mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
introduce a common superclass, SILNode. This is in preparation for allowing instructions to have multiple results. It is also a somewhat more elegant representation for instructions that have zero results. Instructions that are known to have exactly one result inherit from a class, SingleValueInstruction, that subclasses both ValueBase and SILInstruction. Some care must be taken when working with SILNode pointers and testing for equality; please see the comment on SILNode for more information. A number of SIL passes needed to be updated in order to handle this new distinction between SIL values and SIL instructions. Note that the SIL parser is now stricter about not trying to assign a result value from an instruction (like 'return' or 'strong_retain') that does not produce any.
454 lines
18 KiB
C++
454 lines
18 KiB
C++
//===--- SILBuilder.cpp - Class for creating SIL Constructs ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILGlobalVariable.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SILBuilder Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SILBuilder::SILBuilder(SILGlobalVariable *GlobVar,
|
|
SmallVectorImpl<SILInstruction *> *InsertedInstrs)
|
|
: F(nullptr), Mod(GlobVar->getModule()), InsertedInstrs(InsertedInstrs) {
|
|
setInsertionPoint(&GlobVar->StaticInitializerBlock);
|
|
}
|
|
|
|
IntegerLiteralInst *SILBuilder::createIntegerLiteral(IntegerLiteralExpr *E) {
|
|
return insert(IntegerLiteralInst::create(E, getSILDebugLocation(E),
|
|
getModule()));
|
|
}
|
|
|
|
FloatLiteralInst *SILBuilder::createFloatLiteral(FloatLiteralExpr *E) {
|
|
return insert(FloatLiteralInst::create(E, getSILDebugLocation(E),
|
|
getModule()));
|
|
}
|
|
|
|
TupleInst *SILBuilder::createTuple(SILLocation loc, ArrayRef<SILValue> elts) {
|
|
// Derive the tuple type from the elements.
|
|
SmallVector<TupleTypeElt, 4> eltTypes;
|
|
for (auto elt : elts)
|
|
eltTypes.push_back(elt->getType().getSwiftRValueType());
|
|
auto tupleType = SILType::getPrimitiveObjectType(
|
|
CanType(TupleType::get(eltTypes, getASTContext())));
|
|
|
|
return createTuple(loc, tupleType, elts);
|
|
}
|
|
|
|
SILType SILBuilder::getPartialApplyResultType(SILType origTy, unsigned argCount,
|
|
SILModule &M,
|
|
SubstitutionList subs,
|
|
ParameterConvention calleeConvention) {
|
|
CanSILFunctionType FTI = origTy.castTo<SILFunctionType>();
|
|
if (!subs.empty())
|
|
FTI = FTI->substGenericArgs(M, subs);
|
|
|
|
assert(!FTI->isPolymorphic()
|
|
&& "must provide substitutions for generic partial_apply");
|
|
auto params = FTI->getParameters();
|
|
auto newParams = params.slice(0, params.size() - argCount);
|
|
|
|
auto extInfo = FTI->getExtInfo().withRepresentation(
|
|
SILFunctionType::Representation::Thick);
|
|
|
|
// If the original method has an @unowned_inner_pointer return, the partial
|
|
// application thunk will lifetime-extend 'self' for us, converting the
|
|
// return value to @unowned.
|
|
//
|
|
// If the original method has an @autoreleased return, the partial application
|
|
// thunk will retain it for us, converting the return value to @owned.
|
|
SmallVector<SILResultInfo, 4> results;
|
|
results.append(FTI->getResults().begin(), FTI->getResults().end());
|
|
for (auto &result : results) {
|
|
if (result.getConvention() == ResultConvention::UnownedInnerPointer)
|
|
result = SILResultInfo(result.getType(), ResultConvention::Unowned);
|
|
else if (result.getConvention() == ResultConvention::Autoreleased)
|
|
result = SILResultInfo(result.getType(), ResultConvention::Owned);
|
|
}
|
|
|
|
auto appliedFnType = SILFunctionType::get(nullptr, extInfo,
|
|
calleeConvention,
|
|
newParams,
|
|
results,
|
|
FTI->getOptionalErrorResult(),
|
|
M.getASTContext());
|
|
|
|
return SILType::getPrimitiveObjectType(appliedFnType);
|
|
}
|
|
|
|
// If legal, create an unchecked_ref_cast from the given operand and result
|
|
// type, otherwise return null.
