mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
1153 lines
38 KiB
C++
1153 lines
38 KiB
C++
//===--- GenericSignature.cpp - Generic Signature AST ---------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the GenericSignature class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/TypeCheckRequests.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Basic/STLExtras.h"
|
|
#include "RequirementMachine/RequirementMachine.h"
|
|
#include <functional>
|
|
|
|
using namespace swift;
|
|
|
|
void ConformanceAccessPath::print(raw_ostream &out) const {
|
|
llvm::interleave(
|
|
begin(), end(),
|
|
[&](const Entry &entry) {
|
|
entry.first.print(out);
|
|
out << ": " << entry.second->getName();
|
|
},
|
|
[&] { out << " -> "; });
|
|
}
|
|
|
|
void ConformanceAccessPath::dump() const {
|
|
print(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
}
|
|
|
|
GenericSignatureImpl::GenericSignatureImpl(
|
|
TypeArrayView<GenericTypeParamType> params,
|
|
ArrayRef<Requirement> requirements, bool isKnownCanonical)
|
|
: NumGenericParams(params.size()), NumRequirements(requirements.size()),
|
|
CanonicalSignatureOrASTContext() {
|
|
std::uninitialized_copy(params.begin(), params.end(),
|
|
getTrailingObjects<Type>());
|
|
std::uninitialized_copy(requirements.begin(), requirements.end(),
|
|
getTrailingObjects<Requirement>());
|
|
|
|
#ifndef NDEBUG
|
|
// Make sure generic parameters are in the right order, and
|
|
// none are missing.
|
|
unsigned depth = 0;
|
|
unsigned count = 0;
|
|
for (auto param : params) {
|
|
if (param->getDepth() != depth) {
|
|
assert(param->getDepth() > depth && "Generic parameter depth mismatch");
|
|
depth = param->getDepth();
|
|
count = 0;
|
|
}
|
|
assert(param->getIndex() == count && "Generic parameter index mismatch");
|
|
++count;
|
|
}
|
|
#endif
|
|
|
|
if (isKnownCanonical)
|
|
CanonicalSignatureOrASTContext =
|
|
&GenericSignature::getASTContext(params, requirements);
|
|
}
|
|
|
|
TypeArrayView<GenericTypeParamType>
|
|
GenericSignatureImpl::getInnermostGenericParams() const {
|
|
const auto params = getGenericParams();
|
|
|
|
const unsigned maxDepth = params.back()->getDepth();
|
|
if (params.front()->getDepth() == maxDepth)
|
|
return params;
|
|
|
|
// There is a depth change. Count the number of elements
|
|
// to slice off the front.
|
|
unsigned sliceCount = params.size() - 1;
|
|
while (true) {
|
|
if (params[sliceCount - 1]->getDepth() != maxDepth)
|
|
break;
|
|
--sliceCount;
|
|
}
|
|
|
|
return params.slice(sliceCount);
|
|
}
|
|
|
|
void GenericSignatureImpl::forEachParam(
|
|
llvm::function_ref<void(GenericTypeParamType *, bool)> callback) const {
|
|
// Figure out which generic parameters are concrete or same-typed to another
|
|
// type parameter.
|
|
auto genericParams = getGenericParams();
|
|
auto genericParamsAreCanonical =
|
|
SmallVector<bool, 4>(genericParams.size(), true);
|
|
|
|
for (auto req : getRequirements()) {
|
|
if (req.getKind() != RequirementKind::SameType) continue;
|
|
|
|
GenericTypeParamType *gp;
|
|
if (auto secondGP = req.getSecondType()->getAs<GenericTypeParamType>()) {
|
|
// If two generic parameters are same-typed, then the right-hand one
|
|
// is non-canonical.
|
|
assert(req.getFirstType()->is<GenericTypeParamType>());
|
|
gp = secondGP;
|
|
} else {
|
|
// Otherwise, the right-hand side is an associated type or concrete type,
|
|
// and the left-hand one is non-canonical.
|
|
gp = req.getFirstType()->getAs<GenericTypeParamType>();
|
|
if (!gp) continue;
|
|
|
|
// If an associated type is same-typed, it doesn't constrain the generic
|
|
// parameter itself. That is, if T == U.Foo, then T is canonical, whereas
|
|
// U.Foo is not.
|
|
if (req.getSecondType()->isTypeParameter()) continue;
|
|
}
|
|
|
|
unsigned index = GenericParamKey(gp).findIndexIn(genericParams);
|
|
genericParamsAreCanonical[index] = false;
|
|
}
|
|
|
|
// Call the callback with each parameter and the result of the above analysis.
|
|
for (auto index : indices(genericParams))
|
|
callback(genericParams[index], genericParamsAreCanonical[index]);
|
|
}
|
|
|
|
bool GenericSignatureImpl::areAllParamsConcrete() const {
|
|
unsigned numConcreteGenericParams = 0;
|
|
for (const auto &req : getRequirements()) {
|
|
if (req.getKind() != RequirementKind::SameType) continue;
|
|
if (!req.getFirstType()->is<GenericTypeParamType>()) continue;
|
|
if (req.getSecondType()->isTypeParameter()) continue;
|
|
|
|
++numConcreteGenericParams;
|
|
}
|
|
|
|
return numConcreteGenericParams == getGenericParams().size();
|
|
}
|
|
|
|
ASTContext &GenericSignature::getASTContext(
|
|
TypeArrayView<GenericTypeParamType> params,
|
|
ArrayRef<swift::Requirement> requirements) {
|
|
// The params and requirements cannot both be empty.
