Files
swift-mirror/include/swift/RemoteInspection/ReflectionContext.h
Evan Wilde ad1a33666e RemoteInspection: Skip unused ELF section headers
ELF section headers are allowed to be left uninitialized when the
section is empty and unused. LLD is a tad more aggressive about this.
The ELF reader in the Swift runtime was a bit aggressive about
converting the section headers to names and would not skip over these
unused sections headers resulting in crashes due to operating on
uninitialized memory in the `sh_name` field.

This patch teaches the ELF reader to skip over unused section header
table entries.

(cherry picked from commit 14d2088c75)

 - Explanation: Fixes a bug where we would read uninitialized data from
                unused ELF section headers.
 - Scope: Affects ELF-based platforms and ELF file handling in tools
   like swift-reflection-dump.
 - Risk: Low -- Improves implementation according to the spec.
                Any data used from this was garbage anyway.
 - Testing: Tested on FreeBSD with LLD, which makes uses of unused
            section headers. Ensured that runtime and
            swift-reflection-dump don't crash anymore.
 - Reviewers: @compnerd, @al45tair

Cherry-Pick: https://github.com/swiftlang/swift/pull/82698
2025-07-10 14:41:54 -07:00

2234 lines
85 KiB
C++

//===--- ReflectionContext.h - Swift Type Reflection Context ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implements the context for reflection of values in the address space of a
// remote process.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_REFLECTION_REFLECTIONCONTEXT_H
#define SWIFT_REFLECTION_REFLECTIONCONTEXT_H
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Memory.h"
#include "llvm/ADT/STLExtras.h"
#include "swift/ABI/Enum.h"
#include "swift/ABI/ObjectFile.h"
#include "swift/Concurrency/Actor.h"
#include "swift/Remote/MemoryReader.h"
#include "swift/Remote/MetadataReader.h"
#include "swift/RemoteInspection/DescriptorFinder.h"
#include "swift/RemoteInspection/GenericMetadataCacheEntry.h"
#include "swift/RemoteInspection/Records.h"
#include "swift/RemoteInspection/RuntimeInternals.h"
#include "swift/RemoteInspection/TypeLowering.h"
#include "swift/RemoteInspection/TypeRef.h"
#include "swift/RemoteInspection/TypeRefBuilder.h"
#include "swift/Basic/Unreachable.h"
#include <set>
#include <utility>
#include <vector>
#include <inttypes.h>
// The Swift runtime can be built in two ways: with or without
// SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION enabled. In order to decode the
// lock used in a runtime with priority escalation enabled, we need inline
// functions from dispatch/swift_concurrency_private.h. If we don't have that
// header at build time, we can still build but we'll be unable to decode the
// lock and thus information about a running task is degraded. There are four
// combinations:
//
// Runtime | swift_concurrency_private.h | task running info
// --------------------+-----------------------------+------------------
// without escalation | present | full
// without escalation | not present | full
// with escalation | present | full
// with escalation | not present | DEGRADED
//
// Currently, degraded info has these effects:
// 1. Task.IsRunning is not available, indicated with Task.HasIsRunning = false.
// 2. Task async backtraces are not provided.
// 3. Task and actor thread ports are not available, indicated with
// HasThreadPort = false.
#if __has_include(<dispatch/swift_concurrency_private.h>)
#include <dispatch/swift_concurrency_private.h>
#define HAS_DISPATCH_LOCK_IS_LOCKED 1
#endif
namespace {
template <unsigned PointerSize> struct MachOTraits;
template <> struct MachOTraits<4> {
using Header = const struct llvm::MachO::mach_header;
using SegmentCmd = const struct llvm::MachO::segment_command;
using Section = const struct llvm::MachO::section;
static constexpr size_t MagicNumber = llvm::MachO::MH_MAGIC;
};
template <> struct MachOTraits<8> {
using Header = const struct llvm::MachO::mach_header_64;
using SegmentCmd = const struct llvm::MachO::segment_command_64;
using Section = const struct llvm::MachO::section_64;
static constexpr size_t MagicNumber = llvm::MachO::MH_MAGIC_64;
};
template <unsigned char ELFClass> struct ELFTraits;
template <> struct ELFTraits<llvm::ELF::ELFCLASS32> {
using Header = const struct llvm::ELF::Elf32_Ehdr;
using Section = const struct llvm::ELF::Elf32_Shdr;
using Offset = llvm::ELF::Elf32_Off;
using Size = llvm::ELF::Elf32_Word;
static constexpr unsigned char ELFClass = llvm::ELF::ELFCLASS32;
};
template <> struct ELFTraits<llvm::ELF::ELFCLASS64> {
using Header = const struct llvm::ELF::Elf64_Ehdr;
using Section = const struct llvm::ELF::Elf64_Shdr;
using Offset = llvm::ELF::Elf64_Off;
using Size = llvm::ELF::Elf64_Xword;
static constexpr unsigned char ELFClass = llvm::ELF::ELFCLASS64;
};
} // namespace
namespace swift {
namespace reflection {
using swift::remote::MemoryReader;
using swift::remote::RemoteAddress;
template <typename Runtime>
class ReflectionContext
: public remote::MetadataReader<Runtime, TypeRefBuilder> {
using super = remote::MetadataReader<Runtime, TypeRefBuilder>;
using super::readMetadata;
using super::readObjCClassName;
using super::readResolvedPointerValue;
llvm::DenseMap<std::pair<typename super::StoredPointer,
remote::TypeInfoProvider::IdType>,
const RecordTypeInfo *>
Cache;
/// All buffers we need to keep around long term. This will automatically free them
/// when this object is destroyed.
std::vector<MemoryReader::ReadBytesResult> savedBuffers;
std::vector<std::tuple<RemoteAddress, RemoteAddress>> textRanges;
std::vector<std::tuple<RemoteAddress, RemoteAddress>> dataRanges;
bool setupTargetPointers = false;
typename super::StoredPointer target_asyncTaskMetadata = 0;
typename super::StoredPointer target_non_future_adapter = 0;
typename super::StoredPointer target_future_adapter = 0;
typename super::StoredPointer target_task_wait_throwing_resume_adapter = 0;
typename super::StoredPointer target_task_future_wait_resume_adapter = 0;
bool supportsPriorityEscalation = false;
typename super::StoredSize asyncTaskSize = 0;
public:
using super::getBuilder;
using super::readDemanglingForContextDescriptor;
using super::readGenericArgFromMetadata;
using super::readIsaMask;
using super::readMetadataAndValueErrorExistential;
using super::readMetadataAndValueOpaqueExistential;
using super::readMetadataFromInstance;
using super::readTypeFromMetadata;
using super::stripSignedPointer;
using typename super::StoredPointer;
using typename super::StoredSignedPointer;
using typename super::StoredSize;
struct AsyncTaskAllocationChunk {
enum class ChunkKind {
Unknown,
NonPointer,
RawPointer,
StrongReference,
UnownedReference,
WeakReference,
UnmanagedReference
};
StoredPointer Start;
unsigned Length;
ChunkKind Kind;
};
struct AsyncTaskSlabInfo {
StoredPointer NextSlab;
StoredSize SlabSize;
std::vector<AsyncTaskAllocationChunk> Chunks;
};
struct AsyncTaskInfo {
// Job flags.
unsigned Kind;
unsigned EnqueuePriority;
bool IsChildTask;
bool IsFuture;
bool IsGroupChildTask;
bool IsAsyncLetTask;
bool IsSynchronousStartTask;
// Task flags.