|
|
SingleValueInstruction *
|
|
SILBuilder::tryCreateUncheckedRefCast(SILLocation Loc, SILValue Op,
|
|
SILType ResultTy) {
|
|
if (!SILType::canRefCast(Op->getType(), ResultTy, getModule()))
|
|
return nullptr;
|
|
|
|
return insert(UncheckedRefCastInst::create(getSILDebugLocation(Loc), Op,
|
|
ResultTy, getFunction(), OpenedArchetypes));
|
|
}
|
|
|
|
// Create the appropriate cast instruction based on result type.
|
|
SingleValueInstruction *
|
|
SILBuilder::createUncheckedBitCast(SILLocation Loc, SILValue Op, SILType Ty) {
|
|
if (Ty.isTrivial(getModule()))
|
|
return insert(UncheckedTrivialBitCastInst::create(
|
|
getSILDebugLocation(Loc), Op, Ty, getFunction(), OpenedArchetypes));
|
|
|
|
if (auto refCast = tryCreateUncheckedRefCast(Loc, Op, Ty))
|
|
return refCast;
|
|
|
|
// The destination type is nontrivial, and may be smaller than the source
|
|
// type, so RC identity cannot be assumed.
|
|
return insert(UncheckedBitwiseCastInst::create(getSILDebugLocation(Loc), Op,
|
|
Ty, getFunction(), OpenedArchetypes));
|
|
}
|
|
|
|
BranchInst *SILBuilder::createBranch(SILLocation Loc,
|
|
SILBasicBlock *TargetBlock,
|
|
OperandValueArrayRef Args) {
|
|
SmallVector<SILValue, 6> ArgsCopy;
|
|
ArgsCopy.reserve(Args.size());
|
|
for (auto I = Args.begin(), E = Args.end(); I != E; ++I)
|
|
ArgsCopy.push_back(*I);
|
|
return createBranch(Loc, TargetBlock, ArgsCopy);
|
|
}
|
|
|
|
/// \brief Branch to the given block if there's an active insertion point,
|
|
/// then move the insertion point to the end of that block.
|
|
void SILBuilder::emitBlock(SILBasicBlock *BB, SILLocation BranchLoc) {
|
|
if (!hasValidInsertionPoint()) {
|
|
return emitBlock(BB);
|
|
}
|
|
|
|
// Fall though from the currently active block into the given block.
|
|
assert(BB->args_empty() && "cannot fall through to bb with args");
|
|
|
|
// This is a fall through into BB, emit the fall through branch.
|
|
createBranch(BranchLoc, BB);
|
|
|
|
// Start inserting into that block.
|
|
setInsertionPoint(BB);
|
|
}
|
|
|
|
/// splitBlockForFallthrough - Prepare for the insertion of a terminator. If
|
|
/// the builder's insertion point is at the end of the current block (as when
|
|
/// SILGen is creating the initial code for a function), just create and
|
|
/// return a new basic block that will be later used for the continue point.
|
|
///
|
|
/// If the insertion point is valid (i.e., pointing to an existing
|
|
/// instruction) then split the block at that instruction and return the
|
|
/// continuation block.
|
|
SILBasicBlock *SILBuilder::splitBlockForFallthrough() {
|
|
// If we are concatenating, just create and return a new block.
|
|
if (insertingAtEndOfBlock()) {
|
|
return getFunction().createBasicBlock(BB);
|
|
}
|
|
|
|
// Otherwise we need to split the current block at the insertion point.
|
|
auto *NewBB = BB->split(InsertPt);
|
|
InsertPt = BB->end();
|
|
return NewBB;
|
|
}
|
|
|
|
static bool setAccessToDeinit(BeginAccessInst *beginAccess) {
|
|
// It's possible that AllocBoxToStack could catch some cases that
|
|
// AccessEnforcementSelection does not promote to [static]. Ultimately, this
|
|
// should be an assert, but only after we the two passes can be fixed to share
|
|
// a common analysis.