|
|
if (!params.empty())
|
|
return params.front()->getASTContext();
|
|
else
|
|
return requirements.front().getFirstType()->getASTContext();
|
|
}
|
|
|
|
/// Retrieve the generic parameters.
|
|
TypeArrayView<GenericTypeParamType> GenericSignature::getGenericParams() const {
|
|
return isNull()
|
|
? TypeArrayView<GenericTypeParamType>{}
|
|
: getPointer()->getGenericParams();
|
|
}
|
|
|
|
/// Retrieve the innermost generic parameters.
|
|
///
|
|
/// Given a generic signature for a nested generic type, produce an
|
|
/// array of the generic parameters for the innermost generic type.
|
|
TypeArrayView<GenericTypeParamType> GenericSignature::getInnermostGenericParams() const {
|
|
return isNull()
|
|
? TypeArrayView<GenericTypeParamType>{}
|
|
: getPointer()->getInnermostGenericParams();
|
|
}
|
|
|
|
/// Retrieve the requirements.
|
|
ArrayRef<Requirement> GenericSignature::getRequirements() const {
|
|
return isNull()
|
|
? ArrayRef<Requirement>{}
|
|
: getPointer()->getRequirements();
|
|
}
|
|
|
|
rewriting::RequirementMachine *
|
|
GenericSignatureImpl::getRequirementMachine() const {
|
|
if (Machine)
|
|
return Machine;
|
|
|
|
const_cast<GenericSignatureImpl *>(this)->Machine
|
|
= getASTContext().getRewriteContext().getRequirementMachine(
|
|
getCanonicalSignature());
|
|
return Machine;
|
|
}
|
|
|
|
bool GenericSignatureImpl::isEqual(GenericSignature Other) const {
|
|
return getCanonicalSignature() == Other.getCanonicalSignature();
|
|
}
|
|
|
|
bool GenericSignatureImpl::isCanonical() const {
|
|
if (CanonicalSignatureOrASTContext.is<ASTContext *>())
|
|
return true;
|
|
return getCanonicalSignature().getPointer() == this;
|
|
}
|
|
|
|
CanGenericSignature
|
|
CanGenericSignature::getCanonical(TypeArrayView<GenericTypeParamType> params,
|
|
ArrayRef<Requirement> requirements) {
|
|
// Canonicalize the parameters and requirements.
|
|
SmallVector<GenericTypeParamType*, 8> canonicalParams;
|
|
canonicalParams.reserve(params.size());
|
|
for (auto param : params) {
|
|
canonicalParams.push_back(cast<GenericTypeParamType>(param->getCanonicalType()));
|
|
}
|
|
|
|
SmallVector<Requirement, 8> canonicalRequirements;
|
|
canonicalRequirements.reserve(requirements.size());
|
|
for (auto &reqt : requirements)
|
|
canonicalRequirements.push_back(reqt.getCanonical());
|
|
|
|
auto canSig = get(canonicalParams, canonicalRequirements,
|
|
/*isKnownCanonical=*/true);
|
|
|
|
return CanGenericSignature(canSig);
|
|
}
|
|
|
|
CanGenericSignature GenericSignature::getCanonicalSignature() const {
|
|
// If the underlying pointer is null, return `CanGenericSignature()`.
|
|
if (isNull())
|
|
return CanGenericSignature();
|
|
// Otherwise, return the canonical signature of the underlying pointer.
|
|
return getPointer()->getCanonicalSignature();
|
|
}
|
|
|
|
CanGenericSignature GenericSignatureImpl::getCanonicalSignature() const {
|
|
// If we haven't computed the canonical signature yet, do so now.
|
|
if (CanonicalSignatureOrASTContext.isNull()) {
|
|
// Compute the canonical signature.
|
|
auto canSig = CanGenericSignature::getCanonical(getGenericParams(),
|
|
getRequirements());
|
|
|
|
// Record either the canonical signature or an indication that
|
|
// this is the canonical signature.
|
|
if (canSig.getPointer() != this)
|
|
CanonicalSignatureOrASTContext = canSig.getPointer();
|
|
else
|
|
CanonicalSignatureOrASTContext = &getGenericParams()[0]->getASTContext();
|
|
|
|
// Return the canonical signature.
|
|
return canSig;
|
|
}
|
|
|
|
// A stored ASTContext indicates that this is the canonical
|
|
// signature.
|
|
if (CanonicalSignatureOrASTContext.is<ASTContext *>())
|
|
return CanGenericSignature(this);
|
|
|
|
// Otherwise, return the stored canonical signature.
|
|
return CanGenericSignature(
|
|
CanonicalSignatureOrASTContext.get<const GenericSignatureImpl *>());
|
|
}
|
|
|
|
GenericEnvironment *GenericSignature::getGenericEnvironment() const {
|
|
if (isNull())
|
|
return nullptr;
|
|
return getPointer()->getGenericEnvironment();
|
|
}
|
|
|
|
GenericEnvironment *GenericSignatureImpl::getGenericEnvironment() const {
|
|
if (GenericEnv == nullptr) {
|
|
const auto impl = const_cast<GenericSignatureImpl *>(this);
|
|
impl->GenericEnv = GenericEnvironment::getIncomplete(this);
|
|
}
|
|
|
|
return GenericEnv;
|
|
}
|
|
|
|
GenericSignature::LocalRequirements
|
|
GenericSignatureImpl::getLocalRequirements(Type depType) const {
|
|
assert(depType->isTypeParameter() && "Expected a type parameter here");
|
|
|
|
return getRequirementMachine()->getLocalRequirements(
|
|
depType, getGenericParams());
|
|
}
|
|
|
|
ASTContext &GenericSignatureImpl::getASTContext() const {
|
|
// Canonical signatures store the ASTContext directly.