unsigned MaxPriority;
bool IsCancelled;
bool IsStatusRecordLocked;
bool IsEscalated;
bool HasIsRunning; // If false, the IsRunning flag is not valid.
bool IsRunning;
bool IsEnqueued;
bool IsComplete;
bool HasThreadPort;
uint32_t ThreadPort;
uint64_t Id;
StoredPointer RunJob;
StoredPointer AllocatorSlabPtr;
std::vector<StoredPointer> ChildTasks;
std::vector<StoredPointer> AsyncBacktraceFrames;
StoredPointer ResumeAsyncContext;
};
struct ActorInfo {
StoredPointer FirstJob;
uint8_t State;
bool IsPriorityEscalated;
bool IsDistributedRemote;
uint8_t MaxPriority;
bool HasThreadPort;
uint32_t ThreadPort;
};
explicit ReflectionContext(
std::shared_ptr<MemoryReader> reader,
remote::ExternalTypeRefCache *externalCache = nullptr,
reflection::DescriptorFinder *descriptorFinder = nullptr)
: super(std::move(reader), *this, externalCache, descriptorFinder) {}
ReflectionContext(const ReflectionContext &other) = delete;
ReflectionContext &operator=(const ReflectionContext &other) = delete;
MemoryReader &getReader() {
return *this->Reader;
}
unsigned getSizeOfHeapObject() {
// This must match sizeof(HeapObject) for the target.
return sizeof(StoredPointer) * 2;
}
/// On success returns the ID of the newly registered Reflection Info.
template <typename T>
std::optional<uint32_t> readMachOSections(
RemoteAddress ImageStart,
llvm::SmallVector<llvm::StringRef, 1> PotentialModuleNames = {}) {
auto Buf =
this->getReader().readBytes(ImageStart, sizeof(typename T::Header));
if (!Buf)
return {};
auto Header = reinterpret_cast<typename T::Header *>(Buf.get());
assert(Header->magic == T::MagicNumber && "invalid MachO file");
auto NumCommands = Header->sizeofcmds;
// The layout of the executable is such that the commands immediately follow
// the header.
auto CmdStartAddress =
RemoteAddress(ImageStart.getAddressData() + sizeof(typename T::Header));
uint32_t SegmentCmdHdrSize = sizeof(typename T::SegmentCmd);
uint64_t Offset = 0;
// Find the __TEXT segment.
typename T::SegmentCmd *TextCommand = nullptr;
for (unsigned I = 0; I < NumCommands; ++I) {
auto CmdBuf = this->getReader().readBytes(
RemoteAddress(CmdStartAddress.getAddressData() + Offset),
SegmentCmdHdrSize);
if (!CmdBuf)
return {};
auto CmdHdr = reinterpret_cast<typename T::SegmentCmd *>(CmdBuf.get());
if (strncmp(CmdHdr->segname, "__TEXT", sizeof(CmdHdr->segname)) == 0) {
TextCommand = CmdHdr;
savedBuffers.push_back(std::move(CmdBuf));
break;
}
Offset += CmdHdr->cmdsize;
}
// No __TEXT segment, bail out.
if (!TextCommand)
return {};
// Find the load command offset.
auto loadCmdOffset = ImageStart.getAddressData() + Offset + sizeof(typename T::Header);
// Read the load command.
auto LoadCmdAddress = reinterpret_cast<const char *>(loadCmdOffset);
auto LoadCmdBuf = this->getReader().readBytes(
RemoteAddress(LoadCmdAddress), sizeof(typename T::SegmentCmd));
if (!LoadCmdBuf)
return {};
auto LoadCmd = reinterpret_cast<typename T::SegmentCmd *>(LoadCmdBuf.get());
// The sections start immediately after the load command.
unsigned NumSect = LoadCmd->nsects;
auto SectAddress = reinterpret_cast<const char *>(loadCmdOffset) +
sizeof(typename T::SegmentCmd);
auto Sections = this->getReader().readBytes(
RemoteAddress(SectAddress), NumSect * sizeof(typename T::Section));
if (!Sections)
return {};
auto Slide = ImageStart.getAddressData() - TextCommand->vmaddr;
auto SectionsBuf = reinterpret_cast<const char *>(Sections.get());
auto findMachOSectionByName = [&](llvm::StringRef Name)
-> std::pair<RemoteRef<void>, uint64_t> {
for (unsigned I = 0; I < NumSect; ++I) {
auto S = reinterpret_cast<typename T::Section *>(
SectionsBuf + (I * sizeof(typename T::Section)));
if (strncmp(S->sectname, Name.data(), sizeof(S->sectname)) != 0)
continue;
auto RemoteSecStart = S->addr + Slide;
auto LocalSectBuf =
this->getReader().readBytes(RemoteAddress(RemoteSecStart), S->size);
if (!LocalSectBuf)
return {nullptr, 0};
auto StartRef = RemoteRef<void>(RemoteSecStart, LocalSectBuf.get());
savedBuffers.push_back(std::move(LocalSectBuf));
return {StartRef, S->size};
}
return {nullptr, 0};
};
SwiftObjectFileFormatMachO ObjectFileFormat;
auto FieldMdSec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::fieldmd));
auto AssocTySec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::assocty));
auto BuiltinTySec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::builtin));
auto CaptureSec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::capture));
auto TypeRefMdSec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::typeref));
auto ReflStrMdSec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::reflstr));
auto ConformMdSec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::conform));
auto MPEnumMdSec = findMachOSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::mpenum));
if (FieldMdSec.first == nullptr &&
AssocTySec.first == nullptr &&
BuiltinTySec.first == nullptr &&
CaptureSec.first == nullptr &&
TypeRefMdSec.first == nullptr &&
ReflStrMdSec.first == nullptr &&
ConformMdSec.first == nullptr &&
MPEnumMdSec.first == nullptr)
return {};
ReflectionInfo info = {{FieldMdSec.first, FieldMdSec.second},
{AssocTySec.first, AssocTySec.second},
{BuiltinTySec.first, BuiltinTySec.second},
{CaptureSec.first, CaptureSec.second},
{TypeRefMdSec.first, TypeRefMdSec.second},
{ReflStrMdSec.first, ReflStrMdSec.second},
{ConformMdSec.first, ConformMdSec.second},
{MPEnumMdSec.first, MPEnumMdSec.second},
PotentialModuleNames};
auto InfoID = this->addReflectionInfo(info);
auto TextSegmentStart = Slide + TextCommand->vmaddr;
auto TextSegmentEnd = TextSegmentStart + TextCommand->vmsize;
textRanges.push_back(std::make_tuple(RemoteAddress(TextSegmentStart),
RemoteAddress(TextSegmentEnd)));
// Find the __DATA segments.
for (unsigned I = 0; I < NumCommands; ++I) {
auto CmdBuf = this->getReader().readBytes(
RemoteAddress(CmdStartAddress.getAddressData() + Offset),
SegmentCmdHdrSize);
if (!CmdBuf)
return {};
auto CmdHdr = reinterpret_cast<typename T::SegmentCmd *>(CmdBuf.get());
// Look for any segment name starting with __DATA or __AUTH.
