Files
swift-mirror/lib/Sema/CSDiag.cpp
Chris Willmore ab86515fb2 <rdar://problem/19671476> Offer as -> as! changes in all nested contexts
When generating constraints for an 'as' expression, consider the
possibility that the code is supposed to be 'as!' instead of 'as'. Emit
the appropriate fixit if that branch of the disjunction is chosen by the
constraint solver.

This is a more comprehensive fix for <rdar://problem/19499340> than the
one in r24815.

Swift SVN r24872
2015-01-31 00:55:53 +00:00

2398 lines
76 KiB
C++

//===--- CSDiag.cpp - Constraint Diagnostics ------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements diagnostics for the type checker.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
using namespace swift;
using namespace constraints;
void Failure::dump(SourceManager *sm) const {
dump(sm, llvm::errs());
}
void Failure::dump(SourceManager *sm, raw_ostream &out) const {
out << "(";
if (locator) {
out << "@";
locator->dump(sm, out);
out << ": ";
}
switch (getKind()) {
case DoesNotConformToProtocol:
out << getFirstType().getString() << " does not conform to "
<< getSecondType().getString();
break;
case DoesNotHaveMember:
out << getFirstType().getString() << " does not have a member named '"
<< getName() << "'";
break;
case DoesNotHaveNonMutatingMember:
out << " immutable value of type " << getFirstType().getString()
<< " only has mutating members named '"
<< getName() << "'";
break;
case FunctionTypesMismatch:
out << "function type " << getFirstType().getString() << " is not equal to "
<< getSecondType().getString();
break;
case FunctionAutoclosureMismatch:
out << "autoclosure mismatch " << getFirstType().getString() << " vs. "
<< getSecondType().getString();
break;
case FunctionNoReturnMismatch:
out << "noreturn attribute mismatch " << getFirstType().getString()
<< " vs. " << getSecondType().getString();
break;
case FunctionNoEscapeMismatch:
out << "noescape attribute mismatch " << getFirstType().getString()
<< " vs. " << getSecondType().getString();
break;
case IsNotMetatype:
out << getFirstType().getString() << " is not a metatype";
break;
case IsNotArchetype:
out << getFirstType().getString() << " is not an archetype";
break;
case IsNotClass:
out << getFirstType().getString() << " is not a class";
break;
case IsNotBridgedToObjectiveC:
out << getFirstType().getString() << "is not bridged to Objective-C";
break;
case IsNotDynamicLookup:
out << getFirstType().getString() << " is not a dynamic lookup value";
break;
case IsNotOptional:
out << getFirstType().getString() << "is not an optional type";
break;
case TupleNameMismatch:
case TupleNamePositionMismatch:
case TupleSizeMismatch:
case TupleVariadicMismatch:
case TupleUnused:
out << "mismatched tuple types " << getFirstType().getString() << " and "
<< getSecondType().getString();
break;
case TypesNotConstructible:
out << getFirstType().getString() << " is not a constructible argument for "
<< getSecondType().getString();
break;
case TypesNotConvertible:
out << getFirstType().getString() << " is not convertible to "
<< getSecondType().getString();
break;
case TypesNotSubtypes:
out << getFirstType().getString() << " is not a subtype of "
<< getSecondType().getString();
break;
case TypesNotEqual:
out << getFirstType().getString() << " is not equal to "
<< getSecondType().getString();
break;
case IsForbiddenLValue:
out << "disallowed l-value binding of " << getFirstType().getString()
<< " and " << getSecondType().getString();
break;
case OutOfOrderArgument:
out << "out-of-order argument " << getValue() << " should come before "
<< getSecondValue();
break;
case MissingArgument:
out << "missing argument for parameter " << getValue();
break;
case ExtraArgument:
out << "extra argument " << getValue();
break;
case NoPublicInitializers:
out << getFirstType().getString()
<< " does not have any public initializers";
break;
case UnboundGenericParameter:
out << getFirstType().getString()
<< " is an unbound generic parameter";
break;
case ExistentialGenericParameter:
out << getFirstType().getString()
<< " bound to non-@objc existential type "
<< getSecondType().getString();
break;
}
out << ")\n";
}
/// Given a subpath of an old locator, compute its summary flags.
static unsigned recomputeSummaryFlags(ConstraintLocator *oldLocator,
ArrayRef<LocatorPathElt> path) {
if (oldLocator->getSummaryFlags() != 0)
return ConstraintLocator::getSummaryFlagsForPath(path);
return 0;
}
ConstraintLocator *
constraints::simplifyLocator(ConstraintSystem &cs,
ConstraintLocator *locator,
SourceRange &range1,
SourceRange &range2,
ConstraintLocator **targetLocator) {
// Clear out the target locator result.
if (targetLocator)
*targetLocator = nullptr;
// The path to be tacked on to the target locator to identify the specific
// target.
Expr *targetAnchor;
SmallVector<LocatorPathElt, 4> targetPath;
auto path = locator->getPath();
auto anchor = locator->getAnchor();
simplifyLocator(anchor, path, targetAnchor, targetPath, range1, range2);
// If we have a target anchor, build and simplify the target locator.
if (targetLocator && targetAnchor) {
SourceRange targetRange1, targetRange2;
unsigned targetFlags = recomputeSummaryFlags(locator, targetPath);
*targetLocator = simplifyLocator(cs,
cs.getConstraintLocator(targetAnchor,
targetPath,
targetFlags),
targetRange1, targetRange2);
}
// If we didn't simplify anything, just return the input.
if (anchor == locator->getAnchor() &&
path.size() == locator->getPath().size()) {
return locator;
}
// Recompute the summary flags if we had any to begin with. This is
// necessary because we might remove e.g. tuple elements from the path.
unsigned summaryFlags = recomputeSummaryFlags(locator, path);
return cs.getConstraintLocator(anchor, path, summaryFlags);
}
void constraints::simplifyLocator(Expr *&anchor,
ArrayRef<LocatorPathElt> &path,
Expr *&targetAnchor,
SmallVectorImpl<LocatorPathElt> &targetPath,
SourceRange &range1, SourceRange &range2) {
range1 = SourceRange();
range2 = SourceRange();
targetAnchor = nullptr;
while (!path.empty()) {
switch (path[0].getKind()) {
case ConstraintLocator::ApplyArgument:
// Extract application argument.
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
// The target anchor is the function being called.
targetAnchor = applyExpr->getFn();
targetPath.push_back(path[0]);
anchor = applyExpr->getArg();
path = path.slice(1);
continue;
}
break;
case ConstraintLocator::ApplyFunction:
// Extract application function.
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
// No additional target locator information.
targetAnchor = nullptr;
targetPath.clear();
anchor = applyExpr->getFn();
path = path.slice(1);
continue;
}
// The unresolved member itself is the function.
if (auto unresolvedMember = dyn_cast<UnresolvedMemberExpr>(anchor)) {
if (unresolvedMember->getArgument()) {
// No additional target locator information.
targetAnchor = nullptr;
targetPath.clear();
anchor = unresolvedMember;
path = path.slice(1);
}
continue;
}
break;
case ConstraintLocator::Load:
case ConstraintLocator::RvalueAdjustment:
case ConstraintLocator::ScalarToTuple:
// Loads, rvalue adjustment, and scalar-to-tuple conversions are implicit.
path = path.slice(1);
continue;
case ConstraintLocator::NamedTupleElement:
case ConstraintLocator::TupleElement:
// Extract tuple element.
if (auto tupleExpr = dyn_cast<TupleExpr>(anchor)) {
// Append this extraction to the target locator path.
if (targetAnchor) {
targetPath.push_back(path[0]);
}
anchor = tupleExpr->getElement(path[0].getValue());
path = path.slice(1);
continue;
}
break;
case ConstraintLocator::ApplyArgToParam:
// Extract tuple element.
if (auto tupleExpr = dyn_cast<TupleExpr>(anchor)) {
// Append this extraction to the target locator path.
if (targetAnchor) {
targetPath.push_back(path[0]);
}
anchor = tupleExpr->getElement(path[0].getValue());
path = path.slice(1);
continue;
}
// Extract subexpression in parentheses.
if (auto parenExpr = dyn_cast<ParenExpr>(anchor)) {
assert(path[0].getValue() == 0);
// Append this extraction to the target locator path.
if (targetAnchor) {
targetPath.push_back(path[0]);
}
anchor = parenExpr->getSubExpr();
path = path.slice(1);
}
break;
case ConstraintLocator::Member:
case ConstraintLocator::MemberRefBase:
if (auto dotExpr = dyn_cast<UnresolvedDotExpr>(anchor)) {
// No additional target locator information.
targetAnchor = nullptr;
targetPath.clear();
range1 = dotExpr->getNameLoc();
anchor = dotExpr->getBase();
path = path.slice(1);
continue;
}
break;
case ConstraintLocator::InterpolationArgument:
if (auto interp = dyn_cast<InterpolatedStringLiteralExpr>(anchor)) {
// No additional target locator information.
