {
Diags.diagnose(S->getStartLoc(),
diag::do_catch_expr_must_be_syntactically_exhaustive);
break;
}
case IsSingleValueStmtResult::Kind::HasLabel: {
// FIXME: We should offer a fix-it to remove (currently we don't track
// the colon SourceLoc).
auto label = cast<LabeledStmt>(S)->getLabelInfo();
Diags.diagnose(label.Loc,
diag::single_value_stmt_must_be_unlabeled, S->getKind())
.highlight(label.Loc);
break;
}
case IsSingleValueStmtResult::Kind::InvalidJumps: {
// Diagnose each invalid jump.
for (auto *jump : mayProduceSingleValue.getInvalidJumps()) {
Diags.diagnose(jump->getStartLoc(),
diag::cannot_jump_in_single_value_stmt,
jump->getKind(), S->getKind())
.highlight(jump->getSourceRange());
}
break;
}
case IsSingleValueStmtResult::Kind::NoResult:
// This is fine, we will have typed the expression as Void (we verify
// as such in the ASTVerifier).
break;
case IsSingleValueStmtResult::Kind::CircularReference:
// Already diagnosed.
break;
case IsSingleValueStmtResult::Kind::UnhandledStmt:
break;
}
return Action::Continue(E);
}
// Valid as the source of an assignment.
if (auto *AE = findAssignment(E))
markValidSingleValueStmt(AE->getSrc());
// Valid as a single expression body of a closure. This is needed in
// addition to ReturnStmt checking, as we will remove the return if the
// expression is inferred to be Never.
if (auto *ACE = dyn_cast<ClosureExpr>(E)) {
if (ACE->hasSingleExpressionBody())
markValidSingleValueStmt(ACE->getSingleExpressionBody());
}
return Action::Continue(E);
}
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
// Valid in a return/throw/then.
if (auto *RS = dyn_cast<ReturnStmt>(S)) {
if (RS->hasResult())
markValidSingleValueStmt(RS->getResult());
}
if (auto *TS = dyn_cast<ThrowStmt>(S))
markValidSingleValueStmt(TS->getSubExpr());
if (auto *TS = dyn_cast<ThenStmt>(S))
markValidSingleValueStmt(TS->getResult());
return Action::Continue(S);
}
PreWalkAction walkToDeclPre(Decl *D) override {
// Valid as an initializer of a pattern binding.
if (auto *PBD = dyn_cast<PatternBindingDecl>(D)) {
for (auto idx : range(PBD->getNumPatternEntries()))
markValidSingleValueStmt(PBD->getInit(idx));
return Action::Continue();
}
// We don't want to walk into any other decl, we will visit them as part of
// typeCheckDecl.
return Action::SkipNode();
}
};
} // end anonymous namespace
void swift::diagnoseOutOfPlaceExprs(
ASTContext &ctx, ASTNode root,
std::optional<ContextualTypePurpose> contextualPurpose) {
// TODO: We ought to consider moving this into pre-checking such that we can
// still diagnose on invalid code, and don't have to traverse over implicit
// exprs. We need to first separate out SequenceExpr folding though.
SingleValueStmtUsageChecker sveChecker(ctx, root, contextualPurpose);
root.walk(sveChecker);
}
/// Apply the warnings managed by VarDeclUsageChecker to the top level
/// code declarations that haven't been checked yet.
void swift::
performTopLevelDeclDiagnostics(TopLevelCodeDecl *TLCD) {
auto &ctx = TLCD->getDeclContext()->getASTContext();
VarDeclUsageChecker checker(TLCD, ctx.Diags);
TLCD->walk(checker);
}
/// Perform diagnostics for func/init/deinit declarations.
void swift::performAbstractFuncDeclDiagnostics(AbstractFunctionDecl *AFD) {
// Don't produce these diagnostics for implicitly generated code.
if (AFD->getLoc().isInvalid() || AFD->isImplicit() || AFD->isInvalid())
return;
if (!AFD->getDeclContext()->isLocalContext()) {
// Check for unused variables, as well as variables that are could be
// declared as constants. Skip local functions though, since they will
// be checked as part of their parent function or TopLevelCodeDecl.
auto &ctx = AFD->getDeclContext()->getASTContext();
VarDeclUsageChecker checker(AFD, ctx.Diags);
AFD->walk(checker);
}
auto *body = AFD->getBody();
// If the function has an opaque return type, check the return expressions
// to determine the underlying type.
if (auto opaqueResultTy = AFD->getOpaqueResultTypeDecl()) {
OpaqueUnderlyingTypeChecker(AFD, opaqueResultTy, body).check();
} else if (auto accessor = dyn_cast<AccessorDecl>(AFD)) {
if (accessor->isGetter()) {
if (auto opaqueResultTy
= accessor->getStorage()->getOpaqueResultTypeDecl()) {
OpaqueUnderlyingTypeChecker(AFD, opaqueResultTy, body).check();
}
}
} else if (auto *FD = dyn_cast<FuncDecl>(AFD)) {
auto resultIFaceTy = FD->getResultInterfaceType();
// If the result has a placeholder, we need to try to use the contextual
// type inferred in the body to replace it.
if (resultIFaceTy && resultIFaceTy->hasPlaceholder()) {
ReturnTypePlaceholderReplacer(FD, body).check();
}
}
}
static void
diagnoseMoveOnlyPatternMatchSubject(ASTContext &C,
const DeclContext *DC,
Expr *subjectExpr) {
// For now, move-only types must use the `consume` operator to be
// pattern matched. Pattern matching is only implemented as a consuming
// operation today, but we don't want to be stuck with that as the default
// in the fullness of time when we get borrowing pattern matching later.
// Don't bother if the subject wasn't given a valid type, or is a copyable
// type.
auto subjectType = subjectExpr->getType();
if (!subjectType
|| subjectType->hasError()
|| !subjectType->isNoncopyable()) {
return;
}
}
// Perform MiscDiagnostics on Switch Statements.
static void checkSwitch(ASTContext &ctx, const SwitchStmt *stmt,
DeclContext *DC) {
diagnoseMoveOnlyPatternMatchSubject(ctx, DC, stmt->getSubjectExpr());
// We want to warn about "case .Foo, .Bar where 1 != 100:" since the where
// clause only applies to the second case, and this is surprising.
for (auto cs : stmt->getCases()) {
TypeChecker::checkExistentialTypes(ctx, cs, DC);
// The case statement can have multiple case items, each can have a where.
// If we find a "where", and there is a preceding item without a where, and
// if they are on the same source line, then warn.
auto items = cs->getCaseLabelItems();
// Don't do any work for the vastly most common case.
if (items.size() == 1) continue;
// Ignore the first item, since it can't have preceding ones.
for (unsigned i = 1, e = items.size(); i != e; ++i) {
// Must have a where clause.
auto where = items[i].getGuardExpr();
if (!where)
continue;
// Preceding item must not.
if (items[i-1].getGuardExpr())
continue;
// Must be on the same source line.
auto prevLoc = items[i-1].getStartLoc();
auto thisLoc = items[i].getStartLoc();
if (prevLoc.isInvalid() || thisLoc.isInvalid())
continue;
auto &SM = ctx.SourceMgr;
auto prevLineCol = SM.getLineAndColumnInBuffer(prevLoc);
if (SM.getLineAndColumnInBuffer(thisLoc).first != prevLineCol.first)
continue;
ctx.Diags.diagnose(items[i].getWhereLoc(), diag::where_on_one_item)
.highlight(items[i].getPattern()->getSourceRange())
.highlight(where->getSourceRange());
// Whitespace it out to the same column as the previous item.
std::string whitespace(prevLineCol.second-1, ' ');
ctx.Diags.diagnose(thisLoc, diag::add_where_newline)
.fixItInsert(thisLoc, "\n"+whitespace);
auto whereRange = SourceRange(items[i].getWhereLoc(),
where->getEndLoc());
auto charRange = Lexer::getCharSourceRangeFromSourceRange(SM, whereRange);
auto whereText = SM.extractText(charRange);
ctx.Diags.diagnose(prevLoc, diag::duplicate_where)
.fixItInsertAfter(items[i-1].getEndLoc(), " " + whereText.str())
.highlight(items[i-1].getSourceRange());
}
}
}
void swift::fixItEncloseTrailingClosure(ASTContext &ctx,
InFlightDiagnostic &diag,
const CallExpr *call,
Identifier closureLabel) {
auto *argList = call->getArgs()->getOriginalArgs();
assert(argList->size() >= 1 && "must have at least one argument");
SmallString<32> replacement;
SourceLoc lastLoc;
SourceRange closureRange;
if (argList->isUnary()) {
closureRange = argList->getExpr(0)->getSourceRange();
lastLoc = argList->getLParenLoc(); // e.g funcName() { 1 }
if (!lastLoc.isValid()) {
// Bare trailing closure: e.g. funcName { 1 }
replacement = "(";
lastLoc = call->getFn()->getEndLoc();
}
} else {
// Tuple + trailing closure: e.g. funcName(x: 1) { 1 }
auto numElements = argList->size();
closureRange = argList->getExpr(numElements - 1)->getSourceRange();
lastLoc = argList->getExpr(numElements - 2)->getEndLoc();
replacement = ", ";
}
// Add argument label of the closure.
if (!closureLabel.empty()) {
replacement += closureLabel.str();
replacement += ": ";
}
lastLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, lastLoc);
diag
.fixItReplaceChars(lastLoc, closureRange.Start, replacement)
.fixItInsertAfter(closureRange.End, ")");
}
// Perform checkStmtConditionTrailingClosure for single expression.
static void checkStmtConditionTrailingClosure(ASTContext &ctx, const Expr *E) {
if (E == nullptr || isa<ErrorExpr>(E)) return;
// Walk into expressions which might have invalid trailing closures
class DiagnoseWalker : public ASTWalker {
ASTContext &Ctx;
void diagnoseIt(const CallExpr *E) {
// FIXME(https://github.com/apple/swift/issues/57382): We ought to handle multiple trailing closures here.
auto *args = E->getArgs()->getOriginalArgs();
if (args->getNumTrailingClosures() != 1)
return;
auto closureArg = *args->getFirstTrailingClosure();
auto *closureExpr = closureArg.getExpr();
auto closureTy = closureExpr->getType();
// Ignore invalid argument type. Some diagnostics are already emitted.
if (!closureTy || closureTy->hasError())
return;
// Figure out the label of the parameter the closure is being passed to.