|
|
if (beginAccess->getEnforcement() == SILAccessEnforcement::Dynamic)
|
|
return false;
|
|
|
|
beginAccess->setAccessKind(SILAccessKind::Deinit);
|
|
return true;
|
|
}
|
|
|
|
PointerUnion<CopyAddrInst *, DestroyAddrInst *>
|
|
SILBuilder::emitDestroyAddr(SILLocation Loc, SILValue Operand) {
|
|
// Check to see if the instruction immediately before the insertion point is a
|
|
// copy_addr from the specified operand. If so, we can fold this into the
|
|
// copy_addr as a take.
|
|
BeginAccessInst *beginAccess = nullptr;
|
|
CopyAddrInst *copyAddrTake = nullptr;
|
|
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
|
|
while (I != BBStart) {
|
|
auto *Inst = &*--I;
|
|
|
|
if (auto CA = dyn_cast<CopyAddrInst>(Inst)) {
|
|
if (!CA->isTakeOfSrc()) {
|
|
if (CA->getSrc() == Operand && !CA->isTakeOfSrc()) {
|
|
CA->setIsTakeOfSrc(IsTake);
|
|
return CA;
|
|
}
|
|
// If this copy_addr is accessing the same source, continue searching
|
|
// backward until we see the begin_access. If any side effects occur
|
|
// between the `%adr = begin_access %src` and `copy_addr %adr` then we
|
|
// cannot promote the access to a deinit. `[deinit]` requires exclusive
|
|
// access, but an instruction with side effects may require shared
|
|
// access.
|
|
if (CA->getSrc() == beginAccess) {
|
|
copyAddrTake = CA;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we've already seen a copy_addr that can be convert to `take`, then
|
|
// stop at the begin_access for the copy's source.
|
|
if (copyAddrTake && beginAccess == Inst) {
|
|
// If `setAccessToDeinit()` returns `true` it has modified the access
|
|
// instruction, so we are committed to the transformation on that path.
|
|
if (setAccessToDeinit(beginAccess)) {
|
|
copyAddrTake->setIsTakeOfSrc(IsTake);
|
|
return copyAddrTake;
|
|
}
|
|
}
|
|
|
|
// destroy_addrs commonly exist in a block of dealloc_stack's, which don't
|
|
// affect take-ability.
|
|
if (isa<DeallocStackInst>(Inst))
|
|
continue;
|
|
|
|
// An end_access of the same address may be able to be rewritten as a
|
|
// [deinit] access.
|
|
if (auto endAccess = dyn_cast<EndAccessInst>(Inst)) {
|
|
if (endAccess->getSource() == Operand) {
|
|
beginAccess = endAccess->getBeginAccess();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// This code doesn't try to prove tricky validity constraints about whether
|
|
// it is safe to push the destroy_addr past interesting instructions.
|
|
if (Inst->mayHaveSideEffects())
|
|
break;
|
|
}
|
|
|
|
// If we didn't find a copy_addr to fold this into, emit the destroy_addr.
|
|
return createDestroyAddr(Loc, Operand);
|
|
}
|
|
|
|
static bool couldReduceStrongRefcount(SILInstruction *Inst) {
|
|
// Simple memory accesses cannot reduce refcounts.
|
|
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
|
|
isa<RetainValueInst>(Inst) || isa<UnownedRetainInst>(Inst) ||
|
|
isa<UnownedReleaseInst>(Inst) || isa<StrongRetainUnownedInst>(Inst) ||
|
|
isa<StoreWeakInst>(Inst) || isa<StrongRetainInst>(Inst) ||
|
|
isa<AllocStackInst>(Inst) || isa<DeallocStackInst>(Inst))
|
|
return false;
|
|
|
|
// Assign and copyaddr of trivial types cannot drop refcounts, and 'inits'
|
|
// never can either. Nontrivial ones can though, because the overwritten
|
|
// value drops a retain. We would have to do more alias analysis to be able
|
|
// to safely ignore one of those.
|
|
if (auto AI = dyn_cast<AssignInst>(Inst)) {
|
|
auto StoredType = AI->getOperand(0)->getType();
|
|
if (StoredType.isTrivial(Inst->getModule()) ||
|
|
StoredType.is<ReferenceStorageType>())
|
|
return false;
|
|
}
|
|
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
|
|
// Initializations can only increase refcounts.