if (strncmp(CmdHdr->segname, "__DATA", 6) == 0 ||
strncmp(CmdHdr->segname, "__AUTH", 6) == 0) {
auto DataSegmentStart = Slide + CmdHdr->vmaddr;
auto DataSegmentEnd = DataSegmentStart + CmdHdr->vmsize;
assert(DataSegmentStart > ImageStart.getAddressData() &&
"invalid range for __DATA/__AUTH");
dataRanges.push_back(std::make_tuple(RemoteAddress(DataSegmentStart),
RemoteAddress(DataSegmentEnd)));
}
Offset += CmdHdr->cmdsize;
}
savedBuffers.push_back(std::move(Buf));
savedBuffers.push_back(std::move(Sections));
return InfoID;
}
/// On success returns the ID of the newly registered Reflection Info.
std::optional<uint32_t> readPECOFFSections(
RemoteAddress ImageStart,
llvm::SmallVector<llvm::StringRef, 1> PotentialModuleNames = {}) {
auto DOSHdrBuf = this->getReader().readBytes(
ImageStart, sizeof(llvm::object::dos_header));
if (!DOSHdrBuf)
return {};
auto DOSHdr =
reinterpret_cast<const llvm::object::dos_header *>(DOSHdrBuf.get());
auto COFFFileHdrAddr = ImageStart.getAddressData() +
DOSHdr->AddressOfNewExeHeader +
sizeof(llvm::COFF::PEMagic);
auto COFFFileHdrBuf = this->getReader().readBytes(
RemoteAddress(COFFFileHdrAddr), sizeof(llvm::object::coff_file_header));
if (!COFFFileHdrBuf)
return {};
auto COFFFileHdr = reinterpret_cast<const llvm::object::coff_file_header *>(
COFFFileHdrBuf.get());
auto SectionTableAddr = COFFFileHdrAddr +
sizeof(llvm::object::coff_file_header) +
COFFFileHdr->SizeOfOptionalHeader;
auto SectionTableBuf = this->getReader().readBytes(
RemoteAddress(SectionTableAddr),
sizeof(llvm::object::coff_section) * COFFFileHdr->NumberOfSections);
if (!SectionTableBuf)
return {};
auto findCOFFSectionByName =
[&](llvm::StringRef Name) -> std::pair<RemoteRef<void>, uint64_t> {
for (size_t i = 0; i < COFFFileHdr->NumberOfSections; ++i) {
const llvm::object::coff_section *COFFSec =
reinterpret_cast<const llvm::object::coff_section *>(
SectionTableBuf.get()) +
i;
llvm::StringRef SectionName =
(COFFSec->Name[llvm::COFF::NameSize - 1] == 0)
? COFFSec->Name
: llvm::StringRef(COFFSec->Name, llvm::COFF::NameSize);
if (SectionName != Name)
continue;
auto Addr = ImageStart.getAddressData() + COFFSec->VirtualAddress;
auto Buf = this->getReader().readBytes(RemoteAddress(Addr),
COFFSec->VirtualSize);
if (!Buf)
return {nullptr, 0};
auto BufStart = Buf.get();
savedBuffers.push_back(std::move(Buf));
auto Begin = RemoteRef<void>(Addr, BufStart);
auto Size = COFFSec->VirtualSize;
// FIXME: This code needs to be cleaned up and updated
// to make it work for 32 bit platforms.
Begin = Begin.atByteOffset(8);
Size -= 16;
return {Begin, Size};
}
return {nullptr, 0};
};
SwiftObjectFileFormatCOFF ObjectFileFormat;
auto FieldMdSec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::fieldmd));
auto AssocTySec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::assocty));
auto BuiltinTySec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::builtin));
auto CaptureSec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::capture));
auto TypeRefMdSec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::typeref));
auto ReflStrMdSec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::reflstr));
auto ConformMdSec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::conform));
auto MPEnumMdSec = findCOFFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::mpenum));
if (FieldMdSec.first == nullptr &&
AssocTySec.first == nullptr &&
BuiltinTySec.first == nullptr &&
CaptureSec.first == nullptr &&
TypeRefMdSec.first == nullptr &&
ReflStrMdSec.first == nullptr &&
ConformMdSec.first == nullptr &&
MPEnumMdSec.first == nullptr)
return {};
ReflectionInfo Info = {{FieldMdSec.first, FieldMdSec.second},
{AssocTySec.first, AssocTySec.second},
{BuiltinTySec.first, BuiltinTySec.second},
{CaptureSec.first, CaptureSec.second},
{TypeRefMdSec.first, TypeRefMdSec.second},
{ReflStrMdSec.first, ReflStrMdSec.second},
{ConformMdSec.first, ConformMdSec.second},
{MPEnumMdSec.first, MPEnumMdSec.second},
PotentialModuleNames};
return this->addReflectionInfo(Info);
}
/// On success returns the ID of the newly registered Reflection Info.
std::optional<uint32_t>
readPECOFF(RemoteAddress ImageStart,
llvm::SmallVector<llvm::StringRef, 1> PotentialModuleNames = {}) {
auto Buf = this->getReader().readBytes(ImageStart,
sizeof(llvm::object::dos_header));
if (!Buf)
return {};
auto DOSHdr = reinterpret_cast<const llvm::object::dos_header *>(Buf.get());
auto PEHeaderAddress =
ImageStart.getAddressData() + DOSHdr->AddressOfNewExeHeader;
Buf = this->getReader().readBytes(RemoteAddress(PEHeaderAddress),
sizeof(llvm::COFF::PEMagic));
if (!Buf)
return {};
if (memcmp(Buf.get(), llvm::COFF::PEMagic, sizeof(llvm::COFF::PEMagic)))
return {};
return readPECOFFSections(ImageStart, PotentialModuleNames);
}
/// On success returns the ID of the newly registered Reflection Info.
template <typename T>
std::optional<uint32_t> readELFSections(
RemoteAddress ImageStart,
std::optional<llvm::sys::MemoryBlock> FileBuffer,
llvm::SmallVector<llvm::StringRef, 1> PotentialModuleNames = {}) {
// When reading from the FileBuffer we can simply return a pointer to
// the underlying data.
// When reading from the process, we need to keep the memory around
// until the end of the function, so we store it inside ReadDataBuffer.
// We do this so in both cases we can return a simple pointer.
std::vector<MemoryReader::ReadBytesResult> ReadDataBuffer;
auto readData = [&](uint64_t Offset, uint64_t Size) -> const void * {
if (FileBuffer.has_value()) {
auto Buffer = FileBuffer.value();
if (Offset + Size > Buffer.allocatedSize())
return nullptr;
return (const void *)((uint64_t)Buffer.base() + Offset);
} else {
MemoryReader::ReadBytesResult Buf =
this->getReader().readBytes(ImageStart + Offset, Size);
if (!Buf)
return nullptr;
ReadDataBuffer.push_back(std::move(Buf));
return ReadDataBuffer.back().get();
}
};
const void *Buf = readData(0, sizeof(typename T::Header));
if (!Buf)
return {};
auto Hdr = reinterpret_cast<const typename T::Header *>(Buf);
assert(Hdr->getFileClass() == T::ELFClass && "invalid ELF file class");
// From the header, grab information about the section header table.
uint64_t SectionHdrAddress = Hdr->e_shoff;
uint16_t SectionHdrNumEntries = Hdr->e_shnum;
uint16_t SectionEntrySize = Hdr->e_shentsize;
if (sizeof(typename T::Section) > SectionEntrySize)
return {};
if (SectionHdrNumEntries == 0)
return {};
// Collect all the section headers, we need them to look up the
// reflection sections (by name) and the string table.
