Files
swift-mirror/lib/SILOptimizer/Analysis/MemoryBehavior.cpp
John McCall ab3f77baf2 Make SILInstruction no longer a subclass of ValueBase and
introduce a common superclass, SILNode.

This is in preparation for allowing instructions to have multiple
results.  It is also a somewhat more elegant representation for
instructions that have zero results.  Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction.  Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.

A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.

Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
2017-09-25 02:06:26 -04:00

369 lines
14 KiB
C++

//===--- MemoryBehavior.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-membehavior"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SIL/SILVisitor.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// The MemoryBehavior Cache must not grow beyond this size.
// We limit the size of the MB cache to 2**14 because we want to limit the
// memory usage of this cache.
static const int MemoryBehaviorAnalysisMaxCacheSize = 16384;
//===----------------------------------------------------------------------===//
// Memory Behavior Implementation
//===----------------------------------------------------------------------===//
namespace {
using MemBehavior = SILInstruction::MemoryBehavior;
/// Visitor that determines the memory behavior of an instruction relative to a
/// specific SILValue (i.e. can the instruction cause the value to be read,
/// etc.).
class MemoryBehaviorVisitor
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
AliasAnalysis *AA;
SideEffectAnalysis *SEA;
EscapeAnalysis *EA;
/// The value we are attempting to discover memory behavior relative to.
SILValue V;
/// The SILType of the value.
Optional<SILType> TypedAccessTy;
/// Should we treat instructions that increment ref counts as None instead of
/// MayHaveSideEffects.
RetainObserveKind InspectionMode;
public:
MemoryBehaviorVisitor(AliasAnalysis *AA, SideEffectAnalysis *SEA,
EscapeAnalysis *EA, SILValue V,
RetainObserveKind IgnoreRefCountIncs)
: AA(AA), SEA(SEA), EA(EA), V(V), InspectionMode(IgnoreRefCountIncs) {}
SILType getValueTBAAType() {
if (!TypedAccessTy)
TypedAccessTy = computeTBAAType(V);
return *TypedAccessTy;
}
MemBehavior visitValueBase(ValueBase *V) {
llvm_unreachable("unimplemented");
}
MemBehavior visitSILInstruction(SILInstruction *Inst) {
// If we do not have any more information, just use the general memory
// behavior implementation.
auto Behavior = Inst->getMemoryBehavior();
bool ReadOnlyAccess = isLetPointer(V);
// If this is a regular read-write access then return the computed memory
// behavior.
if (!ReadOnlyAccess)
return Behavior;
// If this is a read-only access to 'let variable' then we can strip away
// the write access.
switch (Behavior) {
case MemBehavior::MayHaveSideEffects: return MemBehavior::MayRead;
case MemBehavior::MayReadWrite: return MemBehavior::MayRead;
case MemBehavior::MayWrite: return MemBehavior::None;
default: return Behavior;
}
}
MemBehavior visitLoadInst(LoadInst *LI);
MemBehavior visitStoreInst(StoreInst *SI);
MemBehavior visitApplyInst(ApplyInst *AI);
MemBehavior visitTryApplyInst(TryApplyInst *AI);
MemBehavior visitBuiltinInst(BuiltinInst *BI);
MemBehavior visitStrongReleaseInst(StrongReleaseInst *BI);
MemBehavior visitUnownedReleaseInst(UnownedReleaseInst *BI);
MemBehavior visitReleaseValueInst(ReleaseValueInst *BI);
MemBehavior visitSetDeallocatingInst(SetDeallocatingInst *BI);
// Instructions which are none if our SILValue does not alias one of its
// arguments. If we cannot prove such a thing, return the relevant memory
// behavior.
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
for (Operand &Op : I->getAllOperands()) { \
if (!AA->isNoAlias(Op.get(), V)) { \
DEBUG(llvm::dbgs() << " " #Name \
" does alias inst. Returning Normal behavior.\n"); \
return I->getMemoryBehavior(); \
} \
} \
\