|
|
if (CAI->isInitializationOfDest())
|
|
return false;
|
|
|
|
SILType StoredType = CAI->getOperand(0)->getType().getObjectType();
|
|
if (StoredType.isTrivial(Inst->getModule()) ||
|
|
StoredType.is<ReferenceStorageType>())
|
|
return false;
|
|
}
|
|
|
|
// This code doesn't try to prove tricky validity constraints about whether
|
|
// it is safe to push the release past interesting instructions.
|
|
return Inst->mayHaveSideEffects();
|
|
}
|
|
|
|
|
|
/// Perform a strong_release instruction at the current location, attempting
|
|
/// to fold it locally into nearby retain instructions or emitting an explicit
|
|
/// strong release if necessary. If this inserts a new instruction, it
|
|
/// returns it, otherwise it returns null.
|
|
PointerUnion<StrongRetainInst *, StrongReleaseInst *>
|
|
SILBuilder::emitStrongRelease(SILLocation Loc, SILValue Operand) {
|
|
// Release on a functionref is a noop.
|
|
if (isa<FunctionRefInst>(Operand)) {
|
|
return static_cast<StrongReleaseInst *>(nullptr);
|
|
}
|
|
|
|
// Check to see if the instruction immediately before the insertion point is a
|
|
// strong_retain of the specified operand. If so, we can zap the pair.
|
|
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
|
|
while (I != BBStart) {
|
|
auto *Inst = &*--I;
|
|
|
|
if (auto *SRA = dyn_cast<StrongRetainInst>(Inst)) {
|
|
if (SRA->getOperand() == Operand)
|
|
return SRA;
|
|
// Skip past unrelated retains.
|
|
continue;
|
|
}
|
|
|
|
// Scan past simple instructions that cannot reduce strong refcounts.
|
|
if (couldReduceStrongRefcount(Inst))
|
|
break;
|
|
}
|
|
|
|
// If we didn't find a retain to fold this into, emit the release.
|
|
return createStrongRelease(Loc, Operand, getDefaultAtomicity());
|
|
}
|
|
|
|
/// Emit a release_value instruction at the current location, attempting to
|
|
/// fold it locally into another nearby retain_value instruction. This
|
|
/// returns the new instruction if it inserts one, otherwise it returns null.
|
|
PointerUnion<RetainValueInst *, ReleaseValueInst *>
|
|
SILBuilder::emitReleaseValue(SILLocation Loc, SILValue Operand) {
|
|
// Check to see if the instruction immediately before the insertion point is a
|
|
// retain_value of the specified operand. If so, we can zap the pair.
|
|
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
|
|
while (I != BBStart) {
|
|
auto *Inst = &*--I;
|
|
|
|
if (auto *SRA = dyn_cast<RetainValueInst>(Inst)) {
|
|
if (SRA->getOperand() == Operand)
|
|
return SRA;
|
|
// Skip past unrelated retains.
|
|
continue;
|
|
}
|
|
|
|
// Scan past simple instructions that cannot reduce refcounts.
|
|
if (couldReduceStrongRefcount(Inst))
|
|
break;
|
|
}
|
|
|
|
// If we didn't find a retain to fold this into, emit the release.
|
|
return createReleaseValue(Loc, Operand, getDefaultAtomicity());
|
|
}
|
|
|
|
PointerUnion<CopyValueInst *, DestroyValueInst *>
|
|
SILBuilder::emitDestroyValue(SILLocation Loc, SILValue Operand) {
|
|
// Check to see if the instruction immediately before the insertion point is a
|
|
// retain_value of the specified operand. If so, we can zap the pair.
|
|
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
|
|
while (I != BBStart) {
|
|
auto *Inst = &*--I;
|
|
|
|
if (auto *CVI = dyn_cast<CopyValueInst>(Inst)) {
|
|
if (SILValue(CVI) == Operand || CVI->getOperand() == Operand)
|
|
return CVI;
|
|
// Skip past unrelated retains.
|
|
continue;
|
|
}
|
|
|
|
// Scan past simple instructions that cannot reduce refcounts.
|
|
if (couldReduceStrongRefcount(Inst))
|
|
break;
|
|
}
|
|
|
|
// If we didn't find a retain to fold this into, emit the release.