// This will be present in the type-checked argument list (but not the
// original), so search it for the relevant argument, looking into
// variadic expansions if necessary.
Identifier label;
for (auto arg : *E->getArgs()) {
if (arg.getExpr() == closureExpr) {
label = arg.getLabel();
break;
}
if (auto *varg = dyn_cast<VarargExpansionExpr>(arg.getExpr())) {
if (auto *array = dyn_cast<ArrayExpr>(varg->getSubExpr())) {
if (!array->getElements().empty() &&
array->getElements()[0] == closureExpr) {
label = arg.getLabel();
break;
}
}
}
}
auto diag = Ctx.Diags.diagnose(closureExpr->getStartLoc(),
diag::trailing_closure_requires_parens);
fixItEncloseTrailingClosure(Ctx, diag, E, label);
}
public:
DiagnoseWalker(ASTContext &ctx) : Ctx(ctx) { }
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<ArgumentList *>
walkToArgumentListPre(ArgumentList *args) override {
// Don't walk into an explicit argument list, as trailing closures that
// appear in child arguments are fine.
return Action::VisitNodeIf(args->isImplicit(), args);
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
switch (E->getKind()) {
case ExprKind::Paren:
case ExprKind::Tuple:
case ExprKind::Array:
case ExprKind::Dictionary:
case ExprKind::InterpolatedStringLiteral:
case ExprKind::Closure:
// If a trailing closure appears as a child of one of these types of
// expression, don't diagnose it as there is no ambiguity.
return Action::VisitNodeIf(E->isImplicit(), E);
case ExprKind::Call:
diagnoseIt(cast<CallExpr>(E));
break;
default:
break;
}
return Action::Continue(E);
}
};
DiagnoseWalker Walker(ctx);
const_cast<Expr *>(E)->walk(Walker);
}
/// Diagnose trailing closure in statement-conditions.
///
/// Conditional statements, including 'for' or `switch` doesn't allow ambiguous
/// trailing closures in these conditions part. Even if the parser can recover
/// them, we force them to disambiguate.
//
/// E.g.:
/// if let _ = arr?.map {$0+1} { ... }
/// for _ in numbers.filter {$0 > 4} { ... }
static void checkStmtConditionTrailingClosure(ASTContext &ctx, const Stmt *S) {
if (auto LCS = dyn_cast<LabeledConditionalStmt>(S)) {
for (auto elt : LCS->getCond()) {
if (elt.getKind() == StmtConditionElement::CK_PatternBinding) {
checkStmtConditionTrailingClosure(ctx, elt.getInitializer());
if (auto *exprPattern = dyn_cast<ExprPattern>(elt.getPattern())) {
checkStmtConditionTrailingClosure(ctx, exprPattern->getMatchExpr());
}
} else if (elt.getKind() == StmtConditionElement::CK_Boolean)
checkStmtConditionTrailingClosure(ctx, elt.getBoolean());
// No trailing closure for CK_Availability: e.g. `if #available() {}`.
}
} else if (auto SS = dyn_cast<SwitchStmt>(S)) {
checkStmtConditionTrailingClosure(ctx, SS->getSubjectExpr());
} else if (auto FES = dyn_cast<ForEachStmt>(S)) {
checkStmtConditionTrailingClosure(ctx, FES->getParsedSequence());
checkStmtConditionTrailingClosure(ctx, FES->getWhere());
} else if (auto DCS = dyn_cast<DoCatchStmt>(S)) {
for (auto CS : DCS->getCatches())
for (auto &LabelItem : CS->getCaseLabelItems())
checkStmtConditionTrailingClosure(ctx, LabelItem.getGuardExpr());
}
}
namespace {
class ObjCSelectorWalker : public ASTWalker {
ASTContext &Ctx;
const DeclContext *DC;
Type SelectorTy;
/// Determine whether a reference to the given method via its
/// enclosing class/protocol is ambiguous (and, therefore, needs to
/// be disambiguated with a coercion).
bool isSelectorReferenceAmbiguous(AbstractFunctionDecl *method) {
// Determine the name we would search for. If there are no
// argument names, our lookup will be based solely on the base
// name.
DeclName lookupName = method->getName();
if (lookupName.getArgumentNames().empty())
lookupName = lookupName.getBaseName();
// Look for members with the given name.
auto nominal = method->getDeclContext()->getSelfNominalTypeDecl();
auto result = TypeChecker::lookupMember(
const_cast<DeclContext *>(DC), nominal->getDeclaredInterfaceType(),
DeclNameRef(lookupName), method->getLoc(),
defaultMemberLookupOptions);
// If we didn't find multiple methods, there is no ambiguity.
if (result.size() < 2) return false;
// If we found more than two methods, it's ambiguous.
if (result.size() > 2) return true;
// Dig out the methods.
auto firstMethod = dyn_cast<FuncDecl>(result[0].getValueDecl());
auto secondMethod = dyn_cast<FuncDecl>(result[1].getValueDecl());
if (!firstMethod || !secondMethod) return true;
// If one is a static/class method and the other is not...
if (firstMethod->isStatic() == secondMethod->isStatic()) return true;
// ... overload resolution will prefer the static method. Check
// that it has the correct selector. We don't even care that it's
// the same method we're asking for, just that it has the right
// selector.
FuncDecl *staticMethod =
firstMethod->isStatic() ? firstMethod : secondMethod;
return staticMethod->getObjCSelector() != method->getObjCSelector();
}
public:
ObjCSelectorWalker(const DeclContext *dc, Type selectorTy)
: Ctx(dc->getASTContext()), DC(dc), SelectorTy(selectorTy) { }
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
auto *stringLiteral = dyn_cast<StringLiteralExpr>(expr);
bool fromStringLiteral = false;
bool hadParens = false;
if (stringLiteral) {
// Is this a string literal that has type 'Selector'.
if (!stringLiteral->getType() ||
!stringLiteral->getType()->isEqual(SelectorTy))
return Action::Continue(expr);
fromStringLiteral = true;
// FIXME: hadParens
} else {
// Is this an initialization of 'Selector'?
auto call = dyn_cast<CallExpr>(expr);
if (!call) return Action::Continue(expr);
// That produce Selectors.
if (!call->getType() || !call->getType()->isEqual(SelectorTy))
return Action::Continue(expr);
// Via a constructor.
ConstructorDecl *ctor = nullptr;
if (auto ctorRefCall = dyn_cast<ConstructorRefCallExpr>(call->getFn())) {
if (auto ctorRef = dyn_cast<DeclRefExpr>(ctorRefCall->getFn()))
ctor = dyn_cast<ConstructorDecl>(ctorRef->getDecl());
else if (auto otherCtorRef =
dyn_cast<OtherConstructorDeclRefExpr>(ctorRefCall->getFn()))
ctor = otherCtorRef->getDecl();
}
if (!ctor) return Action::Continue(expr);
// Make sure the constructor is within Selector.
auto ctorContextType = ctor->getDeclContext()
->getSelfNominalTypeDecl()
->getDeclaredType();
if (!ctorContextType || !ctorContextType->isEqual(SelectorTy))
return Action::Continue(expr);
auto argNames = ctor->getName().getArgumentNames();
if (argNames.size() != 1) return Action::Continue(expr);
// Is this the init(stringLiteral:) initializer or init(_:) initializer?
if (argNames[0] == Ctx.Id_stringLiteral)
fromStringLiteral = true;
else if (!argNames[0].empty())
return Action::Continue(expr);
auto *arg = call->getArgs()->getUnaryExpr();
if (!arg)
return Action::Continue(expr);
// Track whether we had parentheses around the string literal.
if (auto paren = dyn_cast<ParenExpr>(arg)) {
hadParens = true;
arg = paren->getSubExpr();
}
// Check whether we have a string literal.
stringLiteral = dyn_cast<StringLiteralExpr>(arg);
if (!stringLiteral) return Action::Continue(expr);
}
/// Retrieve the parent expression that coerces to Selector, if
/// there is one.
auto getParentCoercion = [&]() -> CoerceExpr * {
auto parentExpr = Parent.getAsExpr();
if (!parentExpr) return nullptr;
auto coerce = dyn_cast<CoerceExpr>(parentExpr);
if (!coerce) return nullptr;
if (coerce->getType() && coerce->getType()->isEqual(SelectorTy))
return coerce;
return nullptr;
};
// Local function that adds the constructor syntax around string
// literals implicitly treated as a Selector.
auto addSelectorConstruction = [&](InFlightDiagnostic &diag) {
if (!fromStringLiteral) return;
// Introduce the beginning part of the Selector construction.
diag.fixItInsert(stringLiteral->getLoc(), "Selector(");
if (auto coerce = getParentCoercion()) {
// If the string literal was coerced to Selector, replace the
// coercion with the ")".