// FIXME: Dig out the constructor we're trying to call?
targetAnchor = nullptr;
targetPath.clear();
anchor = interp->getSegments()[path[0].getValue()];
path = path.slice(1);
continue;
}
break;
case ConstraintLocator::AssignSource:
if (auto assign = dyn_cast<AssignExpr>(anchor)) {
targetAnchor = assign->getDest();
targetPath.clear();
anchor = assign->getSrc();
path = path.slice(1);
continue;
}
break;
case ConstraintLocator::SubscriptIndex:
if (auto subscript = dyn_cast<SubscriptExpr>(anchor)) {
targetAnchor = subscript->getBase();
targetPath.clear();
anchor = subscript->getIndex();
path = path.slice(1);
continue;
}
break;
default:
// FIXME: Lots of other cases to handle.
break;
}
// If we get here, we couldn't simplify the path further.
break;
}
}
/// Simplify the given locator down to a specific anchor expression,
/// if possible.
///
/// \returns the anchor expression if it fully describes the locator, or
/// null otherwise.
static Expr *simplifyLocatorToAnchor(ConstraintSystem &cs,
ConstraintLocator *locator) {
if (!locator || !locator->getAnchor())
return nullptr;
SourceRange range1, range2;
locator = simplifyLocator(cs, locator, range1, range2);
if (!locator->getAnchor() || !locator->getPath().empty())
return nullptr;
return locator->getAnchor();
}
/// Retrieve the argument pattern for the given declaration.
///
static Pattern *getParameterPattern(ValueDecl *decl) {
if (auto func = dyn_cast<FuncDecl>(decl))
return func->getBodyParamPatterns()[0];
if (auto constructor = dyn_cast<ConstructorDecl>(decl))
return constructor->getBodyParamPatterns()[1];
if (auto subscript = dyn_cast<SubscriptDecl>(decl))
return subscript->getIndices();
// FIXME: Variables of function type?
return nullptr;
}
ResolvedLocator constraints::resolveLocatorToDecl(
ConstraintSystem &cs,
ConstraintLocator *locator,
std::function<Optional<SelectedOverload>(ConstraintLocator *)> findOvlChoice,
std::function<ConcreteDeclRef (ValueDecl *decl,
Type openedType)> getConcreteDeclRef)
{
assert(locator && "Null locator");
if (!locator->getAnchor())
return ResolvedLocator();
ConcreteDeclRef declRef;
auto anchor = locator->getAnchor();
// Unwrap any specializations, constructor calls, implicit conversions, and
// '.'s.
// FIXME: This is brittle.
do {
if (auto specialize = dyn_cast<UnresolvedSpecializeExpr>(anchor)) {
anchor = specialize->getSubExpr();
continue;
}
if (auto implicit = dyn_cast<ImplicitConversionExpr>(anchor)) {
anchor = implicit->getSubExpr();
continue;
}
if (auto constructor = dyn_cast<ConstructorRefCallExpr>(anchor)) {
anchor = constructor->getFn();
continue;
}
if (auto dotSyntax = dyn_cast<DotSyntaxBaseIgnoredExpr>(anchor)) {
anchor = dotSyntax->getRHS();
continue;
}
if (auto dotSyntax = dyn_cast<DotSyntaxCallExpr>(anchor)) {
anchor = dotSyntax->getFn();
continue;
}
break;
} while (true);
auto getConcreteDeclRefFromOverload
= [&](const SelectedOverload &selected) -> ConcreteDeclRef {
return getConcreteDeclRef(selected.choice.getDecl(),
selected.openedType);
};
if (auto dre = dyn_cast<DeclRefExpr>(anchor)) {
// Simple case: direct reference to a declaration.
declRef = dre->getDeclRef();
} else if (auto mre = dyn_cast<MemberRefExpr>(anchor)) {
// Simple case: direct reference to a declaration.
declRef = mre->getMember();
} else if (isa<OverloadedDeclRefExpr>(anchor) ||
isa<OverloadedMemberRefExpr>(anchor) ||
isa<UnresolvedDeclRefExpr>(anchor)) {
// Overloaded and unresolved cases: find the resolved overload.
auto anchorLocator = cs.getConstraintLocator(anchor);
if (auto selected = findOvlChoice(anchorLocator)) {
if (selected->choice.isDecl())
declRef = getConcreteDeclRefFromOverload(*selected);
}
} else if (isa<UnresolvedMemberExpr>(anchor)) {
// Unresolved member: find the resolved overload.
auto anchorLocator = cs.getConstraintLocator(
anchor,
ConstraintLocator::UnresolvedMember);
if (auto selected = findOvlChoice(anchorLocator)) {
if (selected->choice.isDecl())
declRef = getConcreteDeclRefFromOverload(*selected);
}
} else if (auto ctorRef = dyn_cast<OtherConstructorDeclRefExpr>(anchor)) {
declRef = ctorRef->getDeclRef();
}
// If we didn't find the declaration, we're out of luck.
if (!declRef)
return ResolvedLocator();
// Use the declaration and the path to produce a more specific result.
// FIXME: This is an egregious hack. We'd be far better off
// FIXME: Perform deeper path resolution?
auto path = locator->getPath();
Pattern *parameterPattern = nullptr;
bool impliesFullPattern = false;
while (!path.empty()) {
switch (path[0].getKind()) {
case ConstraintLocator::ApplyArgument:
// If we're calling into something that has parameters, dig into the
// actual parameter pattern.
parameterPattern = getParameterPattern(declRef.getDecl());
if (!parameterPattern)
break;
impliesFullPattern = true;
path = path.slice(1);
continue;
case ConstraintLocator::TupleElement:
case ConstraintLocator::NamedTupleElement:
if (parameterPattern) {
unsigned index = path[0].getValue();
if (auto tuple = dyn_cast<TuplePattern>(
parameterPattern->getSemanticsProvidingPattern())) {
parameterPattern = tuple->getFields()[index].getPattern();
impliesFullPattern = false;
path = path.slice(1);
continue;
}
parameterPattern = nullptr;
}
break;
case ConstraintLocator::ApplyArgToParam:
if (parameterPattern) {
unsigned index = path[0].getValue2();
if (auto tuple = dyn_cast<TuplePattern>(
parameterPattern->getSemanticsProvidingPattern())) {
parameterPattern = tuple->getFields()[index].getPattern();
impliesFullPattern = false;
path = path.slice(1);
continue;
}
parameterPattern = nullptr;
}
break;
case ConstraintLocator::ScalarToTuple:
continue;
default:
break;
}
break;
}
// If we have a parameter pattern that refers to a parameter, grab it.
if (parameterPattern) {
parameterPattern = parameterPattern->getSemanticsProvidingPattern();
if (impliesFullPattern) {
if (auto tuple = dyn_cast<TuplePattern>(parameterPattern)) {
if (tuple->getFields().size() == 1) {
parameterPattern = tuple->getFields()[0].getPattern();
parameterPattern = parameterPattern->getSemanticsProvidingPattern();
}
}
}
if (auto named = dyn_cast<NamedPattern>(parameterPattern)) {
return ResolvedLocator(ResolvedLocator::ForVar, named->getDecl());
}
}
// Otherwise, do the best we can with the declaration we found.
if (isa<FuncDecl>(declRef.getDecl()))
return ResolvedLocator(ResolvedLocator::ForFunction, declRef);
if (isa<ConstructorDecl>(declRef.getDecl()))
return ResolvedLocator(ResolvedLocator::ForConstructor, declRef);
// FIXME: Deal with the other interesting cases here, e.g.,
// subscript declarations.
return ResolvedLocator();
}
/// Emit a note referring to the target of a diagnostic, e.g., the function
/// or parameter being used.
static void noteTargetOfDiagnostic(ConstraintSystem &cs,
const Failure &failure,
ConstraintLocator *targetLocator) {
// If there's no anchor, there's nothing we can do.
if (!targetLocator->getAnchor())
return;
// Try to resolve the locator to a particular declaration.
auto resolved
= resolveLocatorToDecl(cs, targetLocator,
[&](ConstraintLocator *locator) -> Optional<SelectedOverload> {
for (auto resolved = failure.getResolvedOverloadSets();
resolved; resolved = resolved->Previous) {
if (resolved->Locator == locator)
return SelectedOverload{resolved->Choice,
resolved->OpenedFullType,
// FIXME: opened type?
Type()};
}
return None;
},
[&](ValueDecl *decl,
Type openedType) -> ConcreteDeclRef {
return decl;
});
// We couldn't resolve the locator to a declaration, so we're done.
if (!resolved)
return;
switch (resolved.getKind()) {
case ResolvedLocatorKind::Unresolved:
// Can't emit any diagnostic here.
return;
case ResolvedLocatorKind::Function: {
auto name = resolved.getDecl().getDecl()->getName();
cs.getTypeChecker().diagnose(resolved.getDecl().getDecl(),
name.isOperator()? diag::note_call_to_operator
: diag::note_call_to_func,
resolved.getDecl().getDecl()->getName());
return;
}
case ResolvedLocatorKind::Constructor:
// FIXME: Specialize for implicitly-generated constructors.
cs.getTypeChecker().diagnose(resolved.getDecl().getDecl(),
diag::note_call_to_initializer);
return;
case ResolvedLocatorKind::Parameter:
cs.getTypeChecker().diagnose(resolved.getDecl().getDecl(),
diag::note_init_parameter,
resolved.getDecl().getDecl()->getName());
return;
}
}
/// \brief Emit a diagnostic for the given failure.