|
|
if (auto ctx = CanonicalSignatureOrASTContext.dyn_cast<ASTContext *>())
|
|
return *ctx;
|
|
|
|
// For everything else, just get it from the generic parameter.
|
|
return GenericSignature::getASTContext(getGenericParams(), getRequirements());
|
|
}
|
|
|
|
ProtocolConformanceRef
|
|
GenericSignatureImpl::lookupConformance(CanType type,
|
|
ProtocolDecl *proto) const {
|
|
// FIXME: Actually implement this properly.
|
|
auto *M = proto->getParentModule();
|
|
|
|
if (type->isTypeParameter())
|
|
return ProtocolConformanceRef(proto);
|
|
|
|
return M->lookupConformance(type, proto, /*allowMissing=*/true);
|
|
}
|
|
|
|
bool GenericSignatureImpl::requiresClass(Type type) const {
|
|
assert(type->isTypeParameter() &&
|
|
"Only type parameters can have superclass requirements");
|
|
|
|
return getRequirementMachine()->requiresClass(type);
|
|
}
|
|
|
|
/// Determine the superclass bound on the given dependent type.
|
|
Type GenericSignatureImpl::getSuperclassBound(Type type) const {
|
|
assert(type->isTypeParameter() &&
|
|
"Only type parameters can have superclass requirements");
|
|
|
|
return getRequirementMachine()->getSuperclassBound(
|
|
type, getGenericParams());
|
|
}
|
|
|
|
/// Determine the set of protocols to which the given type parameter is
|
|
/// required to conform.
|
|
GenericSignature::RequiredProtocols
|
|
GenericSignatureImpl::getRequiredProtocols(Type type) const {
|
|
assert(type->isTypeParameter() && "Expected a type parameter");
|
|
|
|
return getRequirementMachine()->getRequiredProtocols(type);
|
|
}
|
|
|
|
bool GenericSignatureImpl::requiresProtocol(Type type,
|
|
ProtocolDecl *proto) const {
|
|
assert(type->isTypeParameter() && "Expected a type parameter");
|
|
|
|
return getRequirementMachine()->requiresProtocol(type, proto);
|
|
}
|
|
|
|
/// Determine whether the given dependent type is equal to a concrete type.
|
|
bool GenericSignatureImpl::isConcreteType(Type type) const {
|
|
assert(type->isTypeParameter() && "Expected a type parameter");
|
|
|
|
return getRequirementMachine()->isConcreteType(type);
|
|
}
|
|
|
|
/// Return the concrete type that the given type parameter is constrained to,
|
|
/// or the null Type if it is not the subject of a concrete same-type
|
|
/// constraint.
|
|
Type GenericSignatureImpl::getConcreteType(Type type) const {
|
|
assert(type->isTypeParameter() && "Expected a type parameter");
|
|
|
|
return getRequirementMachine()->getConcreteType(type, getGenericParams());
|
|
}
|
|
|
|
LayoutConstraint GenericSignatureImpl::getLayoutConstraint(Type type) const {
|
|
assert(type->isTypeParameter() &&
|
|
"Only type parameters can have layout constraints");
|
|
|
|
return getRequirementMachine()->getLayoutConstraint(type);
|
|
}
|
|
|
|
bool GenericSignatureImpl::areSameTypeParameterInContext(Type type1,
|
|
Type type2) const {
|
|
assert(type1->isTypeParameter());
|
|
assert(type2->isTypeParameter());
|
|
|
|
if (type1.getPointer() == type2.getPointer())
|
|
return true;
|
|
|
|
return getRequirementMachine()->areSameTypeParameterInContext(type1, type2);
|
|
}
|
|
|
|
bool GenericSignatureImpl::isRequirementSatisfied(
|
|
Requirement requirement, bool allowMissing) const {
|
|
if (requirement.getFirstType()->hasTypeParameter()) {
|
|
auto *genericEnv = getGenericEnvironment();
|
|
|
|
auto substituted = requirement.subst(
|
|
[&](SubstitutableType *type) -> Type {
|
|
if (auto *paramType = type->getAs<GenericTypeParamType>())
|
|
return genericEnv->mapTypeIntoContext(paramType);
|
|
|
|
return type;
|
|
},
|
|
LookUpConformanceInSignature(this));
|
|
|
|
if (!substituted)
|
|
return false;
|
|
|
|
requirement = *substituted;
|
|
}
|
|
|
|
// FIXME: Need to check conditional requirements here.
|
|
ArrayRef<Requirement> conditionalRequirements;
|
|
|
|
return requirement.isSatisfied(conditionalRequirements, allowMissing);
|
|
}
|
|
|
|
SmallVector<Requirement, 4>
|
|
GenericSignature::requirementsNotSatisfiedBy(GenericSignature otherSig) const {
|
|
// The null generic signature has no requirements, therefore all requirements
|
|
// are satisfied by any signature.
|
|
if (isNull()) {
|
|
return {};
|
|
}
|
|
return getPointer()->requirementsNotSatisfiedBy(otherSig);
|
|
}
|
|
|
|
SmallVector<Requirement, 4> GenericSignatureImpl::requirementsNotSatisfiedBy(
|
|
GenericSignature otherSig) const {
|
|
SmallVector<Requirement, 4> result;
|
|
|
|
// If the signatures match by pointer, all requirements are satisfied.
|
|
if (otherSig.getPointer() == this) return result;
|
|
|
|
// If there is no other signature, no requirements are satisfied.
|
|
if (!otherSig) {
|
|
const auto reqs = getRequirements();
|
|
result.append(reqs.begin(), reqs.end());
|
|
return result;
|
|
}
|
|
|
|
// If the canonical signatures are equal, all requirements are satisfied.