SourceLoc endLoc = Lexer::getLocForEndOfToken(Ctx.SourceMgr,
expr->getEndLoc());
diag.fixItReplace(SourceRange(endLoc, coerce->getEndLoc()), ")");
} else {
// Otherwise, just insert the closing ")".
diag.fixItInsertAfter(stringLiteral->getEndLoc(), ")");
}
};
// Try to parse the string literal as an Objective-C selector, and complain
// if it isn't one.
auto selector = ObjCSelector::parse(Ctx, stringLiteral->getValue());
if (!selector) {
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_literal_invalid);
diag.highlight(stringLiteral->getSourceRange());
addSelectorConstruction(diag);
return Action::Continue(expr);
}
// Look for methods with this selector.
SmallVector<AbstractFunctionDecl *, 8> allMethods;
DC->lookupAllObjCMethods(*selector, allMethods);
// If we didn't find any methods, complain.
if (allMethods.empty()) {
// If this was Selector(("selector-name")), suppress, the
// diagnostic.
if (!fromStringLiteral && hadParens)
return Action::Continue(expr);
{
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_literal_undeclared,
*selector);
addSelectorConstruction(diag);
}
// If the result was from a Selector("selector-name"), add a
// separate note that suggests wrapping the selector in
// parentheses to silence the warning.
if (!fromStringLiteral) {
Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_construction_suppress_warning)
.fixItInsert(stringLiteral->getStartLoc(), "(")
.fixItInsertAfter(stringLiteral->getEndLoc(), ")");
}
return Action::Continue(expr);
}
// Find the "best" method that has this selector, so we can report
// that.
AbstractFunctionDecl *bestMethod = nullptr;
for (auto method : allMethods) {
// If this is the first method, use it.
if (!bestMethod) {
bestMethod = method;
continue;
}
// If referencing the best method would produce an ambiguity and
// referencing the new method would not, we have a new "best".
if (isSelectorReferenceAmbiguous(bestMethod) &&
!isSelectorReferenceAmbiguous(method)) {
bestMethod = method;
continue;
}
// If this method is within a protocol...
if (auto proto = method->getDeclContext()->getSelfProtocolDecl()) {
// If the best so far is not from a protocol, or is from a
// protocol that inherits this protocol, we have a new best.
auto bestProto = bestMethod->getDeclContext()->getSelfProtocolDecl();
if (!bestProto || bestProto->inheritsFrom(proto))
bestMethod = method;
continue;
}
// This method is from a class.
auto classDecl = method->getDeclContext()->getSelfClassDecl();
// If the best method was from a protocol, keep it.
auto bestClassDecl = bestMethod->getDeclContext()->getSelfClassDecl();
if (!bestClassDecl) continue;
// If the best method was from a subclass of the place where
// this method was declared, we have a new best.
if (classDecl->isSuperclassOf(bestClassDecl)) {
bestMethod = method;
}
}
// If we have a best method, reference it.
if (bestMethod) {
// Form the replacement #selector expression.
SmallString<32> replacement;
{
llvm::raw_svector_ostream out(replacement);
auto nominal = bestMethod->getDeclContext()->getSelfNominalTypeDecl();
out << "#selector(";
DeclName name;
auto bestAccessor = dyn_cast<AccessorDecl>(bestMethod);
if (bestAccessor) {
switch (bestAccessor->getAccessorKind()) {
case AccessorKind::Get:
out << "getter: ";
name = bestAccessor->getStorage()->getName();
break;
case AccessorKind::DistributedGet:
out << "_distributed_getter: ";
name = bestAccessor->getStorage()->getName();
break;
case AccessorKind::Set:
case AccessorKind::WillSet:
case AccessorKind::DidSet:
out << "setter: ";
name = bestAccessor->getStorage()->getName();
break;
case AccessorKind::Address:
case AccessorKind::MutableAddress:
case AccessorKind::Read:
case AccessorKind::Modify:
case AccessorKind::Init:
llvm_unreachable("cannot be @objc");
}
} else {
name = bestMethod->getName();
}
auto typeName = nominal->getName().str();
// If we're inside a type Foo (or an extension of it) and the suggestion
// is going to be #selector(Foo.bar) (or #selector(SuperclassOfFoo.bar),
// then suggest the more natural #selector(self.bar) instead.
if (auto containingTypeContext = DC->getInnermostTypeContext()) {
auto methodNominalType = nominal->getDeclaredType();
auto outerNomType = containingTypeContext->getSelfNominalTypeDecl()
->getDeclaredType();
if (methodNominalType->isEqual(outerNomType) ||
methodNominalType->isExactSuperclassOf(outerNomType))
typeName = "self";
}
out << typeName << "." << name.getBaseName();
auto argNames = name.getArgumentNames();
// Only print the parentheses if there are some argument
// names, because "()" would indicate a call.
if (!argNames.empty()) {
out << "(";
for (auto argName : argNames) {
if (argName.empty()) out << "_";
else out << argName.str();
out << ":";
}
out << ")";
}
// If there will be an ambiguity when referring to the method,
// introduce a coercion to resolve it to the method we found.
if (!bestAccessor && isSelectorReferenceAmbiguous(bestMethod)) {
if (auto fnType =
bestMethod->getInterfaceType()->getAs<FunctionType>()) {
// For static/class members, drop the metatype argument.
if (bestMethod->isStatic())
fnType = fnType->getResult()->getAs<FunctionType>();
// Coerce to this type.
assert(fnType->hasTypeRepr() &&
"Objective-C methods should always have printable types");
out << " as ";
fnType->print(out);
}
}
out << ")";
}
// Emit the diagnostic.
SourceRange replacementRange = expr->getSourceRange();
if (auto coerce = getParentCoercion())
replacementRange.End = coerce->getEndLoc();
Ctx.Diags
.diagnose(expr->getLoc(),
fromStringLiteral
? diag::selector_literal_deprecated_suggest
: diag::selector_construction_suggest)
.fixItReplace(replacementRange, replacement);
return Action::Continue(expr);
}
// If we couldn't pick a method to use for #selector, just wrap
// the string literal in Selector(...).
if (fromStringLiteral) {
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_literal_deprecated);
addSelectorConstruction(diag);
return Action::Continue(expr);
}
return Action::Continue(expr);
}
};
} // end anonymous namespace
static void diagDeprecatedObjCSelectors(const DeclContext *dc,
const Expr *expr) {
auto selectorTy = dc->getASTContext().getSelectorType();
if (!selectorTy) return;
const_cast<Expr *>(expr)->walk(ObjCSelectorWalker(dc, selectorTy));
}
/// Skip over syntactic patterns that aren't typed patterns.
static Pattern *skipNonTypeSyntacticPatterns(Pattern *pattern) {
if (auto *pp = dyn_cast<ParenPattern>(pattern))
return skipNonTypeSyntacticPatterns(pp->getSubPattern());
if (auto *vp = dyn_cast<BindingPattern>(pattern))
return skipNonTypeSyntacticPatterns(vp->getSubPattern());
return pattern;
}
/// Diagnose things like this, where 'i' is an Int, not an Int?
/// if let x: Int = i {
static void
checkImplicitPromotionsInCondition(const StmtConditionElement &cond,
ASTContext &ctx) {
auto *p = cond.getPatternOrNull();
if (!p) return;
if (auto *subExpr = isImplicitPromotionToOptional(cond.getInitializer())) {
// If the subexpression was actually optional, then the pattern must be
// checking for a type, which forced it to be promoted to a double optional
// type.
if (auto ooType = subExpr->getType()->getOptionalObjectType()) {
if (auto OSP = dyn_cast<OptionalSomePattern>(p)) {
// Check for 'if let' to produce a tuned diagnostic.
if (auto *TP = dyn_cast<TypedPattern>(OSP->getSubPattern())) {
ctx.Diags.diagnose(cond.getIntroducerLoc(),
diag::optional_check_promotion,
subExpr->getType())
.highlight(subExpr->getSourceRange())
.fixItReplace(TP->getTypeRepr()->getSourceRange(),
ooType->getString());
return;
}
}
ctx.Diags.diagnose(cond.getIntroducerLoc(),
diag::optional_pattern_match_promotion,
subExpr->getType(), cond.getInitializer()->getType())
.highlight(subExpr->getSourceRange());
return;
}
// Check for 'if let' to produce a tuned diagnostic.
if (isa<OptionalSomePattern>(skipNonTypeSyntacticPatterns(p))) {
ctx.Diags.diagnose(
cond.getIntroducerLoc(),
p->isImplicit()
? diag::condition_optional_element_pattern_not_valid_type
: diag::optional_element_pattern_not_valid_type,
subExpr->getType())
.highlight(subExpr->getSourceRange());
return;
}
ctx.Diags.diagnose(cond.getIntroducerLoc(),
diag::optional_check_nonoptional,
subExpr->getType())
.highlight(subExpr->getSourceRange());
}
}
/// Diagnoses a `if #available(...)` condition. Returns true if a diagnostic
/// was emitted.
static bool diagnoseAvailabilityCondition(PoundAvailableInfo *info,
DeclContext *DC) {
// Reject inlinable code using availability macros. In order to lift this
// restriction, macros would need to either be expanded when printed in
// swiftinterfaces or be parsable as macros by module clients.
auto fragileKind = DC->getFragileFunctionKind();
if (fragileKind.kind != FragileFunctionKind::None) {
for (auto queries : info->getQueries()) {
if (auto availSpec =
dyn_cast<PlatformVersionConstraintAvailabilitySpec>(queries)) {
if (availSpec->getMacroLoc().isValid()) {
DC->getASTContext().Diags.diagnose(
availSpec->getMacroLoc(),
swift::diag::availability_macro_in_inlinable,
fragileKind.getSelector());
return true;
}
}
}
}
return false;
}
/// Diagnoses whether the given clang::Decl can be referenced by a
/// `if #_hasSymbol(...)` condition. Returns true if a diagnostic was emitted.