///
/// \param cs The constraint system in which the diagnostic was generated.
/// \param failure The failure to emit.
/// \param expr The expression associated with the failure.
/// \param useExprLoc If the failure lacks a location, use the one associated
/// with expr.
///
/// \returns true if the diagnostic was emitted successfully.
static bool diagnoseFailure(ConstraintSystem &cs,
Failure &failure,
Expr *expr,
bool useExprLoc) {
ConstraintLocator *cloc;
if (!failure.getLocator() || !failure.getLocator()->getAnchor()) {
if (useExprLoc)
cloc = cs.getConstraintLocator(expr);
else
return false;
} else {
cloc = failure.getLocator();
}
SourceRange range1, range2;
ConstraintLocator *targetLocator;
auto locator = simplifyLocator(cs, cloc, range1, range2,
&targetLocator);
auto &tc = cs.getTypeChecker();
auto anchor = locator->getAnchor();
auto loc = anchor->getLoc();
switch (failure.getKind()) {
case Failure::TupleSizeMismatch: {
auto tuple1 = failure.getFirstType()->castTo<TupleType>();
auto tuple2 = failure.getSecondType()->castTo<TupleType>();
tc.diagnose(loc, diag::invalid_tuple_size, tuple1, tuple2,
tuple1->getFields().size(),
tuple2->getFields().size())
.highlight(range1).highlight(range2);
break;
}
case Failure::TupleUnused:
tc.diagnose(loc, diag::invalid_tuple_element_unused,
failure.getFirstType(),
failure.getSecondType())
.highlight(range1).highlight(range2);
break;
case Failure::TypesNotConvertible:
case Failure::TypesNotEqual:
case Failure::TypesNotSubtypes:
case Failure::TypesNotConstructible:
case Failure::FunctionTypesMismatch: {
// We can do a better job of diagnosing application argument conversion
// failures elsewhere.
if (isa<ApplyExpr>(expr) ||
isa<InOutExpr>(expr) ||
isa<AssignExpr>(expr))
return false;
tc.diagnose(loc, diag::invalid_relation,
failure.getKind() - Failure::TypesNotEqual,
failure.getFirstType(),
failure.getSecondType())
.highlight(range1).highlight(range2);
if (targetLocator && !useExprLoc)
noteTargetOfDiagnostic(cs, failure, targetLocator);
}
break;
case Failure::DoesNotHaveMember:
case Failure::DoesNotHaveNonMutatingMember:
if (auto moduleTy = failure.getFirstType()->getAs<ModuleType>()) {
tc.diagnose(loc, diag::no_member_of_module,
moduleTy->getModule()->Name,
failure.getName())
.highlight(range1).highlight(range2);
} else {
bool IsNoMember = failure.getKind() == Failure::DoesNotHaveMember;
tc.diagnose(loc, IsNoMember ? diag::does_not_have_member :
diag::does_not_have_non_mutating_member,
failure.getFirstType(),
failure.getName())
.highlight(range1).highlight(range2);
}
break;
case Failure::DoesNotConformToProtocol:
// FIXME: Probably want to do this within the actual solver, because at
// this point it's too late to actually recover fully.
// We can do a better job of diagnosing application argument conversion
// failures elsewhere.
if (isa<ApplyExpr>(expr) ||
isa<InOutExpr>(expr) ||
isa<AssignExpr>(expr))
return false;
tc.conformsToProtocol(failure.getFirstType(),
failure.getSecondType()->castTo<ProtocolType>()
->getDecl(),
cs.DC,
true,
nullptr,
loc);
if (targetLocator)
noteTargetOfDiagnostic(cs, failure, targetLocator);
break;
case Failure::IsNotBridgedToObjectiveC:
tc.diagnose(loc, diag::type_not_bridged, failure.getFirstType());
if (targetLocator)
noteTargetOfDiagnostic(cs, failure, targetLocator);
break;
case Failure::IsForbiddenLValue:
if (auto iotTy = failure.getSecondType()->getAs<InOutType>()) {
tc.diagnose(loc, diag::reference_non_inout, iotTy->getObjectType())
.highlight(range1).highlight(range2);
return true;
}
// FIXME: diagnose other cases
return false;
case Failure::OutOfOrderArgument:
if (auto tuple = dyn_cast_or_null<TupleExpr>(anchor)) {
unsigned firstIdx = failure.getValue();
Identifier first = tuple->getElementName(firstIdx);
unsigned secondIdx = failure.getSecondValue();
Identifier second = tuple->getElementName(secondIdx);
if (!first.empty() && !second.empty()) {
tc.diagnose(tuple->getElementNameLoc(firstIdx),
diag::argument_out_of_order, first, second)
.highlight(tuple->getElement(firstIdx)->getSourceRange())
.highlight(SourceRange(tuple->getElementNameLoc(secondIdx),
tuple->getElement(secondIdx)->getEndLoc()));
return true;
}
}
// FIXME: Can this even happen?
return false;
case Failure::MissingArgument: {
Identifier name;
unsigned idx = failure.getValue();
if (auto tupleTy = failure.getFirstType()->getAs<TupleType>()) {
name = tupleTy->getFields()[idx].getName();
} else {
// Scalar.
assert(idx == 0);
}
if (name.empty())
tc.diagnose(loc, diag::missing_argument_positional, idx+1);
else
tc.diagnose(loc, diag::missing_argument_named, name);
return true;
}
case Failure::ExtraArgument: {
if (auto tuple = dyn_cast_or_null<TupleExpr>(anchor)) {
unsigned firstIdx = failure.getValue();
auto name = tuple->getElementName(firstIdx);
if (name.empty())
tc.diagnose(loc, diag::extra_argument_positional)
.highlight(tuple->getElement(firstIdx)->getSourceRange());
else
tc.diagnose(loc, diag::extra_argument_named, name)
.highlight(tuple->getElement(firstIdx)->getSourceRange());
return true;
}
return false;
}
case Failure::IsNotOptional: {
if (auto force = dyn_cast_or_null<ForceValueExpr>(anchor)) {
// If there was an 'as' cast in the subexpression, note it.
if (auto cast = findForcedDowncast(tc.Context, force->getSubExpr())) {
tc.diagnose(force->getLoc(), diag::forcing_explicit_downcast,
failure.getFirstType())
.highlight(cast->getLoc())
.fixItRemove(force->getLoc());
return true;
}
tc.diagnose(loc, diag::forcing_injected_optional,
failure.getFirstType())
.highlight(force->getSourceRange())
.fixItRemove(force->getExclaimLoc());
return true;
}
if (auto bind = dyn_cast_or_null<BindOptionalExpr>(anchor)) {
tc.diagnose(loc, diag::binding_injected_optional,
failure.getFirstType())
.highlight(bind->getSourceRange())
.fixItRemove(bind->getQuestionLoc());
return true;
}
return false;
}
case Failure::NoPublicInitializers: {
tc.diagnose(loc, diag::no_accessible_initializers, failure.getFirstType())
.highlight(range1);
if (targetLocator && !useExprLoc)
noteTargetOfDiagnostic(cs, failure, targetLocator);
break;
}
case Failure::UnboundGenericParameter: {
tc.diagnose(loc, diag::unbound_generic_parameter, failure.getFirstType())
.highlight(range1);
if (!useExprLoc)
noteTargetOfDiagnostic(cs, failure, locator);
break;
}
case Failure::ExistentialGenericParameter: {
tc.diagnose(loc, diag::generic_parameter_binds_to_non_objc_existential,
failure.getFirstType(), failure.getSecondType())
.highlight(range1);
if (!useExprLoc)
noteTargetOfDiagnostic(cs, failure, locator);
break;
}
case Failure::FunctionNoEscapeMismatch: {
tc.diagnose(loc, diag::noescape_functiontype_mismatch,
failure.getSecondType()).highlight(range2);
if (!useExprLoc)
noteTargetOfDiagnostic(cs, failure, locator);
break;
}
case Failure::FunctionAutoclosureMismatch:
case Failure::FunctionNoReturnMismatch:
case Failure::IsNotArchetype:
case Failure::IsNotClass:
case Failure::IsNotDynamicLookup:
case Failure::IsNotMetatype:
case Failure::TupleNameMismatch:
case Failure::TupleNamePositionMismatch:
case Failure::TupleVariadicMismatch:
// FIXME: Handle all failure kinds
return false;
}
return true;
}
/// \brief Determine the number of distinct overload choices in the
/// provided set.
static unsigned countDistinctOverloads(ArrayRef<OverloadChoice> choices) {
llvm::SmallPtrSet<void *, 4> uniqueChoices;
unsigned result = 0;
for (auto choice : choices) {
if (uniqueChoices.insert(choice.getOpaqueChoiceSimple()).second)
++result;
}
return result;
}
/// \brief Determine the name of the overload in a set of overload choices.
static Identifier getOverloadChoiceName(ArrayRef<OverloadChoice> choices) {
for (auto choice : choices) {
if (choice.isDecl())
return choice.getDecl()->getName();
}
return Identifier();
}
bool diagnoseAmbiguity(ConstraintSystem &cs, ArrayRef<Solution> solutions) {
// Produce a diff of the solutions.
