Files
swift-mirror/lib/Sema/ConstraintGraph.cpp
Doug Gregor ab38be128d [Constraint graph] Handle orphaned constraints within connected components
Move the logic for creating connected components of orphaned
constraints into the connected-components algorithm code, rather than
making it a special part of SplitterStep.
2019-08-11 21:28:34 -07:00

1079 lines
37 KiB
C++

//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c ConstraintGraph class, which describes the
// relationships among the type variables within a constraint system.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintGraphScope.h"
#include "ConstraintSystem.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
#include <memory>
#include <numeric>
using namespace swift;
using namespace constraints;
#define DEBUG_TYPE "ConstraintGraph"
#pragma mark Graph construction/destruction
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
ConstraintGraph::~ConstraintGraph() {
assert(Changes.empty() && "Scope stack corrupted");
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto &impl = TypeVariables[i]->getImpl();
delete impl.getGraphNode();
impl.setGraphNode(nullptr);
}
}
#pragma mark Graph accessors
std::pair<ConstraintGraphNode &, unsigned>
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
// Check whether we've already created a node for this type variable.
auto &impl = typeVar->getImpl();
if (auto nodePtr = impl.getGraphNode()) {
assert(impl.getGraphIndex() < TypeVariables.size() && "Out-of-bounds index");
assert(TypeVariables[impl.getGraphIndex()] == typeVar &&
"Type variable mismatch");
return { *nodePtr, impl.getGraphIndex() };
}
// Allocate the new node.
auto nodePtr = new ConstraintGraphNode(typeVar);
unsigned index = TypeVariables.size();
impl.setGraphNode(nodePtr);
impl.setGraphIndex(index);
// Record this type variable.
TypeVariables.push_back(typeVar);
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::addedTypeVariable(typeVar));
// If this type variable is not the representative of its equivalence class,
// add it to its representative's set of equivalences.
auto typeVarRep = CS.getRepresentative(typeVar);
if (typeVar != typeVarRep)
mergeNodes(typeVar, typeVarRep);
else if (auto fixed = CS.getFixedType(typeVarRep)) {
// Bind the type variable.
bindTypeVariable(typeVar, fixed);
}
return { *nodePtr, index };
}
ArrayRef<TypeVariableType *> ConstraintGraphNode::getEquivalenceClass() const{
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't request equivalence class from non-representative type var");
return getEquivalenceClassUnsafe();
}
ArrayRef<TypeVariableType *>
ConstraintGraphNode::getEquivalenceClassUnsafe() const{
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
return EquivalenceClass;
}
#pragma mark Node mutation
void ConstraintGraphNode::addConstraint(Constraint *constraint) {
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
ConstraintIndex[constraint] = Constraints.size();
Constraints.push_back(constraint);
}
void ConstraintGraphNode::removeConstraint(Constraint *constraint) {
auto pos = ConstraintIndex.find(constraint);
assert(pos != ConstraintIndex.end());
// Remove this constraint from the constraint mapping.
auto index = pos->second;
ConstraintIndex.erase(pos);
assert(Constraints[index] == constraint && "Mismatched constraint");
// If this is the last constraint, just pop it off the list and we're done.
unsigned lastIndex = Constraints.size()-1;
if (index == lastIndex) {
Constraints.pop_back();
return;
}
// This constraint is somewhere in the middle; swap it with the last
// constraint, so we can remove the constraint from the vector in O(1)
// time rather than O(n) time.
auto lastConstraint = Constraints[lastIndex];
Constraints[index] = lastConstraint;
ConstraintIndex[lastConstraint] = index;
Constraints.pop_back();
}
void ConstraintGraphNode::addToEquivalenceClass(
ArrayRef<TypeVariableType *> typeVars) {
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't extend equivalence class of non-representative type var");
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
EquivalenceClass.append(typeVars.begin(), typeVars.end());
}
void ConstraintGraphNode::addFixedBinding(TypeVariableType *typeVar) {
FixedBindings.push_back(typeVar);
}
void ConstraintGraphNode::removeFixedBinding(TypeVariableType *typeVar) {
FixedBindings.pop_back();
}
#pragma mark Graph scope management
ConstraintGraphScope::ConstraintGraphScope(ConstraintGraph &CG)
: CG(CG), ParentScope(CG.ActiveScope), NumChanges(CG.Changes.size())
{
CG.ActiveScope = this;
}
ConstraintGraphScope::~ConstraintGraphScope() {
// Pop changes off the stack until we hit the change could we had prior to
// introducing this scope.