static bool diagnoseHasSymbolConditionClangDecl(SourceLoc loc,
const clang::Decl *clangDecl,
ASTContext &ctx) {
if (isa<clang::ObjCInterfaceDecl>(clangDecl) ||
isa<clang::FunctionDecl>(clangDecl))
return false;
if (auto *method = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
// FIXME: Allow objc_direct methods when supported by IRGen.
ctx.Diags.diagnose(loc,
diag::has_symbol_invalid_decl_use_responds_to_selector,
/*isProperty*/ false, method->getNameAsString());
return true;
}
if (auto *property = dyn_cast<clang::ObjCPropertyDecl>(clangDecl)) {
// FIXME: Allow objc_direct properties when supported by IRGen.
ctx.Diags.diagnose(loc,
diag::has_symbol_invalid_decl_use_responds_to_selector,
/*isProperty*/ true, property->getNameAsString());
return true;
}
ctx.Diags.diagnose(loc, diag::has_symbol_invalid_decl);
return true;
}
/// Diagnoses a `if #_hasSymbol(...)` condition. Returns true if a diagnostic
/// was emitted.
static bool diagnoseHasSymbolCondition(PoundHasSymbolInfo *info,
DeclContext *DC) {
// If we have an invalid info, null expression, or expression without a type
// then type checking failed already for this condition.
if (info->isInvalid())
return false;
auto symbolExpr = info->getSymbolExpr();
if (!symbolExpr)
return false;
if (!symbolExpr->getType())
return false;
auto &ctx = DC->getASTContext();
auto decl = info->getReferencedDecl().getDecl();
if (!decl) {
// Diagnose because we weren't able to interpret the expression as one
// that uniquely identifies a single declaration.
ctx.Diags.diagnose(symbolExpr->getLoc(), diag::has_symbol_invalid_expr);
return true;
}
if (auto *clangDecl = decl->getClangDecl()) {
if (diagnoseHasSymbolConditionClangDecl(symbolExpr->getLoc(), clangDecl,
ctx))
return true;
}
if (DC->getFragileFunctionKind().kind == FragileFunctionKind::None &&
!decl->isWeakImported(DC->getParentModule())) {
// `if #_hasSymbol(someStronglyLinkedSymbol)` is functionally a no-op
// and may indicate the developer has mis-identified the declaration
// they want to check (or forgot to import the module weakly).
ctx.Diags.diagnose(symbolExpr->getLoc(), diag::has_symbol_decl_must_be_weak,
decl);
return true;
}
return false;
}
/// Perform MiscDiagnostics for the conditions belonging to a \c
/// LabeledConditionalStmt.
static void checkLabeledStmtConditions(ASTContext &ctx,
const LabeledConditionalStmt *stmt,
DeclContext *DC) {
for (auto elt : stmt->getCond()) {
// Check for implicit optional promotions in stmt-condition patterns.
checkImplicitPromotionsInCondition(elt, ctx);
switch (elt.getKind()) {
case StmtConditionElement::CK_Boolean:
break;
case StmtConditionElement::CK_PatternBinding:
diagnoseMoveOnlyPatternMatchSubject(ctx, DC, elt.getInitializer());
break;
case StmtConditionElement::CK_Availability: {
auto info = elt.getAvailability();
(void)diagnoseAvailabilityCondition(info, DC);
break;
}
case StmtConditionElement::CK_HasSymbol: {
auto info = elt.getHasSymbolInfo();
if (diagnoseHasSymbolCondition(info, DC))
info->setInvalid();
break;
}
}
}
}
static void diagnoseUnintendedOptionalBehavior(const Expr *E,
const DeclContext *DC) {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return;
class UnintendedOptionalBehaviorWalker : public ASTWalker {
ASTContext &Ctx;
SmallPtrSet<Expr *, 16> IgnoredExprs;
class OptionalToAnyCoercion {
public:
Type DestType;
CoerceExpr *ParentCoercion;
bool shouldSuppressDiagnostic() {
// If we have a parent CoerceExpr that has the same type as our
// Optional-to-Any coercion, don't emit a diagnostic.
return ParentCoercion && ParentCoercion->getType()->isEqual(DestType);
}
};
/// Returns true iff a coercion from srcType to destType is an
/// Optional-to-Any coercion.
bool isOptionalToAnyCoercion(Type srcType, Type destType) {
size_t difference = 0;
return isOptionalToAnyCoercion(srcType, destType, difference);
}
/// Returns true iff a coercion from srcType to destType is an
/// Optional-to-Any coercion. On returning true, the value of 'difference'
/// will be the difference in the levels of optionality.
bool isOptionalToAnyCoercion(Type srcType, Type destType,
size_t &difference) {
SmallVector<Type, 4> destOptionals;
auto destValueType =
destType->lookThroughAllOptionalTypes(destOptionals);
if (!destValueType->isAny())
return false;
SmallVector<Type, 4> srcOptionals;
srcType->lookThroughAllOptionalTypes(srcOptionals);
if (srcOptionals.size() > destOptionals.size()) {
difference = srcOptionals.size() - destOptionals.size();
return true;
} else {
return false;
}
}
/// Returns true iff the collection upcast coercion is an Optional-to-Any
/// coercion.
bool isOptionalToAnyCoercion(CollectionUpcastConversionExpr::ConversionPair
conversion) {
if (!conversion.OrigValue || !conversion.Conversion)
return false;
auto srcType = conversion.OrigValue->getType();
auto destType = conversion.Conversion->getType();
return isOptionalToAnyCoercion(srcType, destType);
}
/// Looks through OptionalEvaluationExprs and InjectIntoOptionalExprs to
/// find a child ErasureExpr, returning nullptr if no such child is found.
/// Any intermediate OptionalEvaluationExprs will be marked as ignored.
ErasureExpr *findErasureExprThroughOptionalInjections(Expr *E) {
while (true) {
if (auto *next = dyn_cast<OptionalEvaluationExpr>(E)) {
// We don't want to re-visit any intermediate optional evaluations.
IgnoredExprs.insert(next);
E = next->getSubExpr();
} else if (auto *next = dyn_cast<InjectIntoOptionalExpr>(E)) {
E = next->getSubExpr();
} else {
break;
}
}
return dyn_cast<ErasureExpr>(E);
}
void emitSilenceOptionalAnyWarningWithCoercion(Expr *E, Type destType) {
assert(destType->hasTypeRepr() &&
"coercion to Any should always be printable");
SmallString<16> coercionString;
coercionString += " as ";
coercionString += destType->getWithoutParens()->getString();
Ctx.Diags.diagnose(E->getLoc(), diag::silence_optional_to_any,
destType, coercionString.substr(1))
.highlight(E->getSourceRange())
.fixItInsertAfter(E->getEndLoc(), coercionString);
}
static bool hasImplicitlyUnwrappedResult(Expr *E) {
auto *decl = getDeclForImplicitlyUnwrappedExpr(E);
return decl && decl->isImplicitlyUnwrappedOptional();
}
static ValueDecl *getDeclForImplicitlyUnwrappedExpr(Expr *E) {
E = E->getValueProvidingExpr();
// Look through implicit conversions like loads, derived-to-base
// conversion, etc.
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(E)) {
E = ICE->getSubExpr();
}
if (auto *subscript = dyn_cast<SubscriptExpr>(E)) {
if (subscript->hasDecl())
return subscript->getDecl().getDecl();
return nullptr;
}
if (auto *memberRef = dyn_cast<MemberRefExpr>(E))
return memberRef->getMember().getDecl();
if (auto *declRef = dyn_cast<DeclRefExpr>(E))
return declRef->getDecl();
if (auto *apply = dyn_cast<ApplyExpr>(E)) {
auto *decl = apply->getCalledValue(/*skipFunctionConversions=*/true);
if (isa_and_nonnull<AbstractFunctionDecl>(decl))
return decl;
}
return nullptr;
}
void visitErasureExpr(ErasureExpr *E, OptionalToAnyCoercion coercion) {
if (coercion.shouldSuppressDiagnostic())
return;
auto subExpr = E->getSubExpr();
// Look through any BindOptionalExprs, as the coercion may have started
// from a higher level of optionality.
while (auto *bindExpr = dyn_cast<BindOptionalExpr>(subExpr))
subExpr = bindExpr->getSubExpr();
// Do not warn on coercions from implicitly unwrapped optionals
// for Swift versions less than 5.
if (!Ctx.isSwiftVersionAtLeast(5) &&
hasImplicitlyUnwrappedResult(subExpr))
return;
// We're taking the source type from the child of any BindOptionalExprs,
// and the destination from the parent of any
// (InjectIntoOptional/OptionalEvaluation)Exprs in order to take into
// account any bindings that need to be done for nested Optional-to-Any
// coercions, e.g Int??? to Any?.
auto srcType = subExpr->getType();
auto destType = coercion.DestType;
size_t optionalityDifference = 0;
if (!isOptionalToAnyCoercion(srcType, destType, optionalityDifference))
return;
// If we're implicitly unwrapping from IUO to Any then emit a custom
// diagnostic
if (hasImplicitlyUnwrappedResult(subExpr)) {
if (auto decl = getDeclForImplicitlyUnwrappedExpr(subExpr)) {
Ctx.Diags.diagnose(subExpr->getStartLoc(), diag::iuo_to_any_coercion,
/* from */ srcType, /* to */ destType)
.highlight(subExpr->getSourceRange());
auto noteDiag = isa<FuncDecl>(decl)
? diag::iuo_to_any_coercion_note_func_result
: diag::iuo_to_any_coercion_note;
Ctx.Diags.diagnose(decl->getLoc(), noteDiag, decl);
}
} else {
Ctx.Diags.diagnose(subExpr->getStartLoc(),
diag::optional_to_any_coercion,
/* from */ srcType, /* to */ destType)
.highlight(subExpr->getSourceRange());
}
if (optionalityDifference == 1) {
Ctx.Diags.diagnose(subExpr->getLoc(), diag::default_optional_to_any)
.highlight(subExpr->getSourceRange())
.fixItInsertAfter(subExpr->getEndLoc(), " ?? <#default value#>");
}
SmallString<4> forceUnwrapString;
for (size_t i = 0; i < optionalityDifference; ++i)
forceUnwrapString += "!";
Ctx.Diags.diagnose(subExpr->getLoc(), diag::force_optional_to_any)
.highlight(subExpr->getSourceRange())
.fixItInsertAfter(subExpr->getEndLoc(), forceUnwrapString);
emitSilenceOptionalAnyWarningWithCoercion(subExpr, destType);
}
void visitCollectionUpcastExpr(CollectionUpcastConversionExpr *E,
OptionalToAnyCoercion coercion) {
// We only need to consider the valueConversion, as the Key type of a
// Dictionary cannot be implicitly coerced to Any.