SolutionDiff diff(solutions);
// Find the locators which have the largest numbers of distinct overloads.
SmallVector<unsigned, 2> mostDistinctOverloads;
unsigned maxDistinctOverloads = 0;
for (unsigned i = 0, n = diff.overloads.size(); i != n; ++i) {
auto &overload = diff.overloads[i];
// If we can't resolve the locator to an anchor expression with no path,
// we can't diagnose this well.
if (!simplifyLocatorToAnchor(cs, overload.locator))
continue;
// If we don't have a name to hang on to, it'll be hard to diagnose this
// overload.
if (getOverloadChoiceName(overload.choices).empty())
continue;
unsigned distinctOverloads = countDistinctOverloads(overload.choices);
// We need at least two overloads to make this interesting.
if (distinctOverloads < 2)
continue;
// If we have more distinct overload choices for this locator than for
// prior locators, just keep this locator.
if (distinctOverloads > maxDistinctOverloads) {
maxDistinctOverloads = distinctOverloads;
mostDistinctOverloads.clear();
mostDistinctOverloads.push_back(i);
continue;
}
// If we have as many distinct overload choices for this locator as
// the best so far, add this locator to the set.
if (distinctOverloads == maxDistinctOverloads) {
mostDistinctOverloads.push_back(i);
continue;
}
// We have better results. Ignore this one.
}
// FIXME: Should be able to pick the best locator, e.g., based on some
// depth-first numbering of expressions.
if (mostDistinctOverloads.size() == 1) {
auto &overload = diff.overloads[mostDistinctOverloads[0]];
auto name = getOverloadChoiceName(overload.choices);
auto anchor = simplifyLocatorToAnchor(cs, overload.locator);
// Emit the ambiguity diagnostic.
auto &tc = cs.getTypeChecker();
tc.diagnose(anchor->getLoc(),
name.isOperator() ? diag::ambiguous_operator_ref
: diag::ambiguous_decl_ref,
name);
// Emit candidates. Use a SmallPtrSet to make sure only emit a particular
// candidate once. FIXME: Why is one candidate getting into the overload
// set multiple times?
SmallPtrSet<Decl*, 8> EmittedDecls;
for (auto choice : overload.choices) {
switch (choice.getKind()) {
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::TypeDecl:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
// FIXME: show deduced types, etc, etc.
if (EmittedDecls.insert(choice.getDecl()).second)
tc.diagnose(choice.getDecl(), diag::found_candidate);
break;
case OverloadChoiceKind::BaseType:
case OverloadChoiceKind::TupleIndex:
// FIXME: Actually diagnose something here.
break;
}
}
return true;
}
// FIXME: If we inferred different types for literals (for example),
// could diagnose ambiguity that way as well.
return false;
}
Constraint *getConstraintChoice(Constraint *constraint,
ConstraintKind kind,
bool takeAny = false) {
if ((constraint->getKind() != ConstraintKind::Disjunction) &&
(constraint->getKind() != ConstraintKind::Conjunction)) {
return nullptr;
}
auto nestedConstraints = constraint->getNestedConstraints();
for (auto nestedConstraint : nestedConstraints) {
if (takeAny ||
(nestedConstraint->getKind() == kind)) {
// If this is a last-chance search, and we have a conjunction or
// disjunction, look within.
if (takeAny &&
((nestedConstraint->getKind() == ConstraintKind::Disjunction) ||
(nestedConstraint->getKind() == ConstraintKind::Conjunction))) {
return getConstraintChoice(nestedConstraint,
kind,
takeAny);
}
return nestedConstraint;
}
}
return nullptr;
}
Constraint *getComponentConstraint(Constraint *constraint) {
if (constraint->getKind() != ConstraintKind::Disjunction) {
return constraint;
}
return constraint->getNestedConstraints().front();
}
/// For a given expression type, extract the appropriate type for a constraint-
/// based diagnostic.
static Type getDiagnosticTypeFromExpr(Expr *expr) {
// For a forced checked cast expression or coerce expression, use the type of
// the sub-expression.
if (auto fcc = dyn_cast<ForcedCheckedCastExpr>(expr)) {
auto subExpr = fcc->getSubExpr();
return subExpr->getType();
}
if (auto coerceExpr = dyn_cast<CoerceExpr>(expr)) {
auto subExpr = coerceExpr->getSubExpr();
return subExpr->getType();
}
// For an application expression, use the argument type.
if (auto applyExpr = dyn_cast<ApplyExpr>(expr)) {
return applyExpr->getArg()->getType();
}
// For a subscript expression, use the index type.
if (auto subscriptExpr = dyn_cast<SubscriptExpr>(expr)) {
return subscriptExpr->getIndex()->getType();
}
return expr->getType();
}
/// If a type variable was created for an opened literal expression, substitute
/// in the default literal for the type variable's literal conformance.
static Type substituteLiteralForTypeVariable(ConstraintSystem *CS,
TypeVariableType *tv) {
if (auto proto = tv->getImpl().literalConformanceProto) {
auto kind = proto->getKnownProtocolKind();
if (kind.hasValue()) {
auto altLits = CS->getAlternativeLiteralTypes(kind.getValue());
if (!altLits.empty()) {
if (auto altType = altLits[0]) {
return altType;
}
}
}
}
return tv;
}
static std::pair<Type, Type> getBoundTypesFromConstraint(ConstraintSystem *CS,
Expr *expr,
Constraint *constraint) {
auto type1 = getDiagnosticTypeFromExpr(expr);
auto type2 = constraint->getSecondType();
if (type1->isEqual(type2))
if (auto firstType = constraint->getFirstType())
type1 = firstType;
if (auto typeVariableType =
dyn_cast<TypeVariableType>(type2.getPointer())) {
SmallVector<Type, 4> bindings;
CS->getComputedBindings(typeVariableType, bindings);
auto binding = bindings.size() ? bindings.front() : Type();
if (!binding.isNull()) {
if (binding.getPointer() != type1.getPointer())
type2 = binding;
} else {
auto impl = typeVariableType->getImpl();
if (auto archetypeType = impl.getArchetype()) {
type2 = archetypeType;
} else {
auto implAnchor = impl.getLocator()->getAnchor();
auto anchorType = implAnchor->getType();
// Don't re-substitute an opened type variable for itself.
if (anchorType.getPointer() != type1.getPointer())
type2 = anchorType;
}
}
}
if (auto typeVariableType =
dyn_cast<TypeVariableType>(type1.getPointer())) {
SmallVector<Type, 4> bindings;
CS->getComputedBindings(typeVariableType, bindings);
for (auto binding : bindings) {
if (type2.getPointer() != binding.getPointer()) {
type1 = binding;
break;
}
}
}
// If we still have a literal type variable, substitute in the default type.
if (auto tv1 = type1->getAs<TypeVariableType>()) {
type1 = substituteLiteralForTypeVariable(CS, tv1);
}
if (auto tv2 = type2->getAs<TypeVariableType>()) {
type2 = substituteLiteralForTypeVariable(CS, tv2);
}
return std::pair<Type, Type>(type1->getLValueOrInOutObjectType(),
type2->getLValueOrInOutObjectType());
}
/// Determine if a type resulting from a failed typecheck operation is fully-
/// specialized, or if it still has type variable type arguments.
/// (This diverges slightly from hasTypeVariable, in that certain tyvars,
/// such as for nil literals, will be treated as specialized.)
bool typeIsNotSpecialized(Type type) {
if (type.isNull())
return true;
if (auto tv = type->getAs<TypeVariableType>()) {
// If it's a nil-literal conformance, there's no reason to re-specialize.
if (tv->getImpl().literalConformanceProto) {
auto knownProtoKind =
tv->getImpl().literalConformanceProto->getKnownProtocolKind();
if (knownProtoKind.hasValue() &&
(knownProtoKind.getValue() ==
KnownProtocolKind::NilLiteralConvertible)) {
return false;
}
}
return true;
}
// Desugar, if necessary.
if (auto sugaredTy = type->getAs<SyntaxSugarType>())
type = sugaredTy->getBaseType();
// If it's generic, check the type arguments.
if (auto bgt = type->getAs<BoundGenericType>()) {
for (auto tyarg : bgt->getGenericArgs()) {
if (typeIsNotSpecialized(tyarg))
return true;
}
return false;
}
// If it's a tuple, check the members.
if (auto tupleTy = type->getAs<TupleType>()) {
for (auto elementTy : tupleTy->getElementTypes()) {
if (typeIsNotSpecialized((elementTy)))
return true;
}
return false;
}
// If it's an inout type, check the inner type.