// We read the section headers from the FileBuffer, since they are
// not mapped in the child process.
std::vector<const typename T::Section *> SecHdrVec;
for (unsigned I = 0; I < SectionHdrNumEntries; ++I) {
uint64_t Offset = SectionHdrAddress + (I * SectionEntrySize);
auto SecBuf = readData(Offset, sizeof(typename T::Section));
if (!SecBuf)
return {};
const typename T::Section *SecHdr =
reinterpret_cast<const typename T::Section *>(SecBuf);
SecHdrVec.push_back(SecHdr);
}
// This provides quick access to the section header string table index.
// We also here handle the unlikely even where the section index overflows
// and it's just a pointer to secondary storage (SHN_XINDEX).
uint32_t SecIdx = Hdr->e_shstrndx;
if (SecIdx == llvm::ELF::SHN_XINDEX) {
assert(!SecHdrVec.empty() && "malformed ELF object");
SecIdx = SecHdrVec[0]->sh_link;
}
assert(SecIdx < SecHdrVec.size() && "malformed ELF object");
const typename T::Section *SecHdrStrTab = SecHdrVec[SecIdx];
typename T::Offset StrTabOffset = SecHdrStrTab->sh_offset;
typename T::Size StrTabSize = SecHdrStrTab->sh_size;
auto StrTabBuf = readData(StrTabOffset, StrTabSize);
if (!StrTabBuf)
return {};
auto StrTab = reinterpret_cast<const char *>(StrTabBuf);
bool Error = false;
// GNU ld and lld both merge sections regardless of the
// `SHF_GNU_RETAIN` flag. gold, presently, does not. The Swift
// compiler has a couple of switches that control whether or not
// the reflection sections are stripped; when these are enabled,
// it will _not_ set `SHF_GNU_RETAIN` on the reflection metadata
// sections. However, `swiftrt.o` contains declarations of the
// sections _with_ the `SHF_GNU_RETAIN` flag set, which makes
// sense since at runtime we will only expect to be able to access
// reflection metadata that we said we wanted to exist at runtime.
//
// The upshot is that when linking with gold, we can end up with
// two sets of reflection metadata sections. In a normal build
// where the compiler flags are the same for every linked object,
// we'll have *either* all retained *or* all un-retained sections
// (the retained sections will still exist because of `swiftrt.o`,
// but will be empty). The only time we'd expect to have a mix is
// where some code was compiled with a different setting of the
// metadata stripping flags. If that happens, the code below will
// simply add both sets of reflection sections, with the retained
// ones added first.
//
// See also https://sourceware.org/bugzilla/show_bug.cgi?id=31415.
auto findELFSectionByName =
[&](llvm::StringRef Name, bool Retained) -> std::pair<RemoteRef<void>, uint64_t> {
if (Error)
return {nullptr, 0};
// Now for all the sections, find their name.
for (const typename T::Section *Hdr : SecHdrVec) {
// Skip unused headers
if (Hdr->sh_type == llvm::ELF::SHT_NULL)
continue;
uint32_t Offset = Hdr->sh_name;
const char *Start = (const char *)StrTab + Offset;
uint64_t StringSize = strnlen(Start, StrTabSize - Offset);
if (StringSize > StrTabSize - Offset) {
Error = true;
break;
}
std::string SecName(Start, StringSize);
if (SecName != Name)
continue;
if (Retained != bool(Hdr->sh_flags & llvm::ELF::SHF_GNU_RETAIN))
continue;
RemoteAddress SecStart =
RemoteAddress(ImageStart.getAddressData() + Hdr->sh_addr);
auto SecSize = Hdr->sh_size;
MemoryReader::ReadBytesResult SecBuf;
if (FileBuffer.has_value()) {
// sh_offset gives us the offset to the section in the file,
// while sh_addr gives us the offset in the process.
auto Offset = Hdr->sh_offset;
if (FileBuffer->allocatedSize() < Offset + SecSize) {
Error = true;
break;
}
auto *Buf = malloc(SecSize);
SecBuf = MemoryReader::ReadBytesResult(
Buf, [](const void *ptr) { free(const_cast<void *>(ptr)); });
memcpy((void *)Buf,
(const void *)((uint64_t)FileBuffer->base() + Offset),
SecSize);
} else {
SecBuf = this->getReader().readBytes(SecStart, SecSize);
}
if (!SecBuf)
return {nullptr, 0};
auto SecContents =
RemoteRef<void>(SecStart.getAddressData(), SecBuf.get());
savedBuffers.push_back(std::move(SecBuf));
return {SecContents, SecSize};
}
return {nullptr, 0};
};
SwiftObjectFileFormatELF ObjectFileFormat;
auto FieldMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::fieldmd), true);
auto AssocTySec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::assocty), true);
auto BuiltinTySec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::builtin), true);
auto CaptureSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::capture), true);
auto TypeRefMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::typeref), true);
auto ReflStrMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::reflstr), true);
auto ConformMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::conform), true);
auto MPEnumMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::mpenum), true);
if (Error)
return {};
std::optional<uint32_t> result = {};
// We succeed if at least one of the sections is present in the
// ELF executable.
if (FieldMdSec.first || AssocTySec.first || BuiltinTySec.first ||
CaptureSec.first || TypeRefMdSec.first || ReflStrMdSec.first ||
ConformMdSec.first || MPEnumMdSec.first) {
ReflectionInfo info = {{FieldMdSec.first, FieldMdSec.second},
{AssocTySec.first, AssocTySec.second},
{BuiltinTySec.first, BuiltinTySec.second},
{CaptureSec.first, CaptureSec.second},
{TypeRefMdSec.first, TypeRefMdSec.second},
{ReflStrMdSec.first, ReflStrMdSec.second},
{ConformMdSec.first, ConformMdSec.second},
{MPEnumMdSec.first, MPEnumMdSec.second},
PotentialModuleNames};
result = this->addReflectionInfo(info);
}
// Also check for the non-retained versions of the sections; we'll
// only return a single reflection info ID if both are found (and it'll
// be the one for the retained sections if we have them), but we'll
// still add all the reflection information.
FieldMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::fieldmd), false);
AssocTySec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::assocty), false);
BuiltinTySec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::builtin), false);
CaptureSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::capture), false);
TypeRefMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::typeref), false);
ReflStrMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::reflstr), false);
ConformMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::conform), false);
MPEnumMdSec = findELFSectionByName(
ObjectFileFormat.getSectionName(ReflectionSectionKind::mpenum), false);
if (Error)
return {};
if (FieldMdSec.first || AssocTySec.first || BuiltinTySec.first ||
CaptureSec.first || TypeRefMdSec.first || ReflStrMdSec.first ||
ConformMdSec.first || MPEnumMdSec.first) {
ReflectionInfo info = {{FieldMdSec.first, FieldMdSec.second},
{AssocTySec.first, AssocTySec.second},
{BuiltinTySec.first, BuiltinTySec.second},
{CaptureSec.first, CaptureSec.second},
{TypeRefMdSec.first, TypeRefMdSec.second},
{ReflStrMdSec.first, ReflStrMdSec.second},
{ConformMdSec.first, ConformMdSec.second},
{MPEnumMdSec.first, MPEnumMdSec.second},
PotentialModuleNames};
auto rid = this->addReflectionInfo(info);
if (!result)
result = rid;
}
return result;
}
/// Parses metadata information from an ELF image. Because the Section
/// Header Table maybe be missing (for example, when reading from a
/// process) this method optionally receives a buffer with the contents
/// of the image's file, from where it will the necessary information.
///
///
/// \param[in] ImageStart
/// A remote address pointing to the start of the image in the running
/// process.