|
|
if (getCanonicalSignature() == otherSig->getCanonicalSignature())
|
|
return result;
|
|
|
|
// Find the requirements that aren't satisfied.
|
|
for (const auto &req : getRequirements()) {
|
|
if (!otherSig->isRequirementSatisfied(req))
|
|
result.push_back(req);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool GenericSignatureImpl::isCanonicalTypeInContext(Type type) const {
|
|
// If the type isn't independently canonical, it's certainly not canonical
|
|
// in this context.
|
|
if (!type->isCanonical())
|
|
return false;
|
|
|
|
// All the contextual canonicality rules apply to type parameters, so if the
|
|
// type doesn't involve any type parameters, it's already canonical.
|
|
if (!type->hasTypeParameter())
|
|
return true;
|
|
|
|
return getRequirementMachine()->isCanonicalTypeInContext(type);
|
|
}
|
|
|
|
CanType GenericSignature::getCanonicalTypeInContext(Type type) const {
|
|
// The null generic signature has no requirements so cannot influence the
|
|
// structure of the can type computed here.
|
|
if (isNull()) {
|
|
return type->getCanonicalType();
|
|
}
|
|
return getPointer()->getCanonicalTypeInContext(type);
|
|
}
|
|
|
|
CanType GenericSignatureImpl::getCanonicalTypeInContext(Type type) const {
|
|
type = type->getCanonicalType();
|
|
|
|
// All the contextual canonicality rules apply to type parameters, so if the
|
|
// type doesn't involve any type parameters, it's already canonical.
|
|
if (!type->hasTypeParameter())
|
|
return CanType(type);
|
|
|
|
return getRequirementMachine()->getCanonicalTypeInContext(
|
|
type, { })->getCanonicalType();
|
|
}
|
|
|
|
bool GenericSignatureImpl::isValidTypeInContext(Type type) const {
|
|
return getRequirementMachine()->isValidTypeInContext(type);
|
|
}
|
|
|
|
ArrayRef<CanTypeWrapper<GenericTypeParamType>>
|
|
CanGenericSignature::getGenericParams() const {
|
|
auto params = this->GenericSignature::getGenericParams().getOriginalArray();
|
|
auto base = static_cast<const CanTypeWrapper<GenericTypeParamType>*>(
|
|
params.data());
|
|
return {base, params.size()};
|
|
}
|
|
|
|
ConformanceAccessPath
|
|
GenericSignatureImpl::getConformanceAccessPath(Type type,
|
|
ProtocolDecl *protocol) const {
|
|
return getRequirementMachine()->getConformanceAccessPath(type, protocol);
|
|
}
|
|
|
|
TypeDecl *
|
|
GenericSignatureImpl::lookupNestedType(Type type, Identifier name) const {
|
|
assert(type->isTypeParameter());
|
|
|
|
return getRequirementMachine()->lookupNestedType(type, name);
|
|
}
|
|
|
|
unsigned GenericParamKey::findIndexIn(
|
|
TypeArrayView<GenericTypeParamType> genericParams) const {
|
|
// For depth 0, we have random access. We perform the extra checking so that
|
|
// we can return
|
|
if (Depth == 0 && Index < genericParams.size() &&
|
|
genericParams[Index] == *this)
|
|
return Index;
|
|
|
|
// At other depths, perform a binary search.
|
|
unsigned result =
|
|
std::lower_bound(genericParams.begin(), genericParams.end(), *this,
|
|
Ordering())
|
|
- genericParams.begin();
|
|
if (result < genericParams.size() && genericParams[result] == *this)
|
|
return result;
|
|
|
|
// We didn't find the parameter we were looking for.
|
|
return genericParams.size();
|
|
}
|
|
|
|
SubstitutionMap GenericSignatureImpl::getIdentitySubstitutionMap() const {
|
|
return SubstitutionMap::get(const_cast<GenericSignatureImpl *>(this),
|
|
[](SubstitutableType *t) -> Type {
|
|
return Type(cast<GenericTypeParamType>(t));
|
|
},
|
|
MakeAbstractConformanceForGenericType());
|
|
}
|
|
|
|
GenericTypeParamType *GenericSignatureImpl::getSugaredType(
|
|
GenericTypeParamType *type) const {
|
|
unsigned ordinal = getGenericParamOrdinal(type);
|
|
return getGenericParams()[ordinal];
|
|
}
|
|
|
|
Type GenericSignatureImpl::getSugaredType(Type type) const {
|
|
if (!type->hasTypeParameter())
|
|
return type;
|
|
|
|
return type.transform([this](Type Ty) -> Type {
|
|
if (auto GP = dyn_cast<GenericTypeParamType>(Ty.getPointer())) {
|
|
return Type(getSugaredType(GP));
|
|
}
|
|
return Ty;
|
|
});
|
|
}
|
|
|
|
unsigned GenericSignatureImpl::getGenericParamOrdinal(
|
|
GenericTypeParamType *param) const {
|
|
return GenericParamKey(param).findIndexIn(getGenericParams());
|
|
}
|
|
|
|
Type GenericSignatureImpl::getNonDependentUpperBounds(Type type) const {
|
|
assert(type->isTypeParameter());
|
|
|
|
llvm::SmallVector<Type, 2> types;
|
|
if (Type superclass = getSuperclassBound(type)) {
|
|
// If the class contains a type parameter, try looking for a non-dependent
|
|
// superclass.