if (auto inoutTy = type->getAs<InOutType>()) {
return typeIsNotSpecialized(inoutTy->getObjectType());
}
// If it's a function, check the parameter and return types.
if (auto functionTy = type->getAs<AnyFunctionType>()) {
if (typeIsNotSpecialized(functionTy->getResult()) ||
typeIsNotSpecialized(functionTy->getInput()))
return true;
return false;
}
// Otherwise, broadly check for type variables.
return type->hasTypeVariable();
}
/// Obtain the colloquial description for a known protocol kind.
std::string getDescriptionForKnownProtocolKind(KnownProtocolKind kind) {
switch (kind) {
#define PROTOCOL(Id) \
case KnownProtocolKind::Id: \
return #Id;
#define LITERAL_CONVERTIBLE_PROTOCOL(Id, Description) \
case KnownProtocolKind::Id: \
return #Description;
#define BUILTIN_LITERAL_CONVERTIBLE_PROTOCOL(Id) \
case KnownProtocolKind::Id: \
return #Id;
#include "swift/AST/KnownProtocols.def"
}
llvm_unreachable("unrecognized known protocol kind");
}
/// Determine if the type is an error type, or its metatype.
bool isErrorTypeKind(Type t) {
if (auto mt = t->getAs<MetatypeType>())
t = mt->getInstanceType();
return t->is<ErrorType>();
}
/// Obtain a "user friendly" type name. E.g., one that uses colloquial names
/// for literal convertible protocols if necessary, and is devoid of type
/// variables.
std::string getUserFriendlyTypeName(Type t, bool unwrap = true) {
assert(!t.isNull());
// Unwrap any l-value types.
if (unwrap) {
if (auto lv = t->getAs<LValueType>()) {
t = lv->getObjectType();
}
}
if (auto tv = t->getAs<TypeVariableType>()) {
if (tv->getImpl().literalConformanceProto) {
Optional<KnownProtocolKind> kind =
tv->getImpl().literalConformanceProto->getKnownProtocolKind();
if (kind.hasValue()) {
return getDescriptionForKnownProtocolKind(kind.getValue());
}
}
}
return t.getString();
}
/// Conveniently unwrap a paren expression, if necessary.
Expr* unwrapParenExpr(Expr *e) {
if (auto parenExpr = dyn_cast<ParenExpr>(e))
return unwrapParenExpr(parenExpr->getSubExpr());
return e;
}
/// Given a vector of names and types, obtain a stringified comma-separated
/// list of the names (if present) and their associated "user friendly" type
/// names.
std::string getTypeListString(SmallVectorImpl<Identifier> &names,
SmallVectorImpl<Type> &types) {
std::string typeList = "";
if (types.size()) {
if (!names[0].empty()) {
typeList += names[0].get();
typeList += ": ";
}
typeList += getUserFriendlyTypeName(types[0]);
for (size_t i = 1; i < types.size(); i++) {
typeList += ", ";
if (!names[i].empty()) {
typeList += names[i].get();
typeList += ": ";
}
typeList += getUserFriendlyTypeName(types[i]);
}
}
return typeList;
}
GeneralFailureDiagnosis::GeneralFailureDiagnosis(Expr *expr,
ConstraintSystem *cs) :
expr(expr), CS(cs) {
assert(expr && CS);
// Collect and categorize constraint information from the failed system.
if(!CS->ActiveConstraints.empty()) {
// If any active conformance constraints are in the system, we know that
// any inactive constraints are in its service. Capture the constraint and
// present this information to the user.
auto *constraint = &CS->ActiveConstraints.front();
activeConformanceConstraint = getComponentConstraint(constraint);
}
for (auto & constraintRef : CS->InactiveConstraints) {
auto constraint = &constraintRef;
// Capture the first non-disjunction constraint we find. We'll use this
// if we can't find a clearer reason for the failure.
if ((!fallbackConstraint || constraint->isFavored()) &&
(constraint->getKind() != ConstraintKind::Disjunction) &&
(constraint->getKind() != ConstraintKind::Conjunction)) {
fallbackConstraint = constraint;
}
// Store off conversion constraints, favoring existing conversion
// constraints.
if ((!(activeConformanceConstraint ||
conformanceConstraint) || constraint->isFavored()) &&
constraint->getKind() == ConstraintKind::ConformsTo) {
conformanceConstraint = constraint;
}
// Failed binding constraints point to a missing member.
if ((!valueMemberConstraint || constraint->isFavored()) &&
((constraint->getKind() == ConstraintKind::ValueMember) ||
(constraint->getKind() == ConstraintKind::UnresolvedValueMember))) {
valueMemberConstraint = constraint;
}
// A missed argument conversion can result in better error messages when
// a user passes the wrong arguments to a function application.
if ((!argumentConstraint || constraint->isFavored())) {
argumentConstraint = getConstraintChoice(constraint,
ConstraintKind::
ArgumentTupleConversion);
}
// Overload resolution failures are often nicely descriptive, so store
// off the first one we find.
if ((!overloadConstraint || constraint->isFavored())) {
overloadConstraint = getConstraintChoice(constraint,
ConstraintKind::BindOverload);
}
// Conversion constraints are also nicely descriptive, so we'll grab the
// first one of those as well.
if ((!conversionConstraint || constraint->isFavored()) &&
(constraint->getKind() == ConstraintKind::Conversion ||
constraint->getKind() == ConstraintKind::ExplicitConversion ||
constraint->getKind() == ConstraintKind::ArgumentTupleConversion)) {
conversionConstraint = constraint;
}
// Also check for bridging failures.
if ((!bridgeToObjCConstraint || constraint->isFavored()) &&
constraint->getKind() == ConstraintKind::BridgedToObjectiveC) {
bridgeToObjCConstraint = constraint;
}
// When all else fails, inspect a potential conjunction or disjunction for a
// consituent conversion.
if (!disjunctionConversionConstraint || constraint->isFavored()) {
disjunctionConversionConstraint =
getConstraintChoice(constraint, ConstraintKind::Conversion, true);
}
}
// If no more descriptive constraint was found, use the fallback constraint.
if (fallbackConstraint &&
!(conversionConstraint ||
overloadConstraint ||
argumentConstraint)) {
if (fallbackConstraint->getKind() == ConstraintKind::ArgumentConversion)
argumentConstraint = fallbackConstraint;
else
conversionConstraint = fallbackConstraint;
}
// If there's still no conversion to diagnose, use the disjunction conversion.
if (!conversionConstraint) {
conversionConstraint = disjunctionConversionConstraint;
}
// If there was already a conversion failure, use it.
if (!conversionConstraint &&
CS->failedConstraint &&
CS->failedConstraint->getKind() != ConstraintKind::Disjunction) {
conversionConstraint = CS->failedConstraint;
}
}
bool GeneralFailureDiagnosis::diagnoseGeneralValueMemberFailure() {
if (valueMemberConstraint) {
auto memberName = valueMemberConstraint->getMember().getBaseName();
CS->TC.diagnose(expr->getLoc(),
diag::could_not_find_member,
memberName)
.highlight(expr->getSourceRange());
return true;
}
return false;
}
bool GeneralFailureDiagnosis::diagnoseGeneralOverloadFailure() {
// In the absense of a better conversion constraint failure, point out the
// inability to find an appropriate overload.
if (overloadConstraint) {
auto overloadChoice = overloadConstraint->getOverloadChoice();
auto overloadName = overloadChoice.getDecl()->getName();
Type argType = getDiagnosticTypeFromExpr(expr);
if (!argType.isNull() &&
!argType->getAs<TypeVariableType>() &&
isa<ApplyExpr>(expr)) {
if (argType->getAs<TupleType>()) {
CS->TC.diagnose(expr->getLoc(),
diag::cannot_find_appropriate_overload_with_type_list,
overloadName.str(), argType)
.highlight(expr->getSourceRange());
} else {
CS->TC.diagnose(expr->getLoc(),
diag::cannot_find_appropriate_overload_with_type,
overloadName.str(),
argType)
.highlight(expr->getSourceRange());
}
} else {
CS->TC.diagnose(expr->getLoc(),
diag::cannot_find_appropriate_overload,
overloadName.str())
.highlight(expr->getSourceRange());
}
return true;
}
return false;
}
bool GeneralFailureDiagnosis::diagnoseGeneralConversionFailure() {
// Otherwise, if we have a conversion constraint, use that as the basis for
// the diagnostic.
if (conversionConstraint || argumentConstraint) {
auto constraint = argumentConstraint ?
argumentConstraint :
conversionConstraint;
if (conformanceConstraint) {
if (conformanceConstraint->getTypeVariables().size() <
constraint->getTypeVariables().size()) {
constraint = conformanceConstraint;
}
}
auto locator = constraint->getLocator();
auto anchor = locator ? locator->getAnchor() : expr;
std::pair<Type, Type> types = getBoundTypesFromConstraint(CS,
expr,
constraint);
if (argumentConstraint) {
CS->TC.diagnose(expr->getLoc(),
diag::could_not_convert_argument,
types.first).