assert(CG.Changes.size() >= NumChanges && "Scope stack corrupted");
while (CG.Changes.size() > NumChanges) {
CG.Changes.back().undo(CG);
CG.Changes.pop_back();
}
// The active scope is now the parent scope.
CG.ActiveScope = ParentScope;
}
ConstraintGraph::Change
ConstraintGraph::Change::addedTypeVariable(TypeVariableType *typeVar) {
Change result;
result.Kind = ChangeKind::AddedTypeVariable;
result.TypeVar = typeVar;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::addedConstraint(Constraint *constraint) {
Change result;
result.Kind = ChangeKind::AddedConstraint;
result.TheConstraint = constraint;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::removedConstraint(Constraint *constraint) {
Change result;
result.Kind = ChangeKind::RemovedConstraint;
result.TheConstraint = constraint;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::extendedEquivalenceClass(TypeVariableType *typeVar,
unsigned prevSize) {
Change result;
result.Kind = ChangeKind::ExtendedEquivalenceClass;
result.EquivClass.TypeVar = typeVar;
result.EquivClass.PrevSize = prevSize;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::boundTypeVariable(TypeVariableType *typeVar,
Type fixed) {
Change result;
result.Kind = ChangeKind::BoundTypeVariable;
result.Binding.TypeVar = typeVar;
result.Binding.FixedType = fixed.getPointer();
return result;
}
void ConstraintGraph::Change::undo(ConstraintGraph &cg) {
/// Temporarily change the active scope to null, so we don't record
/// any changes made while performing the undo operation.
llvm::SaveAndRestore<ConstraintGraphScope *> prevActiveScope(cg.ActiveScope,
nullptr);
switch (Kind) {
case ChangeKind::AddedTypeVariable:
cg.removeNode(TypeVar);
break;
case ChangeKind::AddedConstraint:
cg.removeConstraint(TheConstraint);
break;
case ChangeKind::RemovedConstraint:
cg.addConstraint(TheConstraint);
break;
case ChangeKind::ExtendedEquivalenceClass: {
auto &node = cg[EquivClass.TypeVar];
node.EquivalenceClass.erase(
node.EquivalenceClass.begin() + EquivClass.PrevSize,
node.EquivalenceClass.end());
break;
}
case ChangeKind::BoundTypeVariable:
cg.unbindTypeVariable(Binding.TypeVar, Binding.FixedType);
break;
}
}
#pragma mark Graph mutation
void ConstraintGraph::removeNode(TypeVariableType *typeVar) {
// Remove this node.
auto &impl = typeVar->getImpl();
unsigned index = impl.getGraphIndex();
delete impl.getGraphNode();
impl.setGraphNode(nullptr);
// Remove this type variable from the list.
unsigned lastIndex = TypeVariables.size()-1;
if (index < lastIndex)
TypeVariables[index] = TypeVariables[lastIndex];
TypeVariables.pop_back();
}
void ConstraintGraph::addConstraint(Constraint *constraint) {
// For the nodes corresponding to each type variable...
auto referencedTypeVars = constraint->getTypeVariables();
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
auto &node = (*this)[typeVar];
// Note the constraint within the node for that type variable.
node.addConstraint(constraint);
}
// If the constraint doesn't reference any type variables, it's orphaned;
// track it as such.
if (referencedTypeVars.empty()) {
OrphanedConstraints.push_back(constraint);
}
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::addedConstraint(constraint));
}
void ConstraintGraph::removeConstraint(Constraint *constraint) {
// For the nodes corresponding to each type variable...