|
|
while (superclass && superclass->hasTypeParameter()) {
|
|
superclass = superclass->getSuperclass();
|
|
}
|
|
|
|
if (superclass)
|
|
types.push_back(superclass);
|
|
}
|
|
for (const auto &elt : getRequiredProtocols(type)) {
|
|
types.push_back(elt->getDeclaredInterfaceType());
|
|
}
|
|
|
|
const auto layout = getLayoutConstraint(type);
|
|
const auto boundsTy = ProtocolCompositionType::get(
|
|
getASTContext(), types,
|
|
/*HasExplicitAnyObject=*/layout &&
|
|
layout->getKind() == LayoutConstraintKind::Class);
|
|
|
|
if (boundsTy->isExistentialType()) {
|
|
return ExistentialType::get(boundsTy);
|
|
}
|
|
|
|
return boundsTy;
|
|
}
|
|
|
|
void GenericSignature::Profile(llvm::FoldingSetNodeID &id) const {
|
|
return GenericSignature::Profile(id, getPointer()->getGenericParams(),
|
|
getPointer()->getRequirements());
|
|
}
|
|
|
|
void GenericSignature::Profile(llvm::FoldingSetNodeID &ID,
|
|
TypeArrayView<GenericTypeParamType> genericParams,
|
|
ArrayRef<Requirement> requirements) {
|
|
return GenericSignatureImpl::Profile(ID, genericParams, requirements);
|
|
}
|
|
|
|
void swift::simple_display(raw_ostream &out, GenericSignature sig) {
|
|
if (sig)
|
|
sig->print(out);
|
|
else
|
|
out << "NULL";
|
|
}
|
|
|
|
bool Requirement::isCanonical() const {
|
|
if (getFirstType() && !getFirstType()->isCanonical())
|
|
return false;
|
|
|
|
switch (getKind()) {
|
|
case RequirementKind::Conformance:
|
|
case RequirementKind::SameType:
|
|
case RequirementKind::Superclass:
|
|
if (getSecondType() && !getSecondType()->isCanonical())
|
|
return false;
|
|
break;
|
|
|
|
case RequirementKind::Layout:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Get the canonical form of this requirement.
|
|
Requirement Requirement::getCanonical() const {
|
|
Type firstType = getFirstType();
|
|
if (firstType)
|
|
firstType = firstType->getCanonicalType();
|
|
|
|
switch (getKind()) {
|
|
case RequirementKind::Conformance:
|
|
case RequirementKind::SameType:
|
|
case RequirementKind::Superclass: {
|
|
Type secondType = getSecondType();
|
|
if (secondType)
|
|
secondType = secondType->getCanonicalType();
|
|
return Requirement(getKind(), firstType, secondType);
|
|
}
|
|
|
|
case RequirementKind::Layout:
|
|
return Requirement(getKind(), firstType, getLayoutConstraint());
|
|
}
|
|
llvm_unreachable("Unhandled RequirementKind in switch");
|
|
}
|
|
|
|
ProtocolDecl *Requirement::getProtocolDecl() const {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return getSecondType()->castTo<ProtocolType>()->getDecl();
|
|
}
|
|
|
|
bool
|
|
Requirement::isSatisfied(ArrayRef<Requirement> &conditionalRequirements,
|
|
bool allowMissing) const {
|
|
switch (getKind()) {
|
|
case RequirementKind::Conformance: {
|
|
auto *proto = getProtocolDecl();
|
|
auto *module = proto->getParentModule();
|
|
auto conformance = module->lookupConformance(
|
|
getFirstType(), proto, allowMissing);
|
|
if (!conformance)
|
|
return false;
|
|
|
|
conditionalRequirements = conformance.getConditionalRequirements();
|
|
return true;
|
|
}
|
|
|
|
case RequirementKind::Layout: {
|
|
if (auto *archetypeType = getFirstType()->getAs<ArchetypeType>()) {
|
|
auto layout = archetypeType->getLayoutConstraint();
|
|
return (layout && layout.merge(getLayoutConstraint()));
|
|
}
|
|
|
|
if (getLayoutConstraint()->isClass())
|
|
return getFirstType()->satisfiesClassConstraint();
|
|
|
|
// TODO: Statically check other layout constraints, once they can
|
|
// be spelled in Swift.
|
|
return true;
|
|
}
|
|
|
|
case RequirementKind::Superclass:
|
|
return getSecondType()->isExactSuperclassOf(getFirstType());
|
|
|
|
case RequirementKind::SameType:
|
|
return getFirstType()->isEqual(getSecondType());
|
|
}
|
|
|
|
llvm_unreachable("Bad requirement kind");
|
|
}
|
|
|
|
bool Requirement::canBeSatisfied() const {
|
|
switch (getKind()) {
|
|
case RequirementKind::Conformance:
|
|
return getFirstType()->is<ArchetypeType>();
|
|
|
|
case RequirementKind::Layout: {
|
|
if (auto *archetypeType = getFirstType()->getAs<ArchetypeType>()) {
|
|
auto layout = archetypeType->getLayoutConstraint();
|
|
return (!layout || layout.merge(getLayoutConstraint()));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
case RequirementKind::Superclass:
|
|
return (getFirstType()->isBindableTo(getSecondType()) ||
|
|
getSecondType()->isBindableTo(getFirstType()));
|
|
|
|
case RequirementKind::SameType:
|
|
return (getFirstType()->isBindableTo(getSecondType()) ||
|
|
getSecondType()->isBindableTo(getFirstType()));
|
|
}
|
|
|
|
llvm_unreachable("Bad requirement kind");
|
|
}
|
|
|
|
/// Determine the canonical ordering of requirements.