///
/// \param[in] FileBuffer
/// A buffer which contains the contents of the image's file
/// in disk. If missing, all the information will be read using the
/// instance's memory reader.
///
/// \return
/// \b The newly added reflection info ID if successful,
/// \b std::nullopt otherwise.
std::optional<uint32_t>
readELF(RemoteAddress ImageStart,
std::optional<llvm::sys::MemoryBlock> FileBuffer,
llvm::SmallVector<llvm::StringRef, 1> PotentialModuleNames = {}) {
auto Buf =
this->getReader().readBytes(ImageStart, sizeof(llvm::ELF::Elf64_Ehdr));
if (!Buf)
return std::nullopt;
// Read the header.
auto Hdr = reinterpret_cast<const llvm::ELF::Elf64_Ehdr *>(Buf.get());
if (!Hdr->checkMagic())
return std::nullopt;
// Check if we have a ELFCLASS32 or ELFCLASS64
unsigned char FileClass = Hdr->getFileClass();
if (FileClass == llvm::ELF::ELFCLASS64) {
return readELFSections<ELFTraits<llvm::ELF::ELFCLASS64>>(
ImageStart, FileBuffer, PotentialModuleNames);
} else if (FileClass == llvm::ELF::ELFCLASS32) {
return readELFSections<ELFTraits<llvm::ELF::ELFCLASS32>>(
ImageStart, FileBuffer, PotentialModuleNames);
} else {
return std::nullopt;
}
}
/// On success returns the ID of the newly registered Reflection Info.
std::optional<uint32_t>
addImage(RemoteAddress ImageStart,
llvm::SmallVector<llvm::StringRef, 1> PotentialModuleNames = {}) {
// Read the first few bytes to look for a magic header.
auto Magic = this->getReader().readBytes(ImageStart, sizeof(uint32_t));
if (!Magic)
return {};
uint32_t MagicWord;
memcpy(&MagicWord, Magic.get(), sizeof(MagicWord));
// 32- and 64-bit Mach-O.
if (MagicWord == llvm::MachO::MH_MAGIC) {
return readMachOSections<MachOTraits<4>>(ImageStart, PotentialModuleNames);
}
if (MagicWord == llvm::MachO::MH_MAGIC_64) {
return readMachOSections<MachOTraits<8>>(ImageStart, PotentialModuleNames);
}
// PE. (This just checks for the DOS header; `readPECOFF` will further
// validate the existence of the PE header.)
auto MagicBytes = (const char*)Magic.get();
if (MagicBytes[0] == 'M' && MagicBytes[1] == 'Z') {
return readPECOFF(ImageStart, PotentialModuleNames);
}
// ELF.
if (MagicBytes[0] == llvm::ELF::ElfMagic[0]
&& MagicBytes[1] == llvm::ELF::ElfMagic[1]
&& MagicBytes[2] == llvm::ELF::ElfMagic[2]
&& MagicBytes[3] == llvm::ELF::ElfMagic[3]) {
return readELF(ImageStart, std::optional<llvm::sys::MemoryBlock>(),
PotentialModuleNames);
}
// We don't recognize the format.
return std::nullopt;
}
/// Adds an image using the FindSection closure to find the swift metadata
/// sections. \param FindSection
/// Closure that finds sections by name. ReflectionContext is in charge
/// of freeing the memory buffer in the RemoteRef return value.
/// process.
/// \return
/// \b The newly added reflection info ID if successful,
/// \b std::nullopt otherwise.
std::optional<uint32_t>
addImage(llvm::function_ref<
std::pair<RemoteRef<void>, uint64_t>(ReflectionSectionKind)>
FindSection,
llvm::SmallVector<llvm::StringRef, 1> PotentialModuleNames = {}) {
auto Sections = {
ReflectionSectionKind::fieldmd, ReflectionSectionKind::assocty,
ReflectionSectionKind::builtin, ReflectionSectionKind::capture,
ReflectionSectionKind::typeref, ReflectionSectionKind::reflstr,
ReflectionSectionKind::conform, ReflectionSectionKind::mpenum};
llvm::SmallVector<std::pair<RemoteRef<void>, uint64_t>, 6> Pairs;
for (auto Section : Sections) {
Pairs.push_back(FindSection(Section));
auto LatestRemoteRef = std::get<RemoteRef<void>>(Pairs.back());
if (LatestRemoteRef) {
MemoryReader::ReadBytesResult Buffer(
LatestRemoteRef.getLocalBuffer(),
[](const void *Ptr) { free(const_cast<void *>(Ptr)); });
savedBuffers.push_back(std::move(Buffer));
}
}
// If we didn't find any sections, return.
if (llvm::all_of(Pairs, [](const auto &Pair) { return !Pair.first; }))
return {};
ReflectionInfo Info = {{Pairs[0].first, Pairs[0].second},
{Pairs[1].first, Pairs[1].second},
{Pairs[2].first, Pairs[2].second},
{Pairs[3].first, Pairs[3].second},
{Pairs[4].first, Pairs[4].second},
{Pairs[5].first, Pairs[5].second},
{Pairs[6].first, Pairs[6].second},
{Pairs[7].first, Pairs[7].second},
PotentialModuleNames};
return addReflectionInfo(Info);
}
/// Adds the reflection info and returns it's id.
uint32_t addReflectionInfo(ReflectionInfo I) {
return getBuilder().addReflectionInfo(I);
}
bool ownsObject(RemoteAddress ObjectAddress) {
auto MetadataAddress = readMetadataFromInstance(ObjectAddress.getAddressData());
if (!MetadataAddress)
return true;
return ownsAddress(RemoteAddress(*MetadataAddress));
}
/// Returns true if the address falls within the given address ranges.
bool ownsAddress(
RemoteAddress Address,
const std::vector<std::tuple<RemoteAddress, RemoteAddress>> &ranges) {
for (auto Range : ranges) {
auto Start = std::get<0>(Range);
auto End = std::get<1>(Range);
if (Start.getAddressData() <= Address.getAddressData()
&& Address.getAddressData() < End.getAddressData())
return true;
}
return false;
}
/// Returns true if the address is known to the reflection context.
/// Currently, that means that either the address falls within the text or
/// data segments of a registered image, or optionally, the address points
/// to a Metadata whose type context descriptor is within the text segment
/// of a registered image.
bool ownsAddress(RemoteAddress Address, bool checkMetadataDescriptor = true) {
if (ownsAddress(Address, textRanges))
return true;
if (ownsAddress(Address, dataRanges))
return true;
if (checkMetadataDescriptor) {
// This is usually called on a Metadata address which might have been
// on the heap. Try reading it and looking up its type context descriptor
// instead.
if (auto Metadata = readMetadata(Address.getAddressData()))
if (auto DescriptorAddress =
super::readAddressOfNominalTypeDescriptor(Metadata, true))
if (ownsAddress(RemoteAddress(DescriptorAddress), textRanges))
return true;
}
return false;
}
/// Returns the address of the nominal type descriptor given a metadata
/// address.