auto valueConversion = E->getValueConversion();
// We're handling the coercion of the entire collection, so we don't need
// to re-visit a nested ErasureExpr for the value.
if (auto conversionExpr = valueConversion.Conversion)
if (auto *erasureExpr =
findErasureExprThroughOptionalInjections(conversionExpr))
IgnoredExprs.insert(erasureExpr);
if (coercion.shouldSuppressDiagnostic() ||
!isOptionalToAnyCoercion(valueConversion))
return;
auto subExpr = E->getSubExpr();
Ctx.Diags.diagnose(subExpr->getStartLoc(), diag::optional_to_any_coercion,
/* from */ subExpr->getType(), /* to */ E->getType())
.highlight(subExpr->getSourceRange());
emitSilenceOptionalAnyWarningWithCoercion(subExpr, E->getType());
}
void visitPossibleOptionalToAnyExpr(Expr *E,
OptionalToAnyCoercion coercion) {
if (auto *upcastExpr =
dyn_cast<CollectionUpcastConversionExpr>(E)) {
visitCollectionUpcastExpr(upcastExpr, coercion);
} else if (auto *erasureExpr = dyn_cast<ErasureExpr>(E)) {
visitErasureExpr(erasureExpr, coercion);
} else if (auto *optionalEvalExpr = dyn_cast<OptionalEvaluationExpr>(E)) {
// The ErasureExpr could be nested within optional injections and
// bindings, such as is the case for e.g Int??? to Any?. Try and find
// and visit it directly, making sure we don't re-visit it later.
auto subExpr = optionalEvalExpr->getSubExpr();
if (auto *erasureExpr =
findErasureExprThroughOptionalInjections(subExpr)) {
visitErasureExpr(erasureExpr, coercion);
IgnoredExprs.insert(erasureExpr);
}
}
}
enum class UnintendedInterpolationKind: bool {
Optional,
Function
};
void visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E) {
E->forEachSegment(Ctx,
[&](bool isInterpolation, CallExpr *segment) -> void {
if (isInterpolation) {
diagnoseIfUnintendedInterpolation(segment,
UnintendedInterpolationKind::Optional);
diagnoseIfUnintendedInterpolation(segment,
UnintendedInterpolationKind::Function);
}
});
}
void diagnoseIfUnintendedInterpolation(CallExpr *segment,
UnintendedInterpolationKind kind) {
if (interpolationWouldBeUnintended(
segment->getCalledValue(/*skipFunctionConversions=*/true), kind))
if (auto firstArg =
getFirstArgIfUnintendedInterpolation(segment->getArgs(), kind))
diagnoseUnintendedInterpolation(firstArg, kind);
}
bool interpolationWouldBeUnintended(ConcreteDeclRef appendMethod,
UnintendedInterpolationKind kind) {
ValueDecl * fnDecl = appendMethod.getDecl();
// If things aren't set up right, just hope for the best.
if (!fnDecl || fnDecl->isInvalid())
return false;
// If the decl expects an optional, that's fine.
auto uncurriedType = fnDecl->getInterfaceType()->getAs<AnyFunctionType>();
auto curriedType = uncurriedType->getResult()->getAs<AnyFunctionType>();
// I don't know why you'd use a zero-arg interpolator, but it obviously
// doesn't interpolate an optional.
if (curriedType->getNumParams() == 0)
return false;
// If the first parameter explicitly accepts the type, this method
// presumably doesn't want us to warn about optional use.
auto firstParamType =
curriedType->getParams().front().getPlainType()->getRValueType();
if (kind == UnintendedInterpolationKind::Optional) {
if (firstParamType->getOptionalObjectType())
return false;
} else {
if (firstParamType->is<AnyFunctionType>())
return false;
}
return true;
}
Expr *
getFirstArgIfUnintendedInterpolation(ArgumentList *args,
UnintendedInterpolationKind kind) {
// Just check the first argument, which is usually the value
// being interpolated.
if (args->empty())
return nullptr;
auto *firstArg = args->getExpr(0);
// Allow explicit casts.
if (isa<ExplicitCastExpr>(firstArg->getSemanticsProvidingExpr()))
return nullptr;
// If we don't have a type, assume the best.
if (!firstArg->getType() || firstArg->getType()->hasError())
return nullptr;
// Bail out if we don't have an optional.
if (kind == UnintendedInterpolationKind::Optional) {
if (!firstArg->getType()->getRValueType()->getOptionalObjectType())
return nullptr;
}
else if (kind == UnintendedInterpolationKind::Function) {
if (!firstArg->getType()->getRValueType()->is<AnyFunctionType>())
return nullptr;
}
return firstArg;
}
void diagnoseUnintendedInterpolation(Expr * arg, UnintendedInterpolationKind kind) {
Ctx.Diags
.diagnose(arg->getStartLoc(),
diag::debug_description_in_string_interpolation_segment,
(bool)kind)
.highlight(arg->getSourceRange());
// Suggest 'String(describing: <expr>)'.
auto argStart = arg->getStartLoc();
Ctx.Diags
.diagnose(
arg->getLoc(),
diag::silence_debug_description_in_interpolation_segment_call)
.highlight(arg->getSourceRange())
.fixItInsert(argStart, "String(describing: ")
.fixItInsertAfter(arg->getEndLoc(), ")");
if (kind == UnintendedInterpolationKind::Optional) {
// Suggest inserting a default value.
Ctx.Diags.diagnose(arg->getLoc(), diag::default_optional_to_any)
.highlight(arg->getSourceRange())
.fixItInsertAfter(arg->getEndLoc(), " ?? <#default value#>");
}
}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return Action::SkipNode(E);
if (IgnoredExprs.count(E))
return Action::Continue(E);
if (auto *literal = dyn_cast<InterpolatedStringLiteralExpr>(E)) {
visitInterpolatedStringLiteralExpr(literal);
} else if (auto *coercion = dyn_cast<CoerceExpr>(E)) {
// If we come across a CoerceExpr, visit its subExpr with the coercion
// as the parent, making sure we don't re-visit the subExpr later.
auto subExpr = coercion->getSubExpr();
visitPossibleOptionalToAnyExpr(subExpr,
{ subExpr->getType(), coercion });
IgnoredExprs.insert(subExpr);
} else {
visitPossibleOptionalToAnyExpr(E, { E->getType(), nullptr });
}
return Action::Continue(E);
}
public:
UnintendedOptionalBehaviorWalker(ASTContext &ctx) : Ctx(ctx) { }
};
UnintendedOptionalBehaviorWalker Walker(DC->getASTContext());
const_cast<Expr *>(E)->walk(Walker);
}
static void diagnoseDeprecatedWritableKeyPath(const Expr *E,
const DeclContext *DC) {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return;
class DeprecatedWritableKeyPathWalker : public ASTWalker {
ASTContext &Ctx;
const DeclContext *DC;
void visitKeyPathApplicationExpr(KeyPathApplicationExpr *E) {
bool isWrite = false;
if (auto *P = Parent.getAsExpr())
if (auto *AE = dyn_cast<AssignExpr>(P))
if (AE->getDest() == E)
isWrite = true;
if (!isWrite)
return;
if (auto *keyPathExpr = dyn_cast<KeyPathExpr>(E->getKeyPath())) {
if (!keyPathExpr->getType()->isWritableKeyPath() &&
!keyPathExpr->getType()->isReferenceWritableKeyPath())
return;
assert(keyPathExpr->getComponents().size() > 0);
auto &component = keyPathExpr->getComponents().back();
if (component.getKind() == KeyPathExpr::Component::Kind::Property) {
auto *storage =
cast<AbstractStorageDecl>(component.getDeclRef().getDecl());
if (!storage->isSettable(nullptr) ||
!storage->isSetterAccessibleFrom(DC)) {
Ctx.Diags.diagnose(keyPathExpr->getLoc(),
swift::diag::expr_deprecated_writable_keypath,
storage);
}
}
}
}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return Action::SkipNode(E);
if (auto *KPAE = dyn_cast<KeyPathApplicationExpr>(E)) {
visitKeyPathApplicationExpr(KPAE);
return Action::Continue(E);
}
return Action::Continue(E);
}
public:
DeprecatedWritableKeyPathWalker(const DeclContext *DC)
: Ctx(DC->getASTContext()), DC(DC) {}
};
DeprecatedWritableKeyPathWalker Walker(DC);
const_cast<Expr *>(E)->walk(Walker);
}
static void maybeDiagnoseCallToKeyValueObserveMethod(const Expr *E,
const DeclContext *DC) {
class KVOObserveCallWalker : public ASTWalker {
const ASTContext &C;
public:
KVOObserveCallWalker(ASTContext &ctx) : C(ctx) {}
void maybeDiagnoseCallExpr(CallExpr *expr) {
auto fn = expr->getCalledValue(/*skipFunctionConversions=*/true);
if (!fn)
return;
SmallVector<KeyPathExpr *, 1> keyPathArgs;
auto *args = expr->getArgs();
auto isKeyPathLiteral = [&](Expr *argExpr) -> KeyPathExpr * {
if (auto *DTBE = getAsExpr<DerivedToBaseExpr>(argExpr))
argExpr = DTBE->getSubExpr();
// Sendable key path literals are represented as an existential
// protocol composition with `Sendable` protocol which has to be
// opened in certain scenarios i.e. to pass it to non-Sendable version.