|
|
static unsigned getRequirementKindOrder(RequirementKind kind) {
|
|
switch (kind) {
|
|
case RequirementKind::Conformance: return 2;
|
|
case RequirementKind::Superclass: return 0;
|
|
case RequirementKind::SameType: return 3;
|
|
case RequirementKind::Layout: return 1;
|
|
}
|
|
llvm_unreachable("unhandled kind");
|
|
}
|
|
|
|
/// Linear order on requirements in a generic signature.
|
|
int Requirement::compare(const Requirement &other) const {
|
|
int compareLHS =
|
|
compareDependentTypes(getFirstType(), other.getFirstType());
|
|
|
|
if (compareLHS != 0)
|
|
return compareLHS;
|
|
|
|
int compareKind = (getRequirementKindOrder(getKind()) -
|
|
getRequirementKindOrder(other.getKind()));
|
|
|
|
if (compareKind != 0)
|
|
return compareKind;
|
|
|
|
// We should only have multiple conformance requirements.
|
|
if (getKind() != RequirementKind::Conformance) {
|
|
llvm::errs() << "Unordered generic requirements\n";
|
|
llvm::errs() << "LHS: "; dump(llvm::errs()); llvm::errs() << "\n";
|
|
llvm::errs() << "RHS: "; other.dump(llvm::errs()); llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
|
|
int compareProtos =
|
|
TypeDecl::compare(getProtocolDecl(), other.getProtocolDecl());
|
|
assert(compareProtos != 0 && "Duplicate conformance requirements");
|
|
|
|
return compareProtos;
|
|
}
|
|
|
|
/// Compare two associated types.
|
|
int swift::compareAssociatedTypes(AssociatedTypeDecl *assocType1,
|
|
AssociatedTypeDecl *assocType2) {
|
|
// - by name.
|
|
if (int result = assocType1->getName().str().compare(
|
|
assocType2->getName().str()))
|
|
return result;
|
|
|
|
// Prefer an associated type with no overrides (i.e., an anchor) to one
|
|
// that has overrides.
|
|
bool hasOverridden1 = !assocType1->getOverriddenDecls().empty();
|
|
bool hasOverridden2 = !assocType2->getOverriddenDecls().empty();
|
|
if (hasOverridden1 != hasOverridden2)
|
|
return hasOverridden1 ? +1 : -1;
|
|
|
|
// - by protocol, so t_n_m.`P.T` < t_n_m.`Q.T` (given P < Q)
|
|
auto proto1 = assocType1->getProtocol();
|
|
auto proto2 = assocType2->getProtocol();
|
|
if (int compareProtocols = TypeDecl::compare(proto1, proto2))
|
|
return compareProtocols;
|
|
|
|
// Error case: if we have two associated types with the same name in the
|
|
// same protocol, just tie-break based on source location.
|
|
if (assocType1 != assocType2) {
|
|
auto &ctx = assocType1->getASTContext();
|
|
return ctx.SourceMgr.isBeforeInBuffer(assocType1->getLoc(),
|
|
assocType2->getLoc()) ? -1 : +1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Canonical ordering for type parameters.
|
|
int swift::compareDependentTypes(Type type1, Type type2) {
|
|
// Fast-path check for equality.
|
|
if (type1->isEqual(type2)) return 0;
|
|
|
|
// Ordering is as follows:
|
|
// - Generic params
|
|
auto gp1 = type1->getAs<GenericTypeParamType>();
|
|
auto gp2 = type2->getAs<GenericTypeParamType>();
|
|
if (gp1 && gp2)
|
|
return GenericParamKey(gp1) < GenericParamKey(gp2) ? -1 : +1;
|
|
|
|
// A generic parameter is always ordered before a nested type.
|
|
if (static_cast<bool>(gp1) != static_cast<bool>(gp2))
|
|
return gp1 ? -1 : +1;
|
|
|
|
// - Dependent members
|
|
auto depMemTy1 = type1->castTo<DependentMemberType>();
|
|
auto depMemTy2 = type2->castTo<DependentMemberType>();
|
|
|
|
// - by base, so t_0_n.`P.T` < t_1_m.`P.T`
|
|
if (int compareBases =
|
|
compareDependentTypes(depMemTy1->getBase(), depMemTy2->getBase()))
|
|
return compareBases;
|
|
|
|
// - by name, so t_n_m.`P.T` < t_n_m.`P.U`
|
|
if (int compareNames = depMemTy1->getName().str().compare(
|
|
depMemTy2->getName().str()))
|
|
return compareNames;
|
|
|
|
auto *assocType1 = depMemTy1->getAssocType();
|
|
auto *assocType2 = depMemTy2->getAssocType();
|
|
if (int result = compareAssociatedTypes(assocType1, assocType2))
|
|
return result;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#pragma mark Generic signature verification
|
|
|
|
void GenericSignature::verify() const {
|
|
verify(getRequirements());
|
|
}
|
|
|
|
void GenericSignature::verify(ArrayRef<Requirement> reqts) const {
|
|
auto canSig = getCanonicalSignature();
|
|
|
|
PrettyStackTraceGenericSignature debugStack("checking", canSig);
|
|
|
|
// We collect conformance requirements to check that they're minimal.
|
|
llvm::SmallDenseMap<CanType, SmallVector<ProtocolDecl *, 2>, 2> conformances;
|
|
|
|
// Check that the requirements satisfy certain invariants.
|
|
for (unsigned idx : indices(reqts)) {
|
|
const auto &reqt = reqts[idx].getCanonical();
|
|
|
|
// Left-hand side must be a canonical type parameter.