highlight(anchor->getSourceRange());
return true;
}
// If it's a type variable failing a conformance, avoid printing the type
// variable and just print the conformance.
if ((constraint->getKind() == ConstraintKind::ConformsTo) &&
types.first->getAs<TypeVariableType>()) {
CS->TC.diagnose(anchor->getLoc(),
diag::single_expression_conformance_failure,
types.first)
.highlight(anchor->getSourceRange());
return true;
}
auto fromType = getTypeOfIndependentSubExpression(expr);
if (fromType->getAs<ErrorType>())
fromType = types.first.getPointer();
auto toType = CS->getConversionType(expr);
if (!toType && CS->getContextualType(expr))
toType = CS->getContextualType(expr)->getPointer();
if (!toType)
toType = types.second.getPointer();
// If the second type is a type variable, the expression itself is
// ambiguous.
if (fromType->getAs<UnboundGenericType>() ||
toType->getAs<TypeVariableType>()) {
if (isa<ClosureExpr>(expr)) {
CS->TC.diagnose(expr->getLoc(),
diag::cannot_infer_closure_type);
return true;
} else {
CS->TC.diagnose(expr->getLoc(),
diag::type_of_expression_is_ambiguous);
}
return true;
}
auto failureKind =
Failure::TypesNotConvertible - Failure::TypesNotEqual;
CS->TC.diagnose(anchor->getLoc(),
diag::invalid_relation,
failureKind,
fromType, toType)
.highlight(anchor->getSourceRange());
return true;
}
return false;
}
bool GeneralFailureDiagnosis::diagnoseGeneralFailure() {
return diagnoseGeneralValueMemberFailure() ||
diagnoseGeneralOverloadFailure() ||
diagnoseGeneralConversionFailure();
}
Type GeneralFailureDiagnosis::getTypeOfIndependentSubExpression(Expr *subExpr) {
// Track if this sub-expression is currently being diagnosed.
if (CS->TC.exprIsBeingDiagnosed(subExpr))
return subExpr->getType();
CS->TC.addExprForDiagnosis(subExpr);
if (!isa<ClosureExpr>(subExpr) &&
(dyn_cast<ArrayExpr>(subExpr) ||
typeIsNotSpecialized(subExpr->getType()))) {
// Store off the sub-expression, in case a new one is provided via the
// type check operation.
Expr *preCheckedExpr = subExpr;
CS->TC.eraseTypeData(subExpr);
CS->TC.typeCheckExpression(subExpr, CS->DC, Type(), Type(), false);
// Reset the type of the previous expression. This prevents stale type
// variable data from being leaked out of the temporary constraint system.
if (preCheckedExpr != subExpr)
preCheckedExpr->setType(subExpr->getType());
}
assert(subExpr->getType());
return subExpr->getType();
}
bool GeneralFailureDiagnosis::diagnoseContextualConversionError(Expr *expr) {
TypeBase *contextualType = CS->getConversionType(expr);
if (!contextualType) {
if (!CS->getContextualType(expr)) {
return false;
}
contextualType = CS->getContextualType(expr)->getPointer();
}
auto subExprTy = getTypeOfIndependentSubExpression(expr);
if (subExprTy->isEqual(contextualType))
return false;
// We've already caught the error.
if (subExprTy->getAs<ErrorType>())
return true;
if (subExprTy->getAs<TypeVariableType>())
return false;
CS->TC.diagnose(expr->getLoc(),
diag::invalid_relation,
Failure::FailureKind::TypesNotConvertible -
Failure::FailureKind::TypesNotEqual,
subExprTy, contextualType)
.highlight(expr->getSourceRange());
return true;
}
/// FIXME: Right now, a "matching" overload is one with a parameter whose type
/// is identical to one of the argument types. We can obviously do something
/// more sophisticated with this.
void FailureDiagnosis::suggestPotentialOverloads(
const StringRef functionName,
const SourceLoc &loc,
const SmallVectorImpl<Type> &paramLists,
const SmallVectorImpl<Type> &argTypes) {
if (!argTypes.size()) {
return;
}
std::string suggestionText = "";
std::map<std::string, bool> dupes;
for (auto paramList : paramLists) {
SmallVector<Identifier, 16> paramNames;
SmallVector<Type, 16> paramTypes;
// Assemble the parameter type list.
if (auto parenType = dyn_cast<ParenType>(paramList.getPointer())) {
paramNames.push_back(Identifier());
paramTypes.push_back(parenType->getUnderlyingType());
} else if (auto tupleType = paramList->getAs<TupleType>()) {
for (auto field : tupleType->getFields()) {
paramNames.push_back(field.getName());
paramTypes.push_back(field.getType());
}
}
if (paramTypes.size() != argTypes.size())
continue;
for (size_t i = 0; i < paramTypes.size(); i++) {
auto pt = paramTypes[i];
auto at = argTypes[i];
if (pt->isEqual(at)) {
auto typeListString = getTypeListString(paramNames, paramTypes);
if (!dupes[typeListString]) {
dupes[typeListString] = true;
if (suggestionText.length())
suggestionText += ", ";
suggestionText += "(" + typeListString + ")";
}
break;
}
}
}
if (!suggestionText.length())
return;
CS->TC.diagnose(loc,
diag::suggest_partial_overloads,
functionName,
suggestionText);
}
bool FailureDiagnosis::diagnoseFailureForBinaryExpr() {
assert(expr->getKind() == ExprKind::Binary);
if (diagnoseContextualConversionError(expr))
return true;
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
auto binop = cast<BinaryExpr>(expr);
auto argExpr = dyn_cast<TupleExpr>(binop->getArg());
auto argTuple = getTypeOfIndependentSubExpression(argExpr)->
getAs<TupleType>();
// If the argument type is not a tuple, we've posted the diagnostic
// recursively.
if (!argTuple)
return true;
std::string overloadName;
SmallVector<Type, 16> paramLists;
SmallVector<Type, 2> argTypes;
if (auto DRE = dyn_cast<DeclRefExpr>(binop->getFn())) {
overloadName = DRE->getDecl()->getNameStr();
} else if (auto ODRE = dyn_cast<OverloadedDeclRefExpr>(binop->getFn())) {
overloadName = ODRE->getDecls()[0]->getNameStr();
for (auto DRE : ODRE->getDecls()) {
if (auto fnType = DRE->getType()->getAs<AnyFunctionType>()) {
paramLists.push_back(fnType->getInput());
}
}
} else if (overloadConstraint) {
overloadName = overloadConstraint->getOverloadChoice().
getDecl()->getName().str();
} else {
llvm_unreachable("unrecognized binop function kind");
}
assert(!overloadName.empty());
argTypes.push_back(argTuple->getElementType(0));
argTypes.push_back(argTuple->getElementType(1));
auto argTyName1 = getUserFriendlyTypeName(argTypes[0]);
auto argTyName2 = getUserFriendlyTypeName(argTypes[1]);
if (argTyName1.compare(argTyName2)) {
CS->TC.diagnose(argExpr->getElements()[0]->getLoc(),
diag::cannot_apply_binop_to_args,
overloadName,
argTyName1,
argTyName2);
} else {
CS->TC.diagnose(argExpr->getElements()[0]->getLoc(),
diag::cannot_apply_binop_to_same_args,
overloadName,
argTyName1);
}
if (paramLists.size())
suggestPotentialOverloads(overloadName,
argExpr->getElements()[0]->getLoc(),
paramLists,
argTypes);
return true;
}
bool FailureDiagnosis::diagnoseFailureForUnaryExpr() {
assert(expr->getKind() == ExprKind::PostfixUnary ||
expr->getKind() == ExprKind::PrefixUnary);
if (diagnoseContextualConversionError(expr))
return true;
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
auto applyExpr = cast<ApplyExpr>(expr);
auto argExpr = applyExpr->getArg();
auto argType = getTypeOfIndependentSubExpression(argExpr);
// If the argument type is an error, we've posted the diagnostic
// recursively.
if (isErrorTypeKind(argType))
return true;
auto argTyName = getUserFriendlyTypeName(argType);
std::string overloadName;
if (overloadConstraint) {
overloadName = overloadConstraint->getOverloadChoice().
getDecl()->getName().str();
} else if (auto declRefExpr = dyn_cast<DeclRefExpr>(applyExpr->getFn())) {
overloadName = declRefExpr->getDecl()->getNameStr();
} else if (auto overloadedDRE =
dyn_cast<OverloadedDeclRefExpr>(applyExpr->getFn())) {
overloadName = overloadedDRE->getDecls()[0]->getNameStr();
} else {
llvm_unreachable("unrecognized unop function kind");
}
assert(!overloadName.empty());
// FIXME: Note that we don't currently suggest a partially matching overload.