auto referencedTypeVars = constraint->getTypeVariables();
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
auto &node = (*this)[typeVar];
// Remove the constraint.
node.removeConstraint(constraint);
}
// If this is an orphaned constraint, remove it from the list.
if (referencedTypeVars.empty()) {
auto known = std::find(OrphanedConstraints.begin(),
OrphanedConstraints.end(),
constraint);
assert(known != OrphanedConstraints.end() && "missing orphaned constraint");
*known = OrphanedConstraints.back();
OrphanedConstraints.pop_back();
}
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::removedConstraint(constraint));
}
void ConstraintGraph::mergeNodes(TypeVariableType *typeVar1,
TypeVariableType *typeVar2) {
assert(CS.getRepresentative(typeVar1) == CS.getRepresentative(typeVar2) &&
"type representatives don't match");
// Retrieve the node for the representative that we're merging into.
auto typeVarRep = CS.getRepresentative(typeVar1);
auto &repNode = (*this)[typeVarRep];
// Retrieve the node for the non-representative.
assert((typeVar1 == typeVarRep || typeVar2 == typeVarRep) &&
"neither type variable is the new representative?");
auto typeVarNonRep = typeVar1 == typeVarRep? typeVar2 : typeVar1;
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::extendedEquivalenceClass(
typeVarRep,
repNode.getEquivalenceClass().size()));
// Merge equivalence class from the non-representative type variable.
auto &nonRepNode = (*this)[typeVarNonRep];
repNode.addToEquivalenceClass(nonRepNode.getEquivalenceClassUnsafe());
}
void ConstraintGraph::bindTypeVariable(TypeVariableType *typeVar, Type fixed) {
// If there are no type variables in the fixed type, there's nothing to do.
if (!fixed->hasTypeVariable())
return;
SmallVector<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
fixed->getTypeVariables(typeVars);
auto &node = (*this)[typeVar];
for (auto otherTypeVar : typeVars) {
if (knownTypeVars.insert(otherTypeVar).second) {
if (typeVar == otherTypeVar) continue;
(*this)[otherTypeVar].addFixedBinding(typeVar);
node.addFixedBinding(otherTypeVar);
}
}
// Record the change, if there are active scopes.
// Note: If we ever use this to undo the actual variable binding,
// we'll need to store the change along the early-exit path as well.
if (ActiveScope)
Changes.push_back(Change::boundTypeVariable(typeVar, fixed));
}
void ConstraintGraph::unbindTypeVariable(TypeVariableType *typeVar, Type fixed){
// If there are no type variables in the fixed type, there's nothing to do.
if (!fixed->hasTypeVariable())
return;
SmallVector<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
fixed->getTypeVariables(typeVars);
auto &node = (*this)[typeVar];
for (auto otherTypeVar : typeVars) {
if (knownTypeVars.insert(otherTypeVar).second) {
(*this)[otherTypeVar].removeFixedBinding(typeVar);
node.removeFixedBinding(otherTypeVar);
}
}
}
llvm::TinyPtrVector<Constraint *> ConstraintGraph::gatherConstraints(
TypeVariableType *typeVar, GatheringKind kind,
llvm::function_ref<bool(Constraint *)> acceptConstraint) {
llvm::TinyPtrVector<Constraint *> constraints;
/// Add constraints for the given adjacent type variable.
llvm::SmallPtrSet<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<Constraint *, 4> visitedConstraints;
auto addAdjacentConstraints = [&](TypeVariableType *adjTypeVar) {
auto adjTypeVarsToVisit =
(*this)[CS.getRepresentative(adjTypeVar)].getEquivalenceClass();
for (auto adjTypeVarEquiv : adjTypeVarsToVisit) {
if (!typeVars.insert(adjTypeVarEquiv).second)
continue;
for (auto constraint : (*this)[adjTypeVarEquiv].getConstraints()) {
if (!visitedConstraints.insert(constraint).second)
continue;
if (acceptConstraint(constraint))
constraints.push_back(constraint);
}
}
};
auto &reprNode = (*this)[CS.getRepresentative(typeVar)];
auto equivClass = reprNode.getEquivalenceClass();
for (auto typeVar : equivClass) {
auto &node = (*this)[typeVar];
for (auto constraint : node.getConstraints()) {
if (visitedConstraints.insert(constraint).second &&
acceptConstraint(constraint))
constraints.push_back(constraint);
// If we want all mentions, visit type variables within each of our
// constraints.