StoredPointer nominalTypeDescriptorFromMetadata(StoredPointer MetadataAddress) {
auto Metadata = readMetadata(MetadataAddress);
if (!Metadata)
return 0;
return super::readAddressOfNominalTypeDescriptor(Metadata, true);
}
/// Return a description of the layout of a class instance with the given
/// metadata as its isa pointer.
const RecordTypeInfo *
getMetadataTypeInfo(StoredPointer MetadataAddress,
remote::TypeInfoProvider *ExternalTypeInfo) {
// See if we cached the layout already
auto ExternalTypeInfoId = ExternalTypeInfo ? ExternalTypeInfo->getId() : 0;
auto found = Cache.find({MetadataAddress, ExternalTypeInfoId});
if (found != Cache.end())
return found->second;
auto &TC = getBuilder().getTypeConverter();
const RecordTypeInfo *TI = nullptr;
auto TR = readTypeFromMetadata(MetadataAddress);
auto kind = this->readKindFromMetadata(MetadataAddress);
if (TR != nullptr && kind) {
switch (*kind) {
case MetadataKind::Class: {
// Figure out where the stored properties of this class begin
// by looking at the size of the superclass
auto start =
this->readInstanceStartFromClassMetadata(MetadataAddress);
// Perform layout
if (start)
TI = TC.getClassInstanceTypeInfo(TR, *start, ExternalTypeInfo);
break;
}
default:
break;
}
}
// Cache the result for future lookups
Cache[{MetadataAddress, ExternalTypeInfoId}] = TI;
return TI;
}
/// Return a description of the layout of a class instance with the given
/// metadata as its isa pointer.
const TypeInfo *
getInstanceTypeInfo(StoredPointer ObjectAddress,
remote::TypeInfoProvider *ExternalTypeInfo) {
auto MetadataAddress = readMetadataFromInstance(ObjectAddress);
if (!MetadataAddress)
return nullptr;
auto kind = this->readKindFromMetadata(*MetadataAddress);
if (!kind)
return nullptr;
switch (*kind) {
case MetadataKind::Class:
return getMetadataTypeInfo(*MetadataAddress, ExternalTypeInfo);
case MetadataKind::HeapLocalVariable: {
auto CDAddr = this->readCaptureDescriptorFromMetadata(*MetadataAddress);
if (!CDAddr)
return nullptr;
if (!CDAddr->isResolved())
return nullptr;
// FIXME: Non-generic SIL boxes also use the HeapLocalVariable metadata
// kind, but with a null capture descriptor right now (see
// FixedBoxTypeInfoBase::allocate).
//
// Non-generic SIL boxes share metadata among types with compatible
// layout, but we need some way to get an outgoing pointer map for them.
auto CD = getBuilder().getCaptureDescriptor(
CDAddr->getResolvedAddress().getAddressData());
if (CD == nullptr)
return nullptr;
auto Info = getBuilder().getClosureContextInfo(CD);
return getClosureContextInfo(ObjectAddress, Info, ExternalTypeInfo);
}
case MetadataKind::HeapGenericLocalVariable: {
// Generic SIL @box type - there is always an instantiated metadata
// pointer for the boxed type.
if (auto Meta = readMetadata(*MetadataAddress)) {
if (auto *GenericHeapMeta = cast<TargetGenericBoxHeapMetadata<Runtime>>(
Meta.getLocalBuffer())) {
auto MetadataAddress = GenericHeapMeta->BoxedType;
auto TR = readTypeFromMetadata(MetadataAddress);
return getTypeInfo(TR, ExternalTypeInfo);
}
}
return nullptr;
}
case MetadataKind::ErrorObject:
// Error boxed existential on non-Objective-C runtime target
return nullptr;
default:
return nullptr;
}
}
std::optional<std::pair<const TypeRef *, RemoteAddress>>
getDynamicTypeAndAddressClassExistential(RemoteAddress ExistentialAddress) {
auto PointerValue =
readResolvedPointerValue(ExistentialAddress.getAddressData());
if (!PointerValue)
return {};
auto Result = readMetadataFromInstance(*PointerValue);
if (!Result)
return {};
auto TypeResult = readTypeFromMetadata(Result.value());
if (!TypeResult)
return {};
return {{std::move(TypeResult), RemoteAddress(*PointerValue)}};
}
std::optional<std::pair<const TypeRef *, RemoteAddress>>
getDynamicTypeAndAddressErrorExistential(RemoteAddress ExistentialAddress,
bool *IsBridgedError = nullptr) {
auto Result = readMetadataAndValueErrorExistential(ExistentialAddress);
if (!Result)
return {};
auto TypeResult =
readTypeFromMetadata(Result->MetadataAddress.getAddressData());
if (!TypeResult)
return {};
if (IsBridgedError)
*IsBridgedError = Result->IsBridgedError;
return {{TypeResult, Result->PayloadAddress}};
}
std::optional<std::pair<const TypeRef *, RemoteAddress>>
getDynamicTypeAndAddressOpaqueExistential(RemoteAddress ExistentialAddress) {
auto Result = readMetadataAndValueOpaqueExistential(ExistentialAddress);
if (!Result)
return {};
auto TypeResult =
readTypeFromMetadata(Result->MetadataAddress.getAddressData());
if (!TypeResult)
return {};
return {{std::move(TypeResult), Result->PayloadAddress}};
}
bool projectExistential(RemoteAddress ExistentialAddress,
const TypeRef *ExistentialTR,
const TypeRef **OutInstanceTR,
RemoteAddress *OutInstanceAddress,
remote::TypeInfoProvider *ExternalTypeInfo) {
if (ExistentialTR == nullptr)
return false;
auto ExistentialTI = getTypeInfo(ExistentialTR, ExternalTypeInfo);
if (ExistentialTI == nullptr)
return false;
auto ExistentialRecordTI = dyn_cast<const RecordTypeInfo>(ExistentialTI);
if (ExistentialRecordTI == nullptr)
return false;
switch (ExistentialRecordTI->getRecordKind()) {
// Class existentials have trivial layout.
// It is itself the pointer to the instance followed by the witness tables.
case RecordKind::ClassExistential:
// This is just AnyObject.
*OutInstanceTR = ExistentialRecordTI->getFields()[0].TR;
*OutInstanceAddress = ExistentialAddress;
return true;
case RecordKind::OpaqueExistential: {
auto OptMetaAndValue =
readMetadataAndValueOpaqueExistential(ExistentialAddress);
if (!OptMetaAndValue)
return false;
auto InstanceTR = readTypeFromMetadata(
OptMetaAndValue->MetadataAddress.getAddressData());
if (!InstanceTR)
return false;
*OutInstanceTR = InstanceTR;
*OutInstanceAddress = OptMetaAndValue->PayloadAddress;
return true;
}
case RecordKind::ErrorExistential: {
auto OptMetaAndValue =
readMetadataAndValueErrorExistential(ExistentialAddress);
if (!OptMetaAndValue)
return false;
// FIXME: Check third value, 'IsBridgedError'
auto InstanceTR = readTypeFromMetadata(
OptMetaAndValue->MetadataAddress.getAddressData());
if (!InstanceTR)
return false;
*OutInstanceTR = InstanceTR;
*OutInstanceAddress = OptMetaAndValue->PayloadAddress;
return true;
}
default:
return false;
}
}
/// A version of `projectExistential` tailored for LLDB.