if (auto *OEE = getAsExpr<OpenExistentialExpr>(argExpr))
argExpr = OEE->getExistentialValue();
return getAsExpr<KeyPathExpr>(argExpr);
};
if (fn->getModuleContext()->getName() == C.Id_Foundation &&
fn->getName().isCompoundName("observe",
{"", "options", "changeHandler"})) {
if (auto keyPathArg = isKeyPathLiteral(args->getExpr(0))) {
keyPathArgs.push_back(keyPathArg);
}
} else if (fn->getAttrs()
.hasSemanticsAttr(semantics::KEYPATH_MUST_BE_VALID_FOR_KVO)) {
for (auto *argExpr : args->getArgExprs()) {
if (auto keyPathArg = isKeyPathLiteral(argExpr)) {
keyPathArgs.push_back(keyPathArg);
}
}
}
for (auto *keyPathArg : keyPathArgs) {
auto lastComponent = keyPathArg->getComponents().back();
if (lastComponent.getKind() != KeyPathExpr::Component::Kind::Property)
continue;
auto property = lastComponent.getDeclRef().getDecl();
if (!property)
continue;
auto propertyVar = cast<VarDecl>(property);
if (propertyVar->shouldUseObjCDispatch() ||
(propertyVar->isObjC() &&
propertyVar->getParsedAccessor(AccessorKind::Set)))
continue;
C.Diags
.diagnose(expr->getLoc(),
diag::observe_keypath_property_not_objc_dynamic,
property->getName(), fn->getName())
.highlight(lastComponent.getLoc());
}
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return Action::SkipNode(E);
if (auto *CE = dyn_cast<CallExpr>(E)) {
maybeDiagnoseCallExpr(CE);
return Action::SkipNode(E);
}
return Action::Continue(E);
}
};
KVOObserveCallWalker Walker(DC->getASTContext());
const_cast<Expr *>(E)->walk(Walker);
}
static void diagnoseExplicitUseOfLazyVariableStorage(const Expr *E,
const DeclContext *DC) {
class ExplicitLazyVarStorageAccessFinder : public ASTWalker {
const ASTContext &C;
public:
ExplicitLazyVarStorageAccessFinder(ASTContext &ctx) : C(ctx) {}
void tryDiagnoseExplicitLazyStorageVariableUse(MemberRefExpr *MRE) {
if (MRE->isImplicit()) {
return;
}
auto VD = dyn_cast<VarDecl>(MRE->getMember().getDecl());
if (!VD) {
return;
}
auto sourceFileKind = VD->getDeclContext()->getParentSourceFile();
if (!sourceFileKind) {
return;
}
if (sourceFileKind->Kind != SourceFileKind::Library &&
sourceFileKind->Kind != SourceFileKind::Main) {
return;
}
if (VD->isLazyStorageProperty()) {
C.Diags.diagnose(MRE->getLoc(), diag::lazy_var_storage_access);
}
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return Action::SkipNode(E);
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
tryDiagnoseExplicitLazyStorageVariableUse(MRE);
return Action::SkipNode(E);
}
return Action::Continue(E);
}
};
ExplicitLazyVarStorageAccessFinder Walker(DC->getASTContext());
const_cast<Expr *>(E)->walk(Walker);
}
static void diagnoseComparisonWithNaN(const Expr *E, const DeclContext *DC) {
class ComparisonWithNaNFinder : public ASTWalker {
const ASTContext &C;
public:
ComparisonWithNaNFinder(const DeclContext *dc)
: C(dc->getASTContext()) {}
void tryDiagnoseComparisonWithNaN(BinaryExpr *BE) {
ValueDecl *comparisonDecl = nullptr;
// Dig out the function declaration.
if (auto Fn = BE->getFn()) {
if (auto DSCE = dyn_cast<DotSyntaxCallExpr>(Fn)) {
comparisonDecl =
DSCE->getCalledValue(/*skipFunctionConversions=*/true);
} else {
comparisonDecl = BE->getCalledValue(/*skipFunctionConversions=*/true);
}
}
// Bail out if it isn't a function.
if (!comparisonDecl || !isa<FuncDecl>(comparisonDecl)) {
return;
}
// We're only interested in comparison functions like == or <=.
auto comparisonDeclName = comparisonDecl->getBaseIdentifier();
if (!comparisonDeclName.isStandardComparisonOperator()) {
return;
}
auto *firstArg = BE->getLHS();
auto *secondArg = BE->getRHS();
// Make sure that both arguments are valid before doing anything else,
// this helps us to debug reports of crashes in `conformsToKnownProtocol`
// referencing arguments (rdar://78920375).
//
// Since this diagnostic should only be run on type-checked AST,
// it's unclear what caused one of the arguments to have null type.
assert(firstArg->getType() && "Expected valid type for first argument");
assert(secondArg->getType() && "Expected valid type for second argument");
// Both arguments must conform to FloatingPoint protocol.
if (!TypeChecker::conformsToKnownProtocol(firstArg->getType(),
KnownProtocolKind::FloatingPoint) ||
!TypeChecker::conformsToKnownProtocol(secondArg->getType(),
KnownProtocolKind::FloatingPoint)) {
return;
}
// Convenience utility to extract argument decl.
auto extractArgumentDecl = [&](Expr *arg) -> ValueDecl * {
if (auto DRE = dyn_cast<DeclRefExpr>(arg)) {
return DRE->getDecl();
} else if (auto MRE = dyn_cast<MemberRefExpr>(arg)) {
return MRE->getMember().getDecl();
}
return nullptr;
};
// Dig out the declarations for the arguments.
auto *firstVal = extractArgumentDecl(firstArg);
auto *secondVal = extractArgumentDecl(secondArg);
// If we can't find declarations for both arguments, bail out,
// because one of them has to be '.nan'.
if (!firstArg && !secondArg) {
return;
}
// Convenience utility to check if this is a 'nan' variable.
auto isNanDecl = [&](ValueDecl *VD) {
return VD && isa<VarDecl>(VD) && VD->getBaseIdentifier().is("nan");
};
// Diagnose comparison with '.nan'.
//
// If the comparison is done using '<=', '<', '==', '>', '>=', then
// the result is always false. If the comparison is done using '!=',
// then the result is always true.
//
// Emit a different diagnostic which doesn't mention using '.isNaN' if
// the comparison isn't done using '==' or '!=' or if both sides are
// '.nan'.
if (isNanDecl(firstVal) && isNanDecl(secondVal)) {
C.Diags.diagnose(BE->getLoc(), diag::nan_comparison_both_nan,
comparisonDeclName.str(), comparisonDeclName.is("!="));
} else if (isNanDecl(firstVal) || isNanDecl(secondVal)) {
if (comparisonDeclName.is("==") || comparisonDeclName.is("!=")) {
auto exprStr =
C.SourceMgr
.extractText(Lexer::getCharSourceRangeFromSourceRange(
C.SourceMgr, firstArg->getSourceRange()))
.str();
auto prefix = exprStr;
if (comparisonDeclName.is("!=")) {
prefix = "!" + prefix;
}
C.Diags.diagnose(BE->getLoc(), diag::nan_comparison,
comparisonDeclName, comparisonDeclName.is("!="),
prefix, exprStr);
} else {
C.Diags.diagnose(BE->getLoc(), diag::nan_comparison_without_isnan,
comparisonDeclName, comparisonDeclName.is("!="));
}
}
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return Action::SkipNode(E);
if (auto *BE = dyn_cast<BinaryExpr>(E)) {
tryDiagnoseComparisonWithNaN(BE);
return Action::SkipNode(E);
}
return Action::Continue(E);
}
};
ComparisonWithNaNFinder Walker(DC);
const_cast<Expr *>(E)->walk(Walker);
}
static void diagUnqualifiedAccessToMethodNamedSelf(const Expr *E,
const DeclContext *DC) {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return;
class DiagnoseWalker : public ASTWalker {
ASTContext &Ctx;
const DeclContext *DC;
public:
DiagnoseWalker(const DeclContext *DC) : Ctx(DC->getASTContext()), DC(DC) {}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return Action::SkipNode(E);
auto *DRE = dyn_cast<DeclRefExpr>(E);
// If this is not an explicit 'self' reference, let's keep searching.
if (!DRE || DRE->isImplicit())
return Action::Continue(E);
// If this not 'self' or it's not a function reference, it's unrelated.
if (!(DRE->getDecl()->getBaseName() == Ctx.Id_self &&
DRE->getType()->is<AnyFunctionType>()))
return Action::Continue(E);
auto typeContext = DC->getInnermostTypeContext();
// Use of 'self' in enums is not confusable.
if (!typeContext || typeContext->getSelfEnumDecl())
return Action::Continue(E);
// self(...) is not easily confusable.
if (auto *parentExpr = Parent.getAsExpr()) {
if (isa<CallExpr>(parentExpr))
return Action::Continue(E);
// Explicit call to a static method 'self' of some type is not
// confusable.