if (kind == GatheringKind::AllMentions) {
for (auto adjTypeVar : constraint->getTypeVariables()) {
addAdjacentConstraints(adjTypeVar);
}
}
}
// For any type variable mentioned in a fixed binding, add adjacent
// constraints.
for (auto adjTypeVar : node.getFixedBindings()) {
addAdjacentConstraints(adjTypeVar);
}
}
return constraints;
}
#pragma mark Algorithms
/// Perform a depth-first search.
///
/// \param cg The constraint graph.
/// \param typeVar The type variable we're searching from.
/// \param preVisitNode Called before traversing a node. Must return \c
/// false when the node has already been visited.
/// \param visitConstraint Called before considering a constraint. If it
/// returns \c false, that constraint will be skipped.
/// \param visitedConstraints Set of already-visited constraints, used
/// internally to avoid duplicated work.
static void depthFirstSearch(
ConstraintGraph &cg,
TypeVariableType *typeVar,
llvm::function_ref<bool(TypeVariableType *)> preVisitNode,
llvm::function_ref<bool(Constraint *)> visitConstraint,
llvm::SmallPtrSet<Constraint *, 8> &visitedConstraints) {
// Visit this node. If we've already seen it, bail out.
if (!preVisitNode(typeVar))
return;
// Local function to visit adjacent type variables.
auto visitAdjacencies = [&](ArrayRef<TypeVariableType *> adjTypeVars) {
for (auto adj : adjTypeVars) {
if (adj == typeVar)
continue;
// Recurse into this node.
depthFirstSearch(cg, adj, preVisitNode, visitConstraint,
visitedConstraints);
}
};
// Walk all of the constraints associated with this node to find related
// nodes.
auto &node = cg[typeVar];
for (auto constraint : node.getConstraints()) {
// If we've already seen this constraint, skip it.
if (!visitedConstraints.insert(constraint).second)
continue;
if (visitConstraint(constraint))
visitAdjacencies(constraint->getTypeVariables());
}
// Visit all of the other nodes in the equivalence class.
auto repTypeVar = cg.getConstraintSystem().getRepresentative(typeVar);
if (typeVar == repTypeVar) {
// We are the representative, so visit all of the other type variables
// in this equivalence class.
visitAdjacencies(node.getEquivalenceClass());
} else {
// We are not the representative; visit the representative.
visitAdjacencies(repTypeVar);
}
// Walk any type variables related via fixed bindings.
visitAdjacencies(node.getFixedBindings());
}
namespace {
/// A union-find connected components algorithm used to find the connected
/// components within a constraint graph.
class ConnectedComponents {
ConstraintGraph &cg;
ArrayRef<TypeVariableType *> typeVars;
/// A mapping from each type variable to its representative in a union-find
/// data structure, including entries where the type variable is its own
/// representative.
mutable llvm::SmallDenseMap<TypeVariableType *, TypeVariableType *>
representatives;
/// The complete set of constraints that were visited while computing
/// connected components.
llvm::SmallPtrSet<Constraint *, 8> visitedConstraints;
public:
using Component = ConstraintGraph::Component;
/// Compute connected components for the given set of type variables
/// in the constraint graph.
ConnectedComponents(ConstraintGraph &cg,
ArrayRef<TypeVariableType *> typeVars)
: cg(cg), typeVars(typeVars)
{
connectedComponents();
}
/// Retrieve the set of components.