|
|
if (reqt.getKind() != RequirementKind::SameType) {
|
|
if (!reqt.getFirstType()->isTypeParameter()) {
|
|
llvm::errs() << "Left-hand side must be a type parameter: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
|
|
if (!canSig->isCanonicalTypeInContext(reqt.getFirstType())) {
|
|
llvm::errs() << "Left-hand side is not canonical: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// Check canonicalization of requirement itself.
|
|
switch (reqt.getKind()) {
|
|
case RequirementKind::Superclass:
|
|
if (!canSig->isCanonicalTypeInContext(reqt.getSecondType())) {
|
|
llvm::errs() << "Right-hand side is not canonical: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
break;
|
|
|
|
case RequirementKind::Layout:
|
|
break;
|
|
|
|
case RequirementKind::SameType: {
|
|
auto hasCanonicalOrConcreteParent = [&](Type type) {
|
|
if (auto *dmt = type->getAs<DependentMemberType>()) {
|
|
return (canSig->isCanonicalTypeInContext(dmt->getBase()) ||
|
|
canSig->isConcreteType(dmt->getBase()));
|
|
}
|
|
return type->is<GenericTypeParamType>();
|
|
};
|
|
|
|
auto firstType = reqt.getFirstType();
|
|
auto secondType = reqt.getSecondType();
|
|
if (!hasCanonicalOrConcreteParent(firstType)) {
|
|
llvm::errs() << "Left hand side does not have a canonical parent: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
|
|
if (reqt.getSecondType()->isTypeParameter()) {
|
|
if (!hasCanonicalOrConcreteParent(secondType)) {
|
|
llvm::errs() << "Right hand side does not have a canonical parent: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
if (compareDependentTypes(firstType, secondType) >= 0) {
|
|
llvm::errs() << "Out-of-order type parameters: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
} else {
|
|
if (!canSig->isCanonicalTypeInContext(secondType)) {
|
|
llvm::errs() << "Right hand side is not canonical: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::Conformance:
|
|
// Collect all conformance requirements on each type parameter.
|
|
conformances[CanType(reqt.getFirstType())].push_back(
|
|
reqt.getProtocolDecl());
|
|
break;
|
|
}
|
|
|
|
// From here on, we're only interested in requirements beyond the first.
|
|
if (idx == 0) continue;
|
|
|
|
// Make sure that the left-hand sides are in nondecreasing order.
|
|
const auto &prevReqt = reqts[idx-1];
|
|
int compareLHS =
|
|
compareDependentTypes(prevReqt.getFirstType(), reqt.getFirstType());
|
|
if (compareLHS > 0) {
|
|
llvm::errs() << "Out-of-order left-hand side: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
|
|
// If we have two same-type requirements where the left-hand sides differ
|
|
// but fall into the same equivalence class, we can check the form.
|
|
if (compareLHS < 0 && reqt.getKind() == RequirementKind::SameType &&
|
|
prevReqt.getKind() == RequirementKind::SameType &&
|
|
canSig->areSameTypeParameterInContext(prevReqt.getFirstType(),
|
|
reqt.getFirstType())) {
|
|
// If it's a it's a type parameter, make sure the equivalence class is
|
|
// wired together sanely.
|
|
if (prevReqt.getSecondType()->isTypeParameter()) {
|
|
if (!prevReqt.getSecondType()->isEqual(reqt.getFirstType())) {
|
|
llvm::errs() << "Same-type requirement within an equiv. class "
|
|
<< "is out-of-order: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
} else {
|
|
// Otherwise, the concrete types must match up.
|
|
if (!prevReqt.getSecondType()->isEqual(reqt.getSecondType())) {
|
|
llvm::errs() << "Inconsistent concrete requirement in equiv. class: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have a concrete same-type requirement, we shouldn't have any
|
|
// other requirements on the same type.
|
|
if (reqt.getKind() == RequirementKind::SameType &&
|
|
!reqt.getSecondType()->isTypeParameter()) {
|
|
if (compareLHS >= 0) {
|
|
llvm::errs() << "Concrete subject type should not have "
|
|
<< "any other requirements: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
if (prevReqt.compare(reqt) >= 0) {
|
|
llvm::errs() << "Out-of-order requirement: ";
|
|
reqt.dump(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// Make sure we don't have redundant protocol conformance requirements.
|
|
for (auto pair : conformances) {
|
|
const auto &protos = pair.second;
|
|
auto canonicalProtos = protos;
|
|
|
|
// canonicalizeProtocols() will sort them and filter out any protocols that
|
|
// are refined by other protocols in the list. It should be a no-op at this
|
|
// point.
|
|
ProtocolType::canonicalizeProtocols(canonicalProtos);
|
|
|
|
if (protos.size() != canonicalProtos.size()) {
|
|
llvm::errs() << "Redundant conformance requirements in signature\n";
|
|
abort();
|
|
}
|
|
if (!std::equal(protos.begin(), protos.end(), canonicalProtos.begin())) {
|
|
llvm::errs() << "Out-of-order conformance requirements\n";
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
static Type stripBoundDependentMemberTypes(Type t) {
|
|
if (auto *depMemTy = t->getAs<DependentMemberType>()) {
|
|
return DependentMemberType::get(
|
|
stripBoundDependentMemberTypes(depMemTy->getBase()),
|
|
depMemTy->getName());
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
static Requirement stripBoundDependentMemberTypes(Requirement req) {
|
|
auto subjectType = stripBoundDependentMemberTypes(req.getFirstType());
|
|
|
|
switch (req.getKind()) {
|
|
case RequirementKind::Conformance:
|
|
return Requirement(RequirementKind::Conformance, subjectType,
|
|
req.getSecondType());
|
|
|
|
case RequirementKind::Superclass:
|
|
case RequirementKind::SameType:
|
|
return Requirement(req.getKind(), subjectType,
|
|
req.getSecondType().transform([](Type t) {
|
|
return stripBoundDependentMemberTypes(t);
|
|
}));
|
|
|
|
case RequirementKind::Layout:
|
|
return Requirement(RequirementKind::Layout, subjectType,
|
|
req.getLayoutConstraint());
|
|
}
|
|
|
|
llvm_unreachable("Bad requirement kind");
|
|
}
|
|
|
|
void swift::validateGenericSignature(ASTContext &context,
|
|
GenericSignature sig) {
|
|
llvm::errs() << "Validating generic signature: ";
|
|
sig->print(llvm::errs());
|
|
llvm::errs() << "\n";
|
|
|
|
// Try building a new signature having the same requirements.