if (isa<DotSyntaxCallExpr>(parentExpr) && !parentExpr->isImplicit())
return Action::Continue(E);
}
auto baseType = typeContext->getDeclaredInterfaceType();
auto baseTypeString = baseType.getString();
Ctx.Diags.diagnose(E->getLoc(), diag::self_refers_to_method,
baseTypeString);
Ctx.Diags
.diagnose(E->getLoc(), diag::fix_unqualified_access_member_named_self,
baseTypeString)
.fixItInsert(E->getLoc(), diag::insert_type_qualification, baseType);
return Action::Continue(E);
}
};
DiagnoseWalker Walker(DC);
const_cast<Expr *>(E)->walk(Walker);
}
static void
diagnoseDictionaryLiteralDuplicateKeyEntries(const Expr *E,
const DeclContext *DC) {
class DiagnoseWalker : public ASTWalker {
ASTContext &Ctx;
private:
std::string getKeyStringValue(const LiteralExpr *keyExpr) {
if (auto *MLE = dyn_cast<MagicIdentifierLiteralExpr>(keyExpr)) {
return getMagicLiteralKeyValue(MLE);
}
std::string out;
llvm::raw_string_ostream OS(out);
keyExpr->printConstExprValue(&OS, /*additionalCheck=*/nullptr);
return out;
}
std::string getMagicLiteralKeyValue(const MagicIdentifierLiteralExpr *MLE) {
auto magicLiteralValue = MLE->getLiteralKindDescription().str();
switch (MLE->getKind()) {
case MagicIdentifierLiteralExpr::DSOHandle:
case MagicIdentifierLiteralExpr::FileID:
case MagicIdentifierLiteralExpr::FileIDSpelledAsFile:
case MagicIdentifierLiteralExpr::FilePath:
case MagicIdentifierLiteralExpr::FilePathSpelledAsFile:
case MagicIdentifierLiteralExpr::Function:
break;
// Those are literals that can evaluate to different values in a
// dictionary literal declaration context based on source position
// so we need to consider that position as part of the literal value.
case MagicIdentifierLiteralExpr::Column: {
unsigned int column;
std::tie(std::ignore, column) =
Ctx.SourceMgr.getPresumedLineAndColumnForLoc(MLE->getStartLoc());
magicLiteralValue += ":" + std::to_string(column);
break;
}
case MagicIdentifierLiteralExpr::Line: {
unsigned int line;
std::tie(line, std::ignore) =
Ctx.SourceMgr.getPresumedLineAndColumnForLoc(MLE->getStartLoc());
magicLiteralValue += ":" + std::to_string(line);
break;
}
}
return magicLiteralValue;
}
std::string getKeyStringValueForDiagnostic(const LiteralExpr *keyExpr) {
std::string out;
switch (keyExpr->getKind()) {
case ExprKind::NilLiteral:
case ExprKind::MagicIdentifierLiteral:
return out;
case ExprKind::StringLiteral: {
const auto *SL = cast<StringLiteralExpr>(keyExpr);
out = SL->getValue().str();
break;
}
default:
llvm::raw_string_ostream OS(out);
keyExpr->printConstExprValue(&OS, /*additionalCheck=*/nullptr);
break;
}
return "'" + out + "'";
}
bool shouldDiagnoseLiteral(const LiteralExpr *LE) {
switch (LE->getKind()) {
case ExprKind::IntegerLiteral:
case ExprKind::FloatLiteral:
case ExprKind::BooleanLiteral:
case ExprKind::StringLiteral:
case ExprKind::MagicIdentifierLiteral:
case ExprKind::NilLiteral:
return true;
// Skip interpolated literals because they
// can contain expressions that although equal
// maybe be evaluated to different values. e.g.
// "\(a) \(a)" where 'a' is a computed variable.
case ExprKind::InterpolatedStringLiteral:
// Also skip object literals as most of them takes paramenters that can
// contain expressions that altough equal may evaluate to different
// values e.g. #fileLiteral(resourceName: a) where 'a' is a computed
// property is valid.
case ExprKind::ObjectLiteral:
// Literal expressions produce Regex<Out> type result,
// which cannot be keys due to not conforming to hashable.
case ExprKind::RegexLiteral:
return false;
// If a new literal is added in the future, the compiler
// will warn that a case is missing from this switch.
#define LITERAL_EXPR(Id, Parent)
#define EXPR(Id, Parent) case ExprKind::Id:
#include "swift/AST/ExprNodes.def"
llvm_unreachable("Not a literal expression");
}
llvm_unreachable("Unhandled literal");
}
public:
DiagnoseWalker(const DeclContext *DC) : Ctx(DC->getASTContext()) {}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Expansion;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
const auto *DLE = dyn_cast_or_null<DictionaryExpr>(E);
if (!DLE)
return Action::Continue(E);
auto type = DLE->getType();
// For other types conforming with `ExpressibleByDictionaryLiteral`
// protocol, duplicated keys may be allowed.
if (!(type && type->isDictionary())) {
return Action::Continue(E);
}
using LiteralKey = std::pair<std::string, ExprKind>;
using Element = std::pair<const TupleExpr *, size_t>;
std::map<LiteralKey, llvm::SmallVector<Element, 4>> groupedLiteralKeys;
for (size_t i = 0; i < DLE->getElements().size(); ++i) {
const auto *elt = DLE->getElement(i);
const auto *tupleElt = cast<TupleExpr>(elt);
const auto *keyExpr =
tupleElt->getElement(0)->getSemanticsProvidingExpr();
auto *LE = dyn_cast<LiteralExpr>(keyExpr);
if (!LE)
continue;
if (!shouldDiagnoseLiteral(LE))
continue;
auto keyStringValue = getKeyStringValue(LE);
auto literalKey = std::make_pair(keyStringValue, keyExpr->getKind());
groupedLiteralKeys[literalKey].push_back({tupleElt, i});
}
// All keys are unique.
if (groupedLiteralKeys.size() == DLE->getNumElements()) {
return Action::Continue(E);
}
auto &DE = Ctx.Diags;
auto emitNoteWithFixit = [&](const Element &duplicated) {
auto note = DE.diagnose(duplicated.first->getLoc(),
diag::duplicated_key_declared_here);
auto duplicatedEltIdx = duplicated.second;
const auto commanLocs = DLE->getCommaLocs();
note.fixItRemove(duplicated.first->getSourceRange());
if (duplicatedEltIdx < commanLocs.size()) {
note.fixItRemove(commanLocs[duplicatedEltIdx]);
} else {
// For the last element remove the previous comma.
note.fixItRemove(commanLocs[duplicatedEltIdx - 1]);
}
};
for (auto &entry : groupedLiteralKeys) {
auto &keyValuePairs = entry.second;
if (keyValuePairs.size() == 1) {
continue;
}
auto elt = keyValuePairs.front();
const auto keyValue = entry.first.first;
const auto keyExpr = cast<LiteralExpr>(
elt.first->getElement(0)->getSemanticsProvidingExpr());
const auto value = getKeyStringValueForDiagnostic(keyExpr);
DE.diagnose(elt.first->getLoc(),
diag::duplicated_literal_keys_in_dictionary_literal, type,
keyExpr->getLiteralKindDescription(), value.empty(), value);
for (auto &duplicated : keyValuePairs) {
emitNoteWithFixit(duplicated);
}
}
return Action::Continue(E);
}
};
DiagnoseWalker Walker(DC);
const_cast<Expr *>(E)->walk(Walker);
}
//===----------------------------------------------------------------------===//
// High-level entry points.
//===----------------------------------------------------------------------===//
/// Emit diagnostics for syntactic restrictions on a given expression.
void swift::performSyntacticExprDiagnostics(
const Expr *E, const DeclContext *DC,
std::optional<ContextualTypePurpose> contextualPurpose, bool isExprStmt,
bool disableOutOfPlaceExprChecking) {
auto &ctx = DC->getASTContext();
TypeChecker::diagnoseSelfAssignment(E);
diagSyntacticUseRestrictions(E, DC, isExprStmt);
diagRecursivePropertyAccess(E, DC);
diagnoseImplicitSelfUseInClosure(E, DC);
diagnoseUnintendedOptionalBehavior(E, DC);
maybeDiagnoseCallToKeyValueObserveMethod(E, DC);
diagnoseExplicitUseOfLazyVariableStorage(E, DC);
diagnoseComparisonWithNaN(E, DC);
if (!ctx.isSwiftVersionAtLeast(5))
diagnoseDeprecatedWritableKeyPath(E, DC);
if (!ctx.LangOpts.DisableAvailabilityChecking)
diagnoseExprAvailability(E, const_cast<DeclContext*>(DC));
if (ctx.LangOpts.EnableObjCInterop)
diagDeprecatedObjCSelectors(DC, E);
diagnoseConstantArgumentRequirement(E, DC);
diagUnqualifiedAccessToMethodNamedSelf(E, DC);
diagnoseDictionaryLiteralDuplicateKeyEntries(E, DC);
if (!disableOutOfPlaceExprChecking)
diagnoseOutOfPlaceExprs(ctx, const_cast<Expr *>(E), contextualPurpose);
}
void swift::performStmtDiagnostics(const Stmt *S, DeclContext *DC) {
auto &ctx = DC->getASTContext();
TypeChecker::checkExistentialTypes(ctx, const_cast<Stmt *>(S), DC);
if (auto switchStmt = dyn_cast<SwitchStmt>(S))
checkSwitch(ctx, switchStmt, DC);
checkStmtConditionTrailingClosure(ctx, S);
if (auto *lcs = dyn_cast<LabeledConditionalStmt>(S))
checkLabeledStmtConditions(ctx, lcs, DC);
if (!ctx.LangOpts.DisableAvailabilityChecking)
diagnoseStmtAvailability(S, const_cast<DeclContext*>(DC));
}
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
void swift::fixItAccess(InFlightDiagnostic &diag, ValueDecl *VD,
AccessLevel desiredAccess, bool isForSetter,
bool shouldUseDefaultAccess) {
StringRef fixItString;
switch (desiredAccess) {
case AccessLevel::Private: fixItString = "private "; break;
case AccessLevel::FilePrivate: fixItString = "fileprivate "; break;
case AccessLevel::Internal: fixItString = "internal "; break;
case AccessLevel::Package: fixItString = "package "; break;
case AccessLevel::Public: fixItString = "public "; break;
case AccessLevel::Open: fixItString = "open "; break;
}
DeclAttributes &attrs = VD->getAttrs();
AbstractAccessControlAttr *attr;
if (isForSetter) {
attr = attrs.getAttribute<SetterAccessAttr>();
cast<AbstractStorageDecl>(VD)->overwriteSetterAccess(desiredAccess);
} else {
attr = attrs.getAttribute<AccessControlAttr>();
VD->overwriteAccess(desiredAccess);
if (auto *ASD = dyn_cast<AbstractStorageDecl>(VD)) {
if (auto *getter = ASD->getAccessor(AccessorKind::Get))
getter->overwriteAccess(desiredAccess);
if (auto *setterAttr = attrs.getAttribute<SetterAccessAttr>()) {
if (setterAttr->getAccess() > desiredAccess)
fixItAccess(diag, VD, desiredAccess, true);
} else {
ASD->overwriteSetterAccess(desiredAccess);
}
}
}
if (isForSetter && VD->getFormalAccess() == desiredAccess) {
assert(attr);
attr->setInvalid();
// Remove the setter attribute.