CS->TC.diagnose(argExpr->getLoc(),
diag::cannot_apply_unop_to_arg,
overloadName,
argTyName);
return true;
}
bool FailureDiagnosis::diagnoseFailureForPrefixUnaryExpr() {
return diagnoseFailureForUnaryExpr();
}
bool FailureDiagnosis::diagnoseFailureForPostfixUnaryExpr() {
return diagnoseFailureForUnaryExpr();
}
bool FailureDiagnosis::diagnoseFailureForSubscriptExpr() {
assert(expr->getKind() == ExprKind::Subscript ||
expr->getKind() == ExprKind::PrefixUnary);
if (diagnoseContextualConversionError(expr))
return true;
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
auto subscriptExpr = cast<SubscriptExpr>(expr);
auto indexExpr = subscriptExpr->getIndex();
auto baseExpr = subscriptExpr->getBase();
auto indexType = getTypeOfIndependentSubExpression(indexExpr);
// Extract the exact argument type from the argument tuple.
if (auto parenTy = dyn_cast<ParenType>(indexType.getPointer())) {
indexType = parenTy->getUnderlyingType();
}
// An error has been posted elsewhere.
if (isErrorTypeKind(indexType))
return true;
auto baseType = getTypeOfIndependentSubExpression(baseExpr);
auto indexTypeName = getUserFriendlyTypeName(indexType);
auto baseTypeName = getUserFriendlyTypeName(baseType);
assert(!(indexTypeName.empty() || baseTypeName.empty()));
// FIXME: As with unary applications, we don't currently suggest a partially
// matching overload.
CS->TC.diagnose(indexExpr->getLoc(),
diag::cannot_subscript_with_index,
baseTypeName,
indexTypeName);
return true;
}
bool FailureDiagnosis::diagnoseFailureForCallExpr() {
assert(expr->getKind() == ExprKind::Call);
if (diagnoseContextualConversionError(expr))
return true;
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
auto callExpr = cast<CallExpr>(expr);
auto fnExpr = callExpr->getFn();
auto argExpr = callExpr->getArg();
// An error was posted elsewhere.
if (isErrorTypeKind(fnExpr->getType())) {
return true;
}
std::string overloadName = "";
bool isClosureInvocation = false;
bool isInvalidTrailingClosureTarget = false;
bool foundIntermediateError = false;
bool isInitializer = false;
bool isOverloadedFn = false;
llvm::SmallVector<Type, 16> paramLists;
llvm::SmallVector<Identifier, 16> argNames;
llvm::SmallVector<Type, 16> argTypes;
// Obtain the function's name, and collect any parameter lists for diffing
// purposes.
if (auto DRE = dyn_cast<DeclRefExpr>(fnExpr)) {
overloadName = DRE->getDecl()->getNameStr();
if (auto fnType = DRE->getDecl()->getType()->getAs<AnyFunctionType>()) {
paramLists.push_back(fnType->getInput());
}
} else if (auto ODRE = dyn_cast<OverloadedDeclRefExpr>(fnExpr)) {
isOverloadedFn = true;
overloadName = ODRE->getDecls()[0]->getNameStr().str();
// Collect the parameters for later use.
for (auto D : ODRE->getDecls()) {
if (auto fnType = D->getType()->getAs<AnyFunctionType>()) {
paramLists.push_back(fnType->getInput());
}
}
} else if (auto TE = dyn_cast<TypeExpr>(fnExpr)) {
isInitializer = true;
// It's always a metatype type, so use the instance type name.
auto instanceType = TE->getType()->getAs<MetatypeType>()->getInstanceType();
overloadName = instanceType->getString();
// TODO: figure out right value for isKnownPrivate
if (!instanceType->getAs<TupleType>()) {
auto ctors = CS->TC.lookupConstructors(instanceType, CS->DC, false);
for (auto ctor : ctors) {
if (auto fnType = ctor->getType()->getAs<AnyFunctionType>()) {
// skip type argument
if (auto fnType2 = fnType->getResult()->getAs<AnyFunctionType>()) {
paramLists.push_back(fnType2->getInput());
}
}
}
}
if (paramLists.size() > 1) {
isOverloadedFn = true;
}
} else if (auto UDE = dyn_cast<UnresolvedDotExpr>(fnExpr)) {
overloadName = UDE->getName().str().str();
} else {
isClosureInvocation = true;
auto unwrappedExpr = unwrapParenExpr(fnExpr);
isInvalidTrailingClosureTarget = !isa<ClosureExpr>(unwrappedExpr);
}
// Build the argument type list.
if (auto parenExpr = dyn_cast<ParenExpr>(argExpr)) {
auto subType =
getTypeOfIndependentSubExpression((parenExpr->getSubExpr()));
if (isErrorTypeKind(subType))
foundIntermediateError = true;
argNames.push_back(Identifier());
argTypes.push_back(subType);
} else if (auto tupleExpr = dyn_cast<TupleExpr>(argExpr)) {
for (unsigned i = 0; i < tupleExpr->getNumElements(); i++) {
Identifier elName = tupleExpr->getElementName(i);
Expr *elExpr = tupleExpr->getElement(i);
auto elType = getTypeOfIndependentSubExpression(elExpr);
if (isErrorTypeKind(elType))
foundIntermediateError = true;
argNames.push_back(elName);
argTypes.push_back(elType);
}
}
if (foundIntermediateError)
return true;
if (argTypes.size()) {
std::string argString = "(" + getTypeListString(argNames, argTypes) + ")";
if (!isOverloadedFn) {
if (isClosureInvocation) {
if (isInvalidTrailingClosureTarget) {
CS->TC.diagnose(fnExpr->getLoc(),
diag::invalid_trailing_closure_target);
} else {
CS->TC.diagnose(fnExpr->getLoc(),
diag::cannot_invoke_closure,
argString);
}
} else {
CS->TC.diagnose(fnExpr->getLoc(),
isInitializer ?
diag::cannot_apply_initializer_to_args :
diag::cannot_apply_function_to_args,
overloadName,
argString);
}
} else {
CS->TC.diagnose(fnExpr->getLoc(),
isInitializer ?
diag::cannot_find_appropriate_initializer_with_list :
diag::cannot_find_appropriate_overload_with_list,
overloadName,
argString);
}
} else {
if (isClosureInvocation) {
CS->TC.diagnose(fnExpr->getLoc(), diag::cannot_infer_closure_type);
if (!isInvalidTrailingClosureTarget) {
auto closureExpr = dyn_cast<ClosureExpr>(unwrapParenExpr(fnExpr));
if (!closureExpr->hasSingleExpressionBody() &&
!closureExpr->hasExplicitResultType() &&
closureExpr->getBody()->getElements().size()) {
CS->TC.diagnose(fnExpr->getLoc(),
diag::mult_stmt_closures_require_explicit_result);
}
}
} else {
CS->TC.diagnose(fnExpr->getLoc(),
isInitializer ?
diag::cannot_find_initializer_with_no_params :
diag::cannot_find_overload_with_no_params,
overloadName);
}
}
// Did the user intend on invoking a different overload?
if (paramLists.size()) {
if(!isOverloadedFn) {
std::string paramString = "";
SmallVector<Identifier, 16> paramNames;
SmallVector<Type, 16> paramTypes;
if (auto parenType = dyn_cast<ParenType>(paramLists[0].getPointer())) {
paramNames.push_back(Identifier());
paramTypes.push_back(parenType->getUnderlyingType());
} else if (auto tupleType = paramLists[0]->getAs<TupleType>()) {
for (auto field : tupleType->getFields()) {
paramNames.push_back(field.getName());
paramTypes.push_back(field.getType());
}
}
if (paramTypes.size()) {
paramString = "(" + getTypeListString(paramNames, paramTypes) + ")";
CS->TC.diagnose(argExpr->getLoc(),
diag::expected_certain_args,
paramString);
}
} else {
suggestPotentialOverloads(overloadName,
fnExpr->getLoc(),
paramLists,
argTypes);
}
}
return true;
}
bool FailureDiagnosis::diagnoseFailureForAssignExpr() {
assert(expr->getKind() == ExprKind::Assign);
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
auto assignExpr = cast<AssignExpr>(expr);
auto destExpr = assignExpr->getDest();
auto srcExpr = assignExpr->getSrc();
auto destType = getTypeOfIndependentSubExpression(destExpr);
auto srcType = getTypeOfIndependentSubExpression(srcExpr);
// If the source type is already an error type, we've likely already posted
// an error due to a contextual type conversion error.
if (isErrorTypeKind(srcType) || isErrorTypeKind(destType)) {
return true;
}
auto destTypeName = getUserFriendlyTypeName(destType);
auto srcTypeName = getUserFriendlyTypeName(srcType);
if (isa<LiteralExpr>(destExpr)) {
CS->TC.diagnose(destExpr->getLoc(),
diag::cannot_assign_to_literal);
} else if (!srcTypeName.compare(destTypeName)) {
if (destType->is<ArchetypeType>()) {
CS->TC.diagnose(srcExpr->getLoc(),
diag::cannot_assign_invariant_self,
srcTypeName);
} else {
// If the types are the same, this might not be an assignability error -
// something else may have gone wrong. In that case, independently
// re-typecheck the source expression to see if there's a different
// failure.