DEBUG(llvm::dbgs() << " " #Name " does not alias inst. Returning " \
"None.\n"); \
return MemBehavior::None; \
}
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
#undef OPERANDALIAS_MEMBEHAVIOR_INST
// Override simple behaviors where MayHaveSideEffects is too general and
// encompasses other behavior that is not read/write/ref count decrement
// behavior we care about.
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
#undef SIMPLE_MEMBEHAVIOR_INST
// If we are asked to treat ref count increments as being inert, return None
// for these.
//
// FIXME: Once we separate the notion of ref counts from reading/writing
// memory this will be unnecessary.
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
if (InspectionMode == RetainObserveKind::IgnoreRetains) \
return MemBehavior::None; \
return I->getMemoryBehavior(); \
}
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainUnownedInst)
REFCOUNTINC_MEMBEHAVIOR_INST(UnownedRetainInst)
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
#undef REFCOUNTINC_MEMBEHAVIOR_INST
};
} // end anonymous namespace
MemBehavior MemoryBehaviorVisitor::visitLoadInst(LoadInst *LI) {
if (AA->isNoAlias(LI->getOperand(), V, computeTBAAType(LI->getOperand()),
getValueTBAAType())) {
DEBUG(llvm::dbgs() << " Load Operand does not alias inst. Returning "
"None.\n");
return MemBehavior::None;
}
DEBUG(llvm::dbgs() << " Could not prove that load inst does not alias "
"pointer. Returning may read.");
return MemBehavior::MayRead;
}
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
// No store besides the initialization of a "let"-variable
// can have any effect on the value of this "let" variable.
if (isLetPointer(V) && SI->getDest() != V)
return MemBehavior::None;
// If the store dest cannot alias the pointer in question, then the
// specified value cannot be modified by the store.
if (AA->isNoAlias(SI->getDest(), V, computeTBAAType(SI->getDest()),
getValueTBAAType())) {
DEBUG(llvm::dbgs() << " Store Dst does not alias inst. Returning "
"None.\n");
return MemBehavior::None;
}
// Otherwise, a store just writes.
DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
"Returning MayWrite.\n");
return MemBehavior::MayWrite;
}
MemBehavior MemoryBehaviorVisitor::visitBuiltinInst(BuiltinInst *BI) {
// If our callee is not a builtin, be conservative and return may have side
// effects.
if (!BI) {
return MemBehavior::MayHaveSideEffects;
}
// If the builtin is read none, it does not read or write memory.
if (!BI->mayReadOrWriteMemory()) {
DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
" None.\n");
return MemBehavior::None;
}
// If the builtin is side effect free, then it can only read memory.
if (!BI->mayHaveSideEffects()) {
DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
"Returning MayRead.\n");
return MemBehavior::MayRead;
}
// FIXME: If the value (or any other values from the instruction that the
// value comes from) that we are tracking does not escape and we don't alias
// any of the arguments of the apply inst, we should be ok.
// Otherwise be conservative and return that we may have side effects.
DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
"Returning MayHaveSideEffects.\n");
return MemBehavior::MayHaveSideEffects;
}
MemBehavior MemoryBehaviorVisitor::visitTryApplyInst(TryApplyInst *AI) {
MemBehavior Behavior = MemBehavior::MayHaveSideEffects;
// Ask escape analysis.
if (!EA->canObjectOrContentEscapeTo(V, AI))
Behavior = MemBehavior::None;
// Otherwise be conservative and return that we may have side effects.
DEBUG(llvm::dbgs() << " Found tryapply, returning " << Behavior << '\n');
return Behavior;
}
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
SideEffectAnalysis::FunctionEffects ApplyEffects;
SEA->getEffects(ApplyEffects, AI);
MemBehavior Behavior = MemBehavior::None;
// We can ignore mayTrap().
bool any_in_guaranteed_params = false;
for (auto op : enumerate(AI->getArgumentOperands())) {
if (op.value().get() == V &&