|
|
SmallVector<GenericTypeParamType *, 2> genericParams;
|
|
for (auto *genericParam : sig.getGenericParams())
|
|
genericParams.push_back(genericParam);
|
|
|
|
SmallVector<Requirement, 2> requirements;
|
|
for (auto requirement : sig.getRequirements())
|
|
requirements.push_back(stripBoundDependentMemberTypes(requirement));
|
|
|
|
{
|
|
PrettyStackTraceGenericSignature debugStack("verifying", sig);
|
|
|
|
auto newSigWithError = evaluateOrDefault(
|
|
context.evaluator,
|
|
AbstractGenericSignatureRequest{
|
|
nullptr,
|
|
genericParams,
|
|
requirements},
|
|
GenericSignatureWithError());
|
|
|
|
// If there were any errors, the signature was invalid.
|
|
if (newSigWithError.getInt()) {
|
|
context.Diags.diagnose(SourceLoc(), diag::generic_signature_not_valid,
|
|
sig->getAsString());
|
|
}
|
|
|
|
auto newSig = newSigWithError.getPointer();
|
|
|
|
// The new signature should be equal.
|
|
if (!newSig->isEqual(sig)) {
|
|
context.Diags.diagnose(SourceLoc(), diag::generic_signature_not_equal,
|
|
sig->getAsString(), newSig->getAsString());
|
|
}
|
|
}
|
|
|
|
// Try removing each requirement in turn.
|
|
for (unsigned victimIndex : indices(requirements)) {
|
|
PrettyStackTraceGenericSignature debugStack("verifying", sig, victimIndex);
|
|
|
|
// Add the requirements *except* the victim.
|
|
SmallVector<Requirement, 2> newRequirements;
|
|
for (unsigned i : indices(requirements)) {
|
|
if (i != victimIndex)
|
|
newRequirements.push_back(stripBoundDependentMemberTypes(requirements[i]));
|
|
}
|
|
|
|
auto newSigWithError = evaluateOrDefault(
|
|
context.evaluator,
|
|
AbstractGenericSignatureRequest{
|
|
nullptr,
|
|
genericParams,
|
|
newRequirements},
|
|
GenericSignatureWithError());
|
|
|
|
// If there were any errors, we formed an invalid signature, so
|
|
// just continue.
|
|
if (newSigWithError.getInt())
|
|
continue;
|
|
|
|
auto newSig = newSigWithError.getPointer();
|
|
|
|
// If the new signature once again contains the removed requirement, it's
|
|
// not redundant.
|
|
if (newSig->isEqual(sig))
|
|
continue;
|
|
|
|
// If the removed requirement is satisfied by the new generic signature,
|
|
// it is redundant. Complain.
|
|
if (newSig->isRequirementSatisfied(requirements[victimIndex])) {
|
|
SmallString<32> reqString;
|
|
{
|
|
llvm::raw_svector_ostream out(reqString);
|
|
requirements[victimIndex].print(out, PrintOptions());
|
|
}
|
|
context.Diags.diagnose(SourceLoc(), diag::generic_signature_not_minimal,
|
|
reqString, sig->getAsString());
|
|
}
|
|
}
|
|
}
|
|
|
|
void swift::validateGenericSignaturesInModule(ModuleDecl *module) {
|
|
LoadedFile *loadedFile = nullptr;
|
|
for (auto fileUnit : module->getFiles()) {
|
|
loadedFile = dyn_cast<LoadedFile>(fileUnit);
|
|
if (loadedFile) break;
|
|
}
|
|
|
|
if (!loadedFile) return;
|
|
|
|
// Check all of the (canonical) generic signatures.
|
|
SmallVector<GenericSignature, 8> allGenericSignatures;
|
|
SmallPtrSet<CanGenericSignature, 4> knownGenericSignatures;
|
|
(void)loadedFile->getAllGenericSignatures(allGenericSignatures);
|
|
ASTContext &context = module->getASTContext();
|
|
for (auto genericSig : allGenericSignatures) {
|
|
// Check whether this is the first time we've checked this (canonical)
|
|
// signature.
|
|
auto canGenericSig = genericSig.getCanonicalSignature();
|
|
if (!knownGenericSignatures.insert(canGenericSig).second) continue;
|
|
|
|
validateGenericSignature(context, canGenericSig);
|
|
}
|
|
}
|
|
|
|
GenericSignature
|
|
swift::buildGenericSignature(ASTContext &ctx,
|
|
GenericSignature baseSignature,
|
|
SmallVector<GenericTypeParamType *, 2> addedParameters,
|
|
SmallVector<Requirement, 2> addedRequirements) {
|
|
return evaluateOrDefault(
|
|
ctx.evaluator,
|
|
AbstractGenericSignatureRequest{
|
|
baseSignature.getPointer(),
|
|
addedParameters,
|
|
addedRequirements},
|
|
GenericSignatureWithError()).getPointer();
|
|
}
|