|
|
return createDestroyValue(Loc, Operand);
|
|
}
|
|
|
|
SILValue SILBuilder::emitThickToObjCMetatype(SILLocation Loc, SILValue Op,
|
|
SILType Ty) {
|
|
// If the operand is an otherwise-unused 'metatype' instruction in the
|
|
// same basic block, zap it and create a 'metatype' instruction that
|
|
// directly produces an Objective-C metatype.
|
|
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
|
|
if (metatypeInst->use_empty() &&
|
|
metatypeInst->getParent() == getInsertionBB()) {
|
|
auto origLoc = metatypeInst->getLoc();
|
|
metatypeInst->eraseFromParent();
|
|
return createMetatype(origLoc, Ty);
|
|
}
|
|
}
|
|
|
|
// Just create the thick_to_objc_metatype instruction.
|
|
return createThickToObjCMetatype(Loc, Op, Ty);
|
|
}
|
|
|
|
SILValue SILBuilder::emitObjCToThickMetatype(SILLocation Loc, SILValue Op,
|
|
SILType Ty) {
|
|
// If the operand is an otherwise-unused 'metatype' instruction in the
|
|
// same basic block, zap it and create a 'metatype' instruction that
|
|
// directly produces a thick metatype.
|
|
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
|
|
if (metatypeInst->use_empty() &&
|
|
metatypeInst->getParent() == getInsertionBB()) {
|
|
auto origLoc = metatypeInst->getLoc();
|
|
metatypeInst->eraseFromParent();
|
|
return createMetatype(origLoc, Ty);
|
|
}
|
|
}
|
|
|
|
// Just create the objc_to_thick_metatype instruction.
|
|
return createObjCToThickMetatype(Loc, Op, Ty);
|
|
}
|
|
|
|
/// Add opened archetypes defined or used by the current instruction.
|
|
/// If there are no such opened archetypes in the current instruction
|
|
/// and it is an instruction with just one operand, try to perform
|
|
/// the same action for the instruction defining an operand, because
|
|
/// it may have some opened archetypes used or defined.
|
|
void SILBuilder::addOpenedArchetypeOperands(SILInstruction *I) {
|
|
// The list of archetypes from the previous instruction needs
|
|
// to be replaced, because it may reference a removed instruction.
|
|
OpenedArchetypes.addOpenedArchetypeOperands(I->getTypeDependentOperands());
|
|
if (I && I->getNumTypeDependentOperands() > 0)
|
|
return;
|
|
|
|
// Keep track of already visited instructions to avoid infinite loops.
|
|
SmallPtrSet<SILInstruction *, 8> Visited;
|
|
|
|
while (I && I->getNumOperands() == 1 &&
|
|
I->getNumTypeDependentOperands() == 0) {
|
|
// All the open instructions are single-value instructions.
|
|
auto SVI = dyn_cast<SingleValueInstruction>(I->getOperand(0));
|
|
if (!SVI || !Visited.insert(SVI).second)
|
|
return;
|
|
// If it is a definition of an opened archetype,
|
|
// register it and exit.
|
|
auto Archetype = getOpenedArchetypeOf(SVI);
|
|
if (!Archetype) {
|
|
I = SVI;
|
|
continue;
|
|
}
|
|
auto Def = OpenedArchetypes.getOpenedArchetypeDef(Archetype);
|
|
// Return if it is a known open archetype.
|
|
if (Def)
|
|
return;
|
|
// Otherwise register it and return.
|
|
if (OpenedArchetypesTracker)
|
|
OpenedArchetypesTracker->addOpenedArchetypeDef(Archetype, SVI);
|
|
return;
|
|
}
|
|
|
|
if (I && I->getNumTypeDependentOperands() > 0) {
|
|
OpenedArchetypes.addOpenedArchetypeOperands(I->getTypeDependentOperands());
|
|
}
|
|
}
|
|
|
|
ValueMetatypeInst *SILBuilder::createValueMetatype(SILLocation Loc,
|
|
SILType MetatypeTy,
|
|
SILValue Base) {
|
|
assert(
|
|
Base->getType().isLoweringOf(
|
|
getModule(), MetatypeTy.castTo<MetatypeType>().getInstanceType()) &&
|
|
"value_metatype result must be formal metatype of the lowered operand "
|
|
"type");
|
|
return insert(new (getModule()) ValueMetatypeInst(getSILDebugLocation(Loc),
|
|
MetatypeTy, Base));
|
|
}
|