/// This version dereferences the resulting TypeRef if it wraps
/// a class type, it also dereferences the input `ExistentialAddress` before
/// attempting to find its dynamic type and address when dealing with error
/// existentials.
std::optional<std::pair<const TypeRef *, RemoteAddress>>
projectExistentialAndUnwrapClass(RemoteAddress ExistentialAddress,
const TypeRef &ExistentialTR) {
auto IsClass = [](const TypeRef *TypeResult) {
// When the existential wraps a class type, LLDB expects that the
// address returned is the class instance itself and not the address
// of the reference.
bool IsClass = TypeResult->getKind() == TypeRefKind::ForeignClass ||
TypeResult->getKind() == TypeRefKind::ObjCClass;
if (auto *nominal = llvm::dyn_cast<NominalTypeRef>(TypeResult))
IsClass = nominal->isClass();
else if (auto *boundGeneric =
llvm::dyn_cast<BoundGenericTypeRef>(TypeResult))
IsClass = boundGeneric->isClass();
return IsClass;
};
auto DereferenceAndSet = [&](RemoteAddress &Address) {
auto PointerValue = readResolvedPointerValue(Address.getAddressData());
if (!PointerValue)
return false;
Address = RemoteAddress(*PointerValue);
return true;
};
auto ExistentialRecordTI = getRecordTypeInfo(&ExistentialTR, nullptr);
if (!ExistentialRecordTI)
return {};
switch (ExistentialRecordTI->getRecordKind()) {
case RecordKind::ClassExistential:
return getDynamicTypeAndAddressClassExistential(ExistentialAddress);
case RecordKind::ErrorExistential: {
// LLDB stores the address of the error pointer.
if (!DereferenceAndSet(ExistentialAddress))
return {};
bool IsBridgedError = false;
auto Pair = getDynamicTypeAndAddressErrorExistential(ExistentialAddress,
&IsBridgedError);
if (!Pair)
return {};
if (!IsBridgedError && IsClass(std::get<const TypeRef *>(*Pair)))
if (!DereferenceAndSet(std::get<RemoteAddress>(*Pair)))
return {};
return Pair;
}
case RecordKind::OpaqueExistential: {
auto Pair = getDynamicTypeAndAddressOpaqueExistential(ExistentialAddress);
if (!Pair)
return {};
if (IsClass(std::get<const TypeRef *>(*Pair)))
if (!DereferenceAndSet(std::get<RemoteAddress>(*Pair)))
return {};
return Pair;
}
default:
return {};
}
}
/// Projects the value of an enum.
///
/// Takes the address and typeref for an enum and determines the
/// index of the currently-selected case within the enum.
/// You can use this index with `swift_reflection_childOfTypeRef`
/// to get detailed information about the specific case.
///
/// Returns true if the enum case could be successfully determined. In
/// particular, note that this code may return false for valid in-memory data
/// if the compiler used a strategy we do not yet understand.
bool projectEnumValue(RemoteAddress EnumAddress, const TypeRef *EnumTR,
int *CaseIndex,
remote::TypeInfoProvider *ExternalTypeInfo) {
// Get the TypeInfo and soundness-check it
if (EnumTR == nullptr) {
return false;
}
auto TI = getTypeInfo(EnumTR, ExternalTypeInfo);
if (TI == nullptr) {
return false;
}
auto EnumTI = dyn_cast<const EnumTypeInfo>(TI);
if (EnumTI == nullptr){
return false;
}
return EnumTI->projectEnumValue(getReader(), EnumAddress, CaseIndex);
}
/// Return a description of the layout of a value with the given type.
const TypeInfo *getTypeInfo(const TypeRef *TR,
remote::TypeInfoProvider *ExternalTypeInfo) {
if (TR == nullptr) {
return nullptr;
} else {
return getBuilder().getTypeConverter().getTypeInfo(TR, ExternalTypeInfo);
}
}
llvm::Expected<const TypeInfo &>
getTypeInfo(const TypeRef &TR, remote::TypeInfoProvider *ExternalTypeInfo) {
auto &TC = getBuilder().getTypeConverter();
const TypeInfo *TI = TC.getTypeInfo(&TR, ExternalTypeInfo);
if (!TI)
return llvm::createStringError(TC.takeLastError());
return *TI;
}
/// Given a typeref, attempt to calculate the unaligned start of this
/// instance's fields. For example, for a type without a superclass, the start
/// of the instance fields would after the word for the isa pointer and the
/// word for the refcount field. For a subclass the start would be the after
/// the superclass's fields. For a version of this function that performs the
/// same job but starting out with an instance pointer check
/// MetadataReader::readInstanceStartFromClassMetadata.
std::optional<unsigned>
computeUnalignedFieldStartOffset(const TypeRef *TR,
remote::TypeInfoProvider *ExternalTypeInfo) {
size_t isaAndRetainCountSize = sizeof(StoredSize) + sizeof(long long);
const TypeRef *superclass = getBuilder().lookupSuperclass(TR);
if (!superclass)
// If there is no superclass the stat of the instance's field is right
// after the isa and retain fields.
return isaAndRetainCountSize;
// `ObjCClassTypeRef` instances represent classes in the ObjC module ("__C").
// These will never have Swift type metadata.
if (auto *objcSuper = dyn_cast<ObjCClassTypeRef>(superclass))
if (auto *superTI = ExternalTypeInfo->getTypeInfo(objcSuper->getName()))
return superTI->getSize();
auto superclassStart =
computeUnalignedFieldStartOffset(superclass, ExternalTypeInfo);
if (!superclassStart)
return std::nullopt;
auto *superTI = getBuilder().getTypeConverter().getClassInstanceTypeInfo(
superclass, *superclassStart, ExternalTypeInfo);
if (!superTI)
return std::nullopt;
// The start of the subclass's fields is right after the super class's ones.
size_t start = superTI->getSize();
return start;
}
const RecordTypeInfo *
getRecordTypeInfo(const TypeRef *TR,
remote::TypeInfoProvider *ExternalTypeInfo) {
auto *TypeInfo = getTypeInfo(TR, ExternalTypeInfo);
return dyn_cast_or_null<const RecordTypeInfo>(TypeInfo);
}
bool metadataIsActor(StoredPointer MetadataAddress) {
auto Metadata = readMetadata(MetadataAddress);
if (!Metadata)
return false;
// Only classes can be actors.
if (Metadata->getKind() != MetadataKind::Class)
return false;
auto DescriptorAddress =
super::readAddressOfNominalTypeDescriptor(Metadata);
if (!DescriptorAddress)
return false;
if (!ownsAddress(RemoteAddress(DescriptorAddress), textRanges))
return false;
auto DescriptorBytes =
getReader().readBytes(RemoteAddress(DescriptorAddress),
sizeof(TargetTypeContextDescriptor<Runtime>));
if (!DescriptorBytes)
return false;
auto Descriptor =
reinterpret_cast<const TargetTypeContextDescriptor<Runtime> *>(
DescriptorBytes.get());
return Descriptor->getTypeContextDescriptorFlags().class_isActor();
}
/// Iterate the protocol conformance cache tree rooted at NodePtr, calling
/// Call with the type and protocol in each node.