CS->TC.eraseTypeData(srcExpr);
CS->TC.typeCheckExpression(srcExpr, CS->DC, Type(), Type(), false);
if (srcExpr->getType()->getAs<ErrorType>())
return true;
CS->TC.diagnose(destExpr->getLoc(),
diag::cannot_assign_to_immutable_expr,
destTypeName);
}
} else {
CS->TC.diagnose(srcExpr->getLoc(),
diag::cannot_assign_values,
srcTypeName,
destTypeName);
}
return true;
}
bool FailureDiagnosis::diagnoseFailureForInOutExpr() {
assert(expr->getKind() == ExprKind::InOut);
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
auto inoutExpr = cast<InOutExpr>(expr);
auto addressedExpr = inoutExpr->getSubExpr();
if (auto DRE = dyn_cast<DeclRefExpr>(addressedExpr)) {
if (auto VD = dyn_cast<VarDecl>(DRE->getDecl())) {
if (VD->hasAccessorFunctions() && !VD->getSetter()) {
CS->TC.diagnose(DRE->getLoc(),
diag::assignment_get_only_property,
VD->getName());
return true;
}
if (VD->isLet()) {
CS->TC.diagnose(addressedExpr->getLoc(),
diag::cannot_assign_to_immutable_expr,
getUserFriendlyTypeName(addressedExpr->getType()));
return true;
}
}
} else if (isa<UnresolvedDotExpr>(addressedExpr)) {
// For now, keep the UDE distinct from the above to allow for potentially
// better diagnostics.
CS->TC.diagnose(addressedExpr->getLoc(),
diag::cannot_assign_to_immutable_expr,
getUserFriendlyTypeName(addressedExpr->getType()));
return true;
}
return diagnoseGeneralFailure();
}
bool FailureDiagnosis::diagnoseFailureForCoerceExpr() {
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
CoerceExpr *coerceExpr = cast<CoerceExpr>(expr);
Expr *subExpr = coerceExpr->getSubExpr();
Type subType = getTypeOfIndependentSubExpression(subExpr);
if (isErrorTypeKind(subType)) {
return true;
}
std::pair<Type, Type> conversionTypes(nullptr, nullptr);
if (conversionConstraint &&
conversionConstraint->getKind() == ConstraintKind::ExplicitConversion &&
conversionConstraint->getLocator()->getAnchor() == expr) {
conversionTypes = getBoundTypesFromConstraint(CS, coerceExpr,
conversionConstraint);
} else {
conversionTypes.first = subType->getLValueOrInOutObjectType();
conversionTypes.second = coerceExpr->getType();
}
if (conversionTypes.first && conversionTypes.second) {
CS->TC.diagnose(coerceExpr->getLoc(), diag::invalid_relation,
Failure::TypesNotConvertible - Failure::TypesNotEqual,
conversionTypes.first, conversionTypes.second)
.highlight(coerceExpr->getSourceRange());
return true;
}
return diagnoseGeneralFailure();
}
bool FailureDiagnosis::diagnoseFailureForForcedCheckedCastExpr() {
assert(expr->getKind() == ExprKind::ForcedCheckedCast);
CleanupIllFormedExpressionRAII cleanup(*CS, expr);
ForcedCheckedCastExpr *castExpr = dyn_cast<ForcedCheckedCastExpr>(expr);
Expr *subExpr = castExpr->getSubExpr();
Type subType = getTypeOfIndependentSubExpression(subExpr);
if (isErrorTypeKind(subType)) {
return true;
}
std::pair<Type, Type> conversionTypes(nullptr, nullptr);
if (conversionConstraint &&
conversionConstraint->getKind() == ConstraintKind::CheckedCast &&
conversionConstraint->getLocator()->getAnchor() == expr) {
conversionTypes = getBoundTypesFromConstraint(CS, castExpr,
conversionConstraint);
} else {
conversionTypes.first = subType->getLValueOrInOutObjectType();
conversionTypes.second = castExpr->getType();
}
if (conversionTypes.first && conversionTypes.second) {
CS->TC.diagnose(castExpr->getLoc(), diag::invalid_relation,
Failure::TypesNotConvertible - Failure::TypesNotEqual,
conversionTypes.first, conversionTypes.second)
.highlight(castExpr->getSourceRange());
return true;
}
return diagnoseGeneralFailure();
}
bool FailureDiagnosis::diagnoseFailure() {
assert(CS && expr);
if (activeConformanceConstraint) {
std::pair<Type, Type> types =
getBoundTypesFromConstraint(CS,
expr,
activeConformanceConstraint);
CS->TC.diagnose(expr->getLoc(),
diag::does_not_conform_to_constraint,
types.first,
types.second)
.highlight(expr->getSourceRange());
return true;
}
// If a bridging conversion slips through, treat it as ambiguous.
if (bridgeToObjCConstraint) {
CS->TC.diagnose(expr->getLoc(), diag::type_of_expression_is_ambiguous);
return true;
}
// Move on to expr-specific diagnostics.
switch(expr->getKind()) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: return diagnoseFailureFor##ID##Expr();
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("unrecognized expr kind");
}
/// Given a specific expression and the remnants of the failed constraint
/// system, produce a specific diagnostic.
bool ConstraintSystem::diagnoseFailureForExpr(Expr *expr) {
FailureDiagnosis diagnosis(expr, this);
// Now, attempt to diagnose the failure from the info we've collected.
if (diagnosis.diagnoseFailure())
return true;
// A DiscardAssignmentExpr is special in that it introduces a new type
// variable but places no constraints upon it. Instead, it relies on the rhs
// of its assignment expression to determine its type. Unfortunately, in the
// case of error recovery, the "_" expression may be left alone with no
// constraints for us to derive an error from. In that case, we'll fall back
// to the "outside assignment" error.
if (ActiveConstraints.empty() &&
InactiveConstraints.empty() &&
!failedConstraint) {
if (isa<DiscardAssignmentExpr>(expr)) {
TC.diagnose(expr->getLoc(), diag::discard_expr_outside_of_assignment)
.highlight(expr->getSourceRange());
return true;
}
if (auto dot = dyn_cast<UnresolvedDotExpr>(expr)) {
TC.diagnose(expr->getLoc(),
diag::not_enough_context_for_generic_method_reference,
dot->getName());
return true;
}
// If there are no posted constraints or failures, then there was
// not enough contextual information available to infer a type for the
// expression.
TC.diagnose(expr->getLoc(), diag::type_of_expression_is_ambiguous);
return true;
}
return false;
}
bool ConstraintSystem::salvage(SmallVectorImpl<Solution> &viable,
Expr *expr,
bool onlyFailures) {
// If there were any unavoidable failures, emit the first one we can.
if (!unavoidableFailures.empty()) {
for (auto failure : unavoidableFailures) {
// In the 'onlyFailures' case, we'll want to synthesize a locator if one
// does not exist. That allows us to emit decent diagnostics for
// constraint application failures where the constraints themselves lack
// a valid location.
if (diagnoseFailure(*this, *failure, expr, onlyFailures))
return true;
}
if (onlyFailures)
return true;
// If we can't make sense of the existing constraints (or none exist), go
// ahead and try the unavoidable failures again, but with locator
// substitutions in place.
if (!this->diagnoseFailureForExpr(expr) &&
!unavoidableFailures.empty()) {
for (auto failure : unavoidableFailures) {
if (diagnoseFailure(*this, *failure, expr, true))
return true;
}
}
return true;
}
// There were no unavoidable failures, so attempt to solve again, capturing
// any failures that come from our attempts to select overloads or bind
// type variables.
{
viable.clear();
// Set up solver state.
SolverState state(*this);
state.recordFailures = true;
this->solverState = &state;
// Solve the system.
solve(viable);
// Check whether we have a best solution; this can happen if we found
// a series of fixes that worked.
if (auto best = findBestSolution(viable, /*minimize=*/true)) {
if (*best != 0)
viable[0] = std::move(viable[*best]);
viable.erase(viable.begin() + 1, viable.end());
return false;
}
// FIXME: If we were able to actually fix things along the way,
// we may have to hunt for the best solution. For now, we don't care.
// If there are multiple solutions, try to diagnose an ambiguity.
if (viable.size() > 1) {
if (getASTContext().LangOpts.DebugConstraintSolver) {
auto &log = getASTContext().TypeCheckerDebug->getStream();
log << "---Ambiguity error: "
<< viable.size() << " solutions found---\n";
int i = 0;
for (auto &solution : viable) {
log << "---Ambiguous solution #" << i++ << "---\n";
solution.dump(&TC.Context.SourceMgr, log);
log << "\n";
}
}
if (diagnoseAmbiguity(*this, viable)) {
return true;
}
}
// Remove the solver state.
this->solverState = nullptr;
// Fall through to produce diagnostics.
}
if (failures.size() == 1) {
auto &failure = unavoidableFailures.empty()? *failures.begin()
: **unavoidableFailures.begin();
if (diagnoseFailure(*this, failure, expr, false))
return true;
}
if (getExpressionTooComplex()) {
TC.diagnose(expr->getLoc(), diag::expression_too_complex).
highlight(expr->getSourceRange());
return true;
}
// If all else fails, attempt to diagnose the failure by looking through the
// system's constraints.
this->diagnoseFailureForExpr(expr);
return true;
}