SmallVector<Component, 1> getComponents() const {
// Figure out which components have unbound type variables and/or
// constraints. These are the only components we want to report.
llvm::SmallDenseSet<TypeVariableType *> validComponents;
auto &cs = cg.getConstraintSystem();
for (auto typeVar : typeVars) {
// If this type variable has a fixed type, skip it.
if (cs.getFixedType(typeVar))
continue;
auto rep = findRepresentative(typeVar);
validComponents.insert(rep);
}
for (auto constraint : visitedConstraints) {
for (auto typeVar : constraint->getTypeVariables()) {
auto rep = findRepresentative(typeVar);
validComponents.insert(rep);
}
}
// Assign each type variable to its appropriate component.
SmallVector<Component, 1> components;
components.reserve(
validComponents.size() + cg.getOrphanedConstraints().size());
llvm::SmallDenseMap<TypeVariableType *, unsigned> componentIdxMap;
for (auto typeVar : typeVars) {
// Find the representative. If we aren't creating a type variable
// for this component, skip it.
auto rep = findRepresentative(typeVar);
if (validComponents.count(rep) == 0)
continue;
// Find the component index.
auto knownComponentIdx = componentIdxMap.find(rep);
if (knownComponentIdx == componentIdxMap.end()) {
// We haven't allocated this component yet; do so now.
knownComponentIdx = componentIdxMap.insert(
{rep, componentIdxMap.size()}).first;
components.push_back({ });
}
// Record this type variabgetConstraintsle as part of the component.
unsigned componentIdx = knownComponentIdx->second;
auto &component = components[componentIdx];
component.typeVars.push_back(typeVar);
}
// Assign each constraint to its appropriate component.
// Note: we use the inactive constraints so that we maintain the
// order of constraints when we re-introduce them.
for (auto &constraint : cs.getConstraints()) {
auto constraintTypeVars = constraint.getTypeVariables();
if (constraintTypeVars.empty())
continue;
auto typeVar = constraintTypeVars.front();
auto rep = findRepresentative(typeVar);
assert(componentIdxMap.count(rep) > 0);
components[componentIdxMap[rep]].constraints.push_back(&constraint);
}
// Gather orphaned constraints; each gets its own component.
for (auto orphaned : cg.getOrphanedConstraints()) {
components.push_back({ });
components.back().constraints.push_back(orphaned);
}
return components;
}
/// Find the representative for the given type variable within the set
/// of representatives in a union-find data structure.
TypeVariableType *findRepresentative(TypeVariableType *typeVar) const {
// If we don't have a record of this type variable, it is it's own
// representative.
auto known = representatives.find(typeVar);
if (known == representatives.end() || known->second == typeVar)
return typeVar;
// Find the representative of the parent.
auto parent = known->second;
auto rep = findRepresentative(parent);
representatives[typeVar] = rep;
return rep;
}
private:
/// Perform the connected components algorithm.
void connectedComponents() {
// Perform a depth-first search from each type variable to identify
// what component it is in.
for (auto typeVar : typeVars) {
// If we've already assigned a representative to this type variable,
// we're done.
if (representatives.count(typeVar) > 0)
continue;
// Perform a depth-first search to mark those type variables that are
// in the same component as this type variable.
depthFirstSearch(
cg, typeVar,
[&](TypeVariableType *found) {
// If we have already seen this node, we're done.
auto inserted = representatives.insert({found, typeVar});
assert((inserted.second || inserted.first->second == typeVar) &&
"Wrong component?");
return inserted.second;
},
[&](Constraint *constraint) {
return true;
},
visitedConstraints);
}
}
};
}
SmallVector<ConstraintGraph::Component, 1>
ConstraintGraph::computeConnectedComponents(
ArrayRef<TypeVariableType *> typeVars) {
// Perform connected components via a union-find algorithm on all of the
// constraints adjacent to these type variables.