diag.fixItRemove(attr->Range);
} else if (attr) {
// If the formal access already matches the desired access, the problem
// must be in a parent scope. Don't emit a fix-it.
// FIXME: It's also possible for access to already be /broader/ than what's
// desired, in which case the problem is also in a parent scope. However,
// this function is sometimes called to make access narrower, so assuming
// that a broader scope is acceptable breaks some diagnostics.
if (attr->getAccess() != desiredAccess) {
if (shouldUseDefaultAccess) {
// Remove the attribute if replacement is not preferred.
diag.fixItRemove(attr->getRange());
} else {
// This uses getLocation() instead of getRange() because we don't want to
// replace the "(set)" part of a setter attribute.
diag.fixItReplace(attr->getLocation(), fixItString.drop_back());
}
attr->setInvalid();
}
} else if (auto *override = VD->getAttrs().getAttribute<OverrideAttr>()) {
// Insert the access in front of 'override', if it exists, in order to
// match the same keyword order as produced by method autocompletion.
diag.fixItInsert(override->getLocation(), fixItString);
} else if (auto var = dyn_cast<VarDecl>(VD)) {
if (auto PBD = var->getParentPatternBinding())
diag.fixItInsert(PBD->getStartLoc(), fixItString);
} else {
diag.fixItInsert(VD->getStartLoc(), fixItString);
}
}
/// Retrieve the type name to be used for determining whether we can
/// omit needless words.
static OmissionTypeName getTypeNameForOmission(Type type) {
if (!type)
return "";
ASTContext &ctx = type->getASTContext();
auto objcBoolType = ctx.getObjCBoolType();
/// Determine the options associated with the given type.
auto getOptions = [&](Type type) {
// Look for Boolean types.
OmissionTypeOptions options;
// Look for Boolean types.
if (type->isBool()) {
// Swift.Bool
options |= OmissionTypeFlags::Boolean;
} else if (objcBoolType && type->isEqual(objcBoolType)) {
// ObjectiveC.ObjCBool
options |= OmissionTypeFlags::Boolean;
}
return options;
};
do {
// Look through typealiases.
if (auto aliasTy = dyn_cast<TypeAliasType>(type.getPointer())) {
type = aliasTy->getSinglyDesugaredType();
continue;
}
// Strip off lvalue/inout types.
Type newType = type->getWithoutSpecifierType();
if (newType.getPointer() != type.getPointer()) {
type = newType;
continue;
}
// Look through reference-storage types.
newType = type->getReferenceStorageReferent();
if (newType.getPointer() != type.getPointer()) {
type = newType;
continue;
}
// Look through parentheses.
type = type->getWithoutParens();
// Look through optionals.
if (auto optObjectTy = type->getOptionalObjectType()) {
type = optObjectTy;
continue;
}
break;
} while (true);
// Nominal types.
if (auto nominal = type->getAnyNominal()) {
// If we have a collection, get the element type.
if (auto bound = type->getAs<BoundGenericType>()) {
auto args = bound->getGenericArgs();
if (!args.empty() && (bound->isArray() || bound->isSet())) {
return OmissionTypeName(nominal->getName().str(),
getOptions(bound),
getTypeNameForOmission(args[0]).Name);
}
}
// AnyObject -> "Object".
if (type->isAnyObject())
return "Object";
return OmissionTypeName(nominal->getName().str(), getOptions(type));
}
// Generic type parameters.
if (auto genericParamTy = type->getAs<GenericTypeParamType>()) {
if (auto genericParam = genericParamTy->getDecl())
return genericParam->getName().str();
return "";
}
// Dependent members.
if (auto dependentMemberTy = type->getAs<DependentMemberType>()) {
return dependentMemberTy->getName().str();
}
// Archetypes.
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
return archetypeTy->getName().str();
}
// Function types.
if (auto funcTy = type->getAs<AnyFunctionType>()) {
if (funcTy->getRepresentation() == AnyFunctionType::Representation::Block)
return "Block";
return "Function";
}
return "";
}
std::optional<DeclName>
TypeChecker::omitNeedlessWords(AbstractFunctionDecl *afd) {
auto &Context = afd->getASTContext();
if (afd->isInvalid() || isa<DestructorDecl>(afd))
return std::nullopt;
const DeclName name = afd->getName();
if (!name)
return std::nullopt;
// String'ify the arguments.
StringRef baseNameStr = name.getBaseName().userFacingName();
SmallVector<StringRef, 4> argNameStrs;
for (auto arg : name.getArgumentNames()) {
if (arg.empty())
argNameStrs.push_back("");
else
argNameStrs.push_back(arg.str());
}
// String'ify the parameter types.
SmallVector<OmissionTypeName, 4> paramTypes;
// Always look at the parameters in the last parameter list.
for (auto param : *afd->getParameters()) {
paramTypes.push_back(getTypeNameForOmission(param->getInterfaceType())
.withDefaultArgument(param->isDefaultArgument()));
}
// Handle contextual type, result type, and returnsSelf.
Type contextType = afd->getDeclContext()->getDeclaredInterfaceType();
Type resultType;
bool returnsSelf = afd->hasDynamicSelfResult();
if (auto func = dyn_cast<FuncDecl>(afd)) {
resultType = func->getResultInterfaceType();
resultType = func->mapTypeIntoContext(resultType);
} else if (isa<ConstructorDecl>(afd)) {
resultType = contextType;
}
// Figure out the first parameter name.
StringRef firstParamName;
auto params = afd->getParameters();
if (params->size() != 0 && !params->get(0)->getName().empty())
firstParamName = params->get(0)->getName().str();
StringScratchSpace scratch;
if (!swift::omitNeedlessWords(
baseNameStr, argNameStrs, firstParamName,
getTypeNameForOmission(resultType),
getTypeNameForOmission(contextType), paramTypes, returnsSelf, false,
/*allPropertyNames=*/nullptr, std::nullopt, std::nullopt, scratch))
return std::nullopt;
/// Retrieve a replacement identifier.
auto getReplacementIdentifier = [&](StringRef name,
DeclBaseName old) -> DeclBaseName{
if (name.empty())
return Identifier();
if (!old.empty() && name == old.userFacingName())
return old;
return Context.getIdentifier(name);
};
auto newBaseName = getReplacementIdentifier(
baseNameStr, name.getBaseName());
SmallVector<Identifier, 4> newArgNames;
auto oldArgNames = name.getArgumentNames();
for (unsigned i = 0, n = argNameStrs.size(); i != n; ++i) {
auto argBaseName = getReplacementIdentifier(argNameStrs[i],
oldArgNames[i]);
newArgNames.push_back(argBaseName.getIdentifier());
}
return DeclName(Context, newBaseName, newArgNames);
}
std::optional<Identifier> TypeChecker::omitNeedlessWords(VarDecl *var) {
auto &Context = var->getASTContext();
if (var->isInvalid())
return std::nullopt;
if (var->getName().empty())
return std::nullopt;
auto name = var->getName().str();
// Dig out the context type.
Type contextType = var->getDeclContext()->getDeclaredInterfaceType();
if (!contextType)
return std::nullopt;
// Dig out the type of the variable.
Type type = var->getValueInterfaceType();
while (auto optObjectTy = type->getOptionalObjectType())
type = optObjectTy;
// Omit needless words.
StringScratchSpace scratch;
OmissionTypeName typeName = getTypeNameForOmission(var->getInterfaceType());
OmissionTypeName contextTypeName = getTypeNameForOmission(contextType);
if (::omitNeedlessWords(name, {}, "", typeName, contextTypeName, {},
/*returnsSelf=*/false, true,
/*allPropertyNames=*/nullptr, std::nullopt,
std::nullopt, scratch)) {
return Context.getIdentifier(name);
}
return std::nullopt;
}
bool swift::diagnoseUnhandledThrowsInAsyncContext(DeclContext *dc,
ForEachStmt *forEach) {
auto &ctx = dc->getASTContext();
if (auto thrownError = TypeChecker::canThrow(ctx, forEach)) {
if (forEach->getTryLoc().isInvalid()) {
ctx.Diags
.diagnose(forEach->getAwaitLoc(), diag::throwing_call_unhandled, "call")
.fixItInsert(forEach->getAwaitLoc(), "try");
return true;
}
}
return false;
}
void DeferredDiag::emit(swift::ASTContext &ctx) {
assert(loc && "no loc... already emitted?");
ctx.Diags.diagnose(loc, diag);
loc = SourceLoc();
}