AI->getSubstCalleeConv().getSILArgumentConvention(op.index()) == swift::SILArgumentConvention::Indirect_In_Guaranteed) {
any_in_guaranteed_params = true;
break;
}
}
if (any_in_guaranteed_params) {
// one the parameters in the function call is @in_guaranteed of V, ie. the
// callee isn't allowed to modify it.
Behavior = MemBehavior::MayRead;
} else if (ApplyEffects.mayReadRC() ||
(InspectionMode == RetainObserveKind::ObserveRetains &&
ApplyEffects.mayAllocObjects())) {
Behavior = MemBehavior::MayHaveSideEffects;
} else {
auto &GlobalEffects = ApplyEffects.getGlobalEffects();
Behavior = GlobalEffects.getMemBehavior(InspectionMode);
// Check all parameter effects.
for (unsigned Idx = 0, End = AI->getNumArguments();
Idx < End && Behavior < MemBehavior::MayHaveSideEffects; ++Idx) {
auto &ArgEffect = ApplyEffects.getParameterEffects()[Idx];
auto ArgBehavior = ArgEffect.getMemBehavior(InspectionMode);
auto NewBehavior = combineMemoryBehavior(Behavior, ArgBehavior);
if (NewBehavior != Behavior) {
SILValue Arg = AI->getArgument(Idx);
// We only consider the argument effects if the argument aliases V.
if (!Arg->getType().isAddress() ||
!AA->isNoAlias(Arg, V, computeTBAAType(Arg), getValueTBAAType())) {
Behavior = NewBehavior;
}
}
}
}
if (Behavior > MemBehavior::None) {
if (Behavior > MemBehavior::MayRead && isLetPointer(V))
Behavior = MemBehavior::MayRead;
// Ask escape analysis.
if (!EA->canObjectOrContentEscapeTo(V, AI))
Behavior = MemBehavior::None;
}
DEBUG(llvm::dbgs() << " Found apply, returning " << Behavior << '\n');
return Behavior;
}
MemBehavior
MemoryBehaviorVisitor::visitStrongReleaseInst(StrongReleaseInst *SI) {
if (!EA->canEscapeTo(V, SI))
return MemBehavior::None;
return MemBehavior::MayHaveSideEffects;
}
MemBehavior
MemoryBehaviorVisitor::visitUnownedReleaseInst(UnownedReleaseInst *SI) {
if (!EA->canEscapeTo(V, SI))
return MemBehavior::None;
return MemBehavior::MayHaveSideEffects;
}
MemBehavior MemoryBehaviorVisitor::visitReleaseValueInst(ReleaseValueInst *SI) {
if (!EA->canEscapeTo(V, SI))
return MemBehavior::None;
return MemBehavior::MayHaveSideEffects;
}
MemBehavior MemoryBehaviorVisitor::visitSetDeallocatingInst(SetDeallocatingInst *SDI) {
return MemBehavior::None;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
MemBehavior
AliasAnalysis::computeMemoryBehavior(SILInstruction *Inst, SILValue V,
RetainObserveKind InspectionMode) {
MemBehaviorKeyTy Key = toMemoryBehaviorKey(Inst, V, InspectionMode);
// Check if we've already computed this result.
auto It = MemoryBehaviorCache.find(Key);
if (It != MemoryBehaviorCache.end()) {
return It->second;
}
// Flush the cache if the size of the cache is too large.
if (MemoryBehaviorCache.size() > MemoryBehaviorAnalysisMaxCacheSize) {
MemoryBehaviorCache.clear();
MemoryBehaviorNodeToIndex.clear();
// Key is no longer valid as we cleared the MemoryBehaviorNodeToIndex.
Key = toMemoryBehaviorKey(Inst, V, InspectionMode);
}
// Calculate the aliasing result and store it in the cache.
auto Result = computeMemoryBehaviorInner(Inst, V, InspectionMode);
MemoryBehaviorCache[Key] = Result;
return Result;
}
MemBehavior
AliasAnalysis::computeMemoryBehaviorInner(SILInstruction *Inst, SILValue V,
RetainObserveKind InspectionMode) {
DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
<< *V);
assert(SEA && "SideEffectsAnalysis must be initialized!");
return MemoryBehaviorVisitor(this, SEA, EA, V, InspectionMode).visit(Inst);
}
MemBehaviorKeyTy AliasAnalysis::toMemoryBehaviorKey(SILInstruction *V1,
SILValue V2,
RetainObserveKind M) {
size_t idx1 =
MemoryBehaviorNodeToIndex.getIndex(V1->getCanonicalSILNodeInObject());
assert(idx1 != std::numeric_limits<size_t>::max() &&
"~0 index reserved for empty/tombstone keys");
size_t idx2 =
MemoryBehaviorNodeToIndex.getIndex(V2->getCanonicalSILNodeInObject());
assert(idx2 != std::numeric_limits<size_t>::max() &&
"~0 index reserved for empty/tombstone keys");
return {idx1, idx2, M};
}