ConnectedComponents cc(*this, typeVars);
return cc.getComponents();
}
/// For a given constraint kind, decide if we should attempt to eliminate its
/// edge in the graph.
static bool shouldContractEdge(ConstraintKind kind) {
switch (kind) {
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal:
return true;
default:
return false;
}
}
bool ConstraintGraph::contractEdges() {
SmallVector<Constraint *, 16> constraints;
CS.findConstraints(constraints, [&](const Constraint &constraint) {
// Track how many constraints did contraction algorithm iterated over.
incrementConstraintsPerContractionCounter();
return shouldContractEdge(constraint.getKind());
});
bool didContractEdges = false;
for (auto *constraint : constraints) {
auto kind = constraint->getKind();
// Contract binding edges between type variables.
assert(shouldContractEdge(kind));
auto t1 = constraint->getFirstType()->getDesugaredType();
auto t2 = constraint->getSecondType()->getDesugaredType();
auto tyvar1 = t1->getAs<TypeVariableType>();
auto tyvar2 = t2->getAs<TypeVariableType>();
if (!(tyvar1 && tyvar2))
continue;
auto isParamBindingConstraint = kind == ConstraintKind::BindParam;
// If the argument is allowed to bind to `inout`, in general,
// it's invalid to contract the edge between argument and parameter,
// but if we can prove that there are no possible bindings
// which result in attempt to bind `inout` type to argument
// type variable, we should go ahead and allow (temporary)
// contraction, because that greatly helps with performance.
// Such action is valid because argument type variable can
// only get its bindings from related overload, which gives
// us enough information to decided on l-valueness.
if (isParamBindingConstraint && tyvar1->getImpl().canBindToInOut()) {
bool isNotContractable = true;
if (auto bindings = CS.getPotentialBindings(tyvar1)) {
for (auto &binding : bindings.Bindings) {
auto type = binding.BindingType;
isNotContractable = type.findIf([&](Type nestedType) -> bool {
if (auto tv = nestedType->getAs<TypeVariableType>()) {
if (tv->getImpl().canBindToInOut())
return true;
}
return nestedType->is<InOutType>();
});
// If there is at least one non-contractable binding, let's
// not risk contracting this edge.
if (isNotContractable)
break;
}
}
if (isNotContractable)
continue;
}
auto rep1 = CS.getRepresentative(tyvar1);
auto rep2 = CS.getRepresentative(tyvar2);
if (((rep1->getImpl().canBindToLValue() ==
rep2->getImpl().canBindToLValue()) ||
// Allow l-value contractions when binding parameter types.
isParamBindingConstraint)) {
if (CS.TC.getLangOpts().DebugConstraintSolver) {
auto &log = CS.getASTContext().TypeCheckerDebug->getStream();
if (CS.solverState)
log.indent(CS.solverState->depth * 2);
log << "Contracting constraint ";
constraint->print(log, &CS.getASTContext().SourceMgr);
log << "\n";
}
// Merge the edges and remove the constraint.
removeEdge(constraint);
if (rep1 != rep2)
CS.mergeEquivalenceClasses(rep1, rep2, /*updateWorkList*/ false);
didContractEdges = true;
}
}
return didContractEdges;
}
void ConstraintGraph::removeEdge(Constraint *constraint) {
bool isExistingConstraint = false;
for (auto &active : CS.ActiveConstraints) {
if (&active == constraint) {
CS.ActiveConstraints.erase(constraint);
isExistingConstraint = true;
break;
}
}
for (auto &inactive : CS.InactiveConstraints) {
if (&inactive == constraint) {
CS.InactiveConstraints.erase(constraint);
isExistingConstraint = true;
break;
}
}
if (CS.solverState) {
if (isExistingConstraint)
CS.solverState->retireConstraint(constraint);
else
CS.solverState->removeGeneratedConstraint(constraint);
}
removeConstraint(constraint);
}
void ConstraintGraph::optimize() {
// Merge equivalence classes until a fixed point is reached.