void iterateConformanceTree(StoredPointer NodePtr,
std::function<void(StoredPointer Type, StoredPointer Proto)> Call) {
if (!NodePtr)
return;
auto NodeBytes = getReader().readBytes(RemoteAddress(NodePtr),
sizeof(ConformanceNode<Runtime>));
if (!NodeBytes)
return;
auto NodeData =
reinterpret_cast<const ConformanceNode<Runtime> *>(NodeBytes.get());
Call(NodeData->Type, NodeData->Proto);
iterateConformanceTree(NodeData->Left, Call);
iterateConformanceTree(NodeData->Right, Call);
}
void IterateConformanceTable(
RemoteAddress ConformancesPtr,
std::function<void(StoredPointer Type, StoredPointer Proto)> Call) {
auto MapBytes = getReader().readBytes(RemoteAddress(ConformancesPtr),
sizeof(ConcurrentHashMap<Runtime>));
if (!MapBytes)
return;
auto MapData =
reinterpret_cast<const ConcurrentHashMap<Runtime> *>(MapBytes.get());
auto Count = MapData->ElementCount;
auto Size = Count * sizeof(ConformanceCacheEntry<Runtime>) + sizeof(StoredPointer);
auto ElementsBytes =
getReader().readBytes(RemoteAddress(MapData->Elements), Size);
if (!ElementsBytes)
return;
auto ElementsData =
reinterpret_cast<const ConformanceCacheEntry<Runtime> *>(
reinterpret_cast<const char *>(ElementsBytes.get()) + sizeof(StoredPointer));
for (StoredSize i = 0; i < Count; i++) {
auto &Element = ElementsData[i];
Call(Element.Type, Element.Proto);
}
}
/// Iterate the protocol conformance cache in the target process, calling Call
/// with the type and protocol of each conformance. Returns None on success,
/// and a string describing the error on failure.
std::optional<std::string> iterateConformances(
std::function<void(StoredPointer Type, StoredPointer Proto)> Call) {
std::string ConformancesPointerName =
"_swift_debug_protocolConformanceStatePointer";
auto ConformancesAddrAddr =
getReader().getSymbolAddress(ConformancesPointerName);
if (!ConformancesAddrAddr)
return "unable to look up debug variable " + ConformancesPointerName;
auto ConformancesAddr =
getReader().readPointer(ConformancesAddrAddr, sizeof(StoredPointer));
if (!ConformancesAddr)
return "unable to read value of " + ConformancesPointerName;
IterateConformanceTable(ConformancesAddr->getResolvedAddress(), Call);
return std::nullopt;
}
/// Fetch the metadata pointer from a metadata allocation, or 0 if this
/// allocation's tag is not handled or an error occurred.
StoredPointer allocationMetadataPointer(
MetadataAllocation<Runtime> Allocation) {
if (Allocation.Tag == GenericMetadataCacheTag) {
auto AllocationBytes =
getReader().readBytes(RemoteAddress(Allocation.Ptr),
Allocation.Size);
if (!AllocationBytes)
return 0;
auto Entry =
reinterpret_cast<const GenericMetadataCacheEntry<StoredPointer> *>(
AllocationBytes.get());
return Entry->Value;
}
return 0;
}
/// Get the name of a metadata tag, if known.
std::optional<std::string> metadataAllocationTagName(int Tag) {
switch (Tag) {
#define TAG(name, value) \
case value: \
return std::string(#name);
#include "../../../stdlib/public/runtime/MetadataAllocatorTags.def"
default:
return std::nullopt;
}
}
std::optional<MetadataCacheNode<Runtime>>
metadataAllocationCacheNode(MetadataAllocation<Runtime> Allocation) {
switch (Allocation.Tag) {
case BoxesTag:
case ObjCClassWrappersTag:
case FunctionTypesTag:
case MetatypeTypesTag:
case ExistentialMetatypeValueWitnessTablesTag:
case ExistentialMetatypesTag:
case ExistentialTypesTag:
case ExtendedExistentialTypesTag:
case ExtendedExistentialTypeShapesTag:
case OpaqueExistentialValueWitnessTablesTag:
case ClassExistentialValueWitnessTablesTag:
case ForeignWitnessTablesTag:
case TupleCacheTag:
case GenericMetadataCacheTag:
case ForeignMetadataCacheTag:
case GenericWitnessTableCacheTag: {
auto NodeBytes = getReader().readBytes(
RemoteAddress(Allocation.Ptr), sizeof(MetadataCacheNode<Runtime>));
if (!NodeBytes)
return std::nullopt;
auto Node =
reinterpret_cast<const MetadataCacheNode<Runtime> *>(NodeBytes.get());
return *Node;
}
default:
return std::nullopt;
}
}
/// Iterate the metadata allocations in the target process, calling Call with
/// each allocation found. Returns None on success, and a string describing
/// the error on failure.
std::optional<std::string> iterateMetadataAllocations(
std::function<void(MetadataAllocation<Runtime>)> Call) {
std::string IterationEnabledName =
"_swift_debug_metadataAllocationIterationEnabled";
std::string AllocationPoolPointerName =
"_swift_debug_allocationPoolPointer";
auto IterationEnabledAddr =
getReader().getSymbolAddress(IterationEnabledName);
if (!IterationEnabledAddr)
return "unable to look up debug variable " + IterationEnabledName;
char IterationEnabled;
if (!getReader().readInteger(IterationEnabledAddr, &IterationEnabled))
return "failed to read value of " + IterationEnabledName;
if (!IterationEnabled)
return std::string("remote process does not have metadata allocation "
"iteration enabled");
auto AllocationPoolAddrAddr =
getReader().getSymbolAddress(AllocationPoolPointerName);
if (!AllocationPoolAddrAddr)
return "unable to look up debug variable " + AllocationPoolPointerName;
auto AllocationPoolAddr =
getReader().readPointer(AllocationPoolAddrAddr, sizeof(StoredPointer));
if (!AllocationPoolAddr)
return "failed to read value of " + AllocationPoolPointerName;
struct PoolRange {
StoredPointer Begin;
StoredSize Remaining;
};
struct PoolTrailer {
StoredPointer PrevTrailer;
StoredSize PoolSize;
};
struct alignas(StoredPointer) AllocationHeader {
uint16_t Size;
uint16_t Tag;
};
auto PoolBytes = getReader()
.readBytes(AllocationPoolAddr->getResolvedAddress(), sizeof(PoolRange));
if (!PoolBytes)
return std::string("failure reading allocation pool contents");
auto Pool = reinterpret_cast<const PoolRange *>(PoolBytes.get());
// Limit how many iterations of this loop we'll do, to avoid potential
// infinite loops when reading bad data. Limit to 1 million iterations. In
// normal operation, each pool allocation is 16kB, so that would be ~16GB of
// metadata which is far more than any normal program should have.
unsigned LoopCount = 0;
unsigned LoopLimit = 1000000;
auto TrailerPtr = Pool->Begin + Pool->Remaining;
while (TrailerPtr && LoopCount++ < LoopLimit) {
auto TrailerBytes = getReader()
.readBytes(RemoteAddress(TrailerPtr), sizeof(PoolTrailer));
if (!TrailerBytes)
break;
auto Trailer = reinterpret_cast<const PoolTrailer *>(TrailerBytes.get());
auto PoolStart = TrailerPtr - Trailer->PoolSize;
auto PoolBytes = getReader()
.readBytes(RemoteAddress(PoolStart), Trailer->PoolSize);
if (!PoolBytes)
break;
auto PoolPtr = (const char *)PoolBytes.get();
uintptr_t Offset = 0;
while (Offset < Trailer->PoolSize) {
auto AllocationPtr = PoolPtr + Offset;
auto Header = (const AllocationHeader *)AllocationPtr;
if (Header->Size == 0)
break;
auto RemoteAddr = PoolStart + Offset + sizeof(AllocationHeader);
MetadataAllocation<Runtime> Allocation;
Allocation.Tag = Header->Tag;
Allocation.Ptr = RemoteAddr;
Allocation.Size = Header->Size;
Call(Allocation);
Offset += sizeof(AllocationHeader) + Header->Size;
}
TrailerPtr = Trailer->PrevTrailer;
}
return std::nullopt;
}
std::optional<std::string> iterateMetadataAllocationBacktraces(
std::function<void(StoredPointer, uint32_t