mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
introduce a common superclass, SILNode. This is in preparation for allowing instructions to have multiple results. It is also a somewhat more elegant representation for instructions that have zero results. Instructions that are known to have exactly one result inherit from a class, SingleValueInstruction, that subclasses both ValueBase and SILInstruction. Some care must be taken when working with SILNode pointers and testing for equality; please see the comment on SILNode for more information. A number of SIL passes needed to be updated in order to handle this new distinction between SIL values and SIL instructions. Note that the SIL parser is now stricter about not trying to assign a result value from an instruction (like 'return' or 'strong_retain') that does not produce any.
136 lines
4.0 KiB
C++
136 lines
4.0 KiB
C++
//===--- Dominance.cpp - SIL basic block dominance analysis ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILBasicBlock.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "llvm/Support/GenericDomTreeConstruction.h"
|
|
|
|
using namespace swift;
|
|
|
|
template class llvm::DominatorTreeBase<SILBasicBlock, false>;
|
|
template class llvm::DominatorTreeBase<SILBasicBlock, true>;
|
|
template class llvm::DomTreeNodeBase<SILBasicBlock>;
|
|
|
|
namespace llvm {
|
|
namespace DomTreeBuilder {
|
|
template void Calculate<SILDomTree, swift::SILFunction>(
|
|
SILDomTree &DT, swift::SILFunction &F);
|
|
template void Calculate<SILPostDomTree, swift::SILFunction>(
|
|
SILPostDomTree &DT, swift::SILFunction &F);
|
|
} // namespace DomTreeBuilder
|
|
} // namespace llvm
|
|
|
|
/// Compute the immediate-dominators map.
|
|
DominanceInfo::DominanceInfo(SILFunction *F)
|
|
: DominatorTreeBase() {
|
|
assert(!F->isExternalDeclaration() &&
|
|
"Make sure the function is a definition and not a declaration.");
|
|
recalculate(*F);
|
|
}
|
|
|
|
bool DominanceInfo::properlyDominates(SILInstruction *a, SILInstruction *b) {
|
|
auto aBlock = a->getParent(), bBlock = b->getParent();
|
|
|
|
// If the blocks are different, it's as easy as whether A's block
|
|
// dominates B's block.
|
|
if (aBlock != bBlock)
|
|
return properlyDominates(a->getParent(), b->getParent());
|
|
|
|
// Otherwise, they're in the same block, and we just need to check
|
|
// whether B comes after A. This is a non-strict computation.
|
|
auto aIter = a->getIterator();
|
|
auto bIter = b->getIterator();
|
|
auto fIter = aBlock->begin();
|
|
while (bIter != fIter) {
|
|
--bIter;
|
|
if (aIter == bIter)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Does value A properly dominate instruction B?
|
|
bool DominanceInfo::properlyDominates(SILValue a, SILInstruction *b) {
|
|
if (auto *Inst = a->getDefiningInstruction()) {
|
|
return properlyDominates(Inst, b);
|
|
}
|
|
if (auto *Arg = dyn_cast<SILArgument>(a)) {
|
|
return dominates(Arg->getParent(), b->getParent());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DominanceInfo::verify() const {
|
|
// Recompute.
|
|
auto *F = getRoot()->getParent();
|
|
DominanceInfo OtherDT(F);
|
|
|
|
// And compare.
|
|
if (errorOccurredOnComparison(OtherDT)) {
|
|
llvm::errs() << "DominatorTree is not up to date!\nComputed:\n";
|
|
print(llvm::errs());
|
|
llvm::errs() << "\nActual:\n";
|
|
OtherDT.print(llvm::errs());
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/// Compute the immediate-post-dominators map.
|
|
PostDominanceInfo::PostDominanceInfo(SILFunction *F)
|
|
: PostDominatorTreeBase() {
|
|
assert(!F->isExternalDeclaration() &&
|
|
"Cannot construct a post dominator tree for a declaration");
|
|
recalculate(*F);
|
|
}
|
|
|
|
bool
|
|
PostDominanceInfo::
|
|
properlyDominates(SILInstruction *I1, SILInstruction *I2) {
|
|
SILBasicBlock *BB1 = I1->getParent(), *BB2 = I2->getParent();
|
|
|
|
// If the blocks are different, it's as easy as whether BB1 post dominates
|
|
// BB2.
|
|
if (BB1 != BB2)
|
|
return properlyDominates(BB1, BB2);
|
|
|
|
// Otherwise, they're in the same block, and we just need to check
|
|
// whether A comes after B.
|
|
for (auto II = I1->getIterator(), IE = BB1->end(); II != IE; ++II) {
|
|
if (&*II == I2) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void PostDominanceInfo::verify() const {
|
|
// Recompute.
|
|
//
|
|
// Even though at the SIL level we have "one" return function, we can have
|
|
// multiple exits provided by no-return functions.
|
|
auto *F = getRoots()[0]->getParent();
|
|
PostDominanceInfo OtherDT(F);
|
|
|
|
// And compare.
|
|
if (errorOccurredOnComparison(OtherDT)) {
|
|
llvm::errs() << "PostDominatorTree is not up to date!\nComputed:\n";
|
|
print(llvm::errs());
|
|
llvm::errs() << "\nActual:\n";
|
|
OtherDT.print(llvm::errs());
|
|
abort();
|
|
}
|
|
}
|