while (contractEdges()) {}
}
void ConstraintGraph::incrementConstraintsPerContractionCounter() {
SWIFT_FUNC_STAT;
auto &context = CS.getASTContext();
if (context.Stats)
context.Stats->getFrontendCounters()
.NumConstraintsConsideredForEdgeContraction++;
}
#pragma mark Debugging output
void ConstraintGraphNode::print(llvm::raw_ostream &out, unsigned indent) {
out.indent(indent);
TypeVar->print(out);
out << ":\n";
// Print constraints.
if (!Constraints.empty()) {
out.indent(indent + 2);
out << "Constraints:\n";
SmallVector<Constraint *, 4> sortedConstraints(Constraints.begin(),
Constraints.end());
std::sort(sortedConstraints.begin(), sortedConstraints.end());
for (auto constraint : sortedConstraints) {
out.indent(indent + 4);
constraint->print(out, &TypeVar->getASTContext().SourceMgr);
out << "\n";
}
}
// Print fixed bindings.
if (!FixedBindings.empty()) {
out.indent(indent + 2);
out << "Fixed bindings: ";
SmallVector<TypeVariableType *, 4> sortedFixedBindings(
FixedBindings.begin(), FixedBindings.end());
std::sort(sortedFixedBindings.begin(), sortedFixedBindings.end(),
[&](TypeVariableType *typeVar1, TypeVariableType *typeVar2) {
return typeVar1->getID() < typeVar2->getID();
});
interleave(sortedFixedBindings,
[&](TypeVariableType *typeVar) {
out << "$T" << typeVar->getID();
},
[&]() {
out << ", ";
});
out << "\n";
}
// Print equivalence class.
if (TypeVar->getImpl().getRepresentative(nullptr) == TypeVar &&
EquivalenceClass.size() > 1) {
out.indent(indent + 2);
out << "Equivalence class:";
for (unsigned i = 1, n = EquivalenceClass.size(); i != n; ++i) {
out << ' ';
EquivalenceClass[i]->print(out);
}
out << "\n";
}
}
void ConstraintGraphNode::dump() {
llvm::SaveAndRestore<bool>
debug(TypeVar->getASTContext().LangOpts.DebugConstraintSolver, true);
print(llvm::dbgs(), 0);
}
void ConstraintGraph::print(ArrayRef<TypeVariableType *> typeVars,
llvm::raw_ostream &out) {
for (auto typeVar : typeVars) {
(*this)[typeVar].print(out, 2);
out << "\n";
}
}
void ConstraintGraph::dump() {
dump(llvm::dbgs());
}
void ConstraintGraph::dump(llvm::raw_ostream &out) {
llvm::SaveAndRestore<bool>
debug(CS.getASTContext().LangOpts.DebugConstraintSolver, true);
print(CS.TypeVariables, out);
}
void ConstraintGraph::printConnectedComponents(
ArrayRef<TypeVariableType *> typeVars,
llvm::raw_ostream &out) {
auto components = computeConnectedComponents(typeVars);
for (unsigned component : indices(components)) {
out.indent(2);
out << component << ": ";
interleave(components[component].typeVars,
[&](TypeVariableType *typeVar) {
typeVar->print(out);
},
[&] {
out << ' ';
});
out << '\n';
}
}
void ConstraintGraph::dumpConnectedComponents() {
printConnectedComponents(CS.TypeVariables, llvm::dbgs());
}
#pragma mark Verification of graph invariants
/// Require that the given condition evaluate true.
///
/// If the condition is not true, complain about the problem and abort.
///
/// \param condition The actual Boolean condition.
///
/// \param complaint A string that describes the problem.
///
/// \param cg The constraint graph that failed verification.
///
/// \param node If non-null, the graph node that failed verification.
///
/// \param extraContext If provided, a function that will be called to
/// provide extra, contextual information about the failure.
static void _require(bool condition, const Twine &complaint,
ConstraintGraph &cg,
ConstraintGraphNode *node,
const std::function<void()> &extraContext = nullptr) {
if (condition)
return;
// Complain
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
if (extraContext)
extraContext();
// Print the graph.
// FIXME: Highlight the offending node/constraint/etc.
cg.dump(llvm::dbgs());
abort();
}
/// Print a type variable value.
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
typeVar->print(os);
}
/// Print a constraint value.
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
constraint->print(os, nullptr);
}
/// Print an unsigned value.
static void printValue(llvm::raw_ostream &os, unsigned value) {
os << value;
}
void ConstraintGraphNode::verify(ConstraintGraph &cg) {
#define require(condition, complaint) _require(condition, complaint, cg, this)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, cg, this, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, cg, this, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the constraint map/vector haven't gotten out of sync.
requireSameValue(Constraints.size(), ConstraintIndex.size(),
"constraint vector and map have different sizes");
for (auto info : ConstraintIndex) {
require(info.second < Constraints.size(), "constraint index out-of-range");
requireSameValue(info.first, Constraints[info.second],
"constraint map provides wrong index into vector");
}
#undef requireSameValue
#undef requireWithContext
#undef require
}
void ConstraintGraph::verify() {
#define require(condition, complaint) \
_require(condition, complaint, *this, nullptr)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, *this, nullptr, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, *this, nullptr, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the type variables are either representatives or represented
// within their representative's equivalence class.
// FIXME: Also check to make sure the equivalence classes aren't too large?
for (auto typeVar : TypeVariables) {
auto typeVarRep = CS.getRepresentative(typeVar);
auto &repNode = (*this)[typeVarRep];
if (typeVar != typeVarRep) {
// This type variable should be in the equivalence class of its
// representative.
require(std::find(repNode.getEquivalenceClass().begin(),
repNode.getEquivalenceClass().end(),
typeVar) != repNode.getEquivalenceClass().end(),
"type variable not present in its representative's equiv class");
} else {
// Each of the type variables in the same equivalence class as this type
// should have this type variable as their representative.
for (auto equiv : repNode.getEquivalenceClass()) {
requireSameValue(
typeVar, equiv->getImpl().getRepresentative(nullptr),
"representative and an equivalent type variable's representative");
}
}
}
// Verify that our type variable map/vector are in sync.
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto typeVar = TypeVariables[i];
auto &impl = typeVar->getImpl();
requireSameValue(impl.getGraphIndex(), i, "wrong graph node index");
require(impl.getGraphNode(), "null graph node");
}
// Verify consistency of all of the nodes in the graph.
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto typeVar = TypeVariables[i];
auto &impl = typeVar->getImpl();
impl.getGraphNode()->verify(*this);
}
// Collect all of the constraints known to the constraint graph.
llvm::SmallPtrSet<Constraint *, 4> knownConstraints;
for (auto typeVar : getTypeVariables()) {
for (auto constraint : (*this)[typeVar].getConstraints())
knownConstraints.insert(constraint);
}
// Verify that all of the constraints in the constraint system
// are accounted for.
for (auto &constraint : CS.getConstraints()) {
// Check whether the constraint graph knows about this constraint.
auto referencedTypeVars = constraint.getTypeVariables();
requireWithContext((knownConstraints.count(&constraint) ||
referencedTypeVars.empty()),
"constraint graph doesn't know about constraint",
[&] {
llvm::dbgs() << "constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
// Make sure each of the type variables referenced knows about this
// constraint.
for (auto typeVar : referencedTypeVars) {
auto nodePtr = typeVar->getImpl().getGraphNode();
requireWithContext(nodePtr,
"type variable in constraint not known",
[&] {
llvm::dbgs() << "type variable = ";
printValue(llvm::dbgs(), typeVar);
llvm::dbgs() << ", constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
auto &node = *nodePtr;
auto constraintPos = node.ConstraintIndex.find(&constraint);
requireWithContext(constraintPos != node.ConstraintIndex.end(),
"type variable doesn't know about constraint",
[&] {
llvm::dbgs() << "type variable = ";
printValue(llvm::dbgs(), typeVar);
llvm::dbgs() << ", constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
}
}
#undef requireSameValue
#undef requireWithContext
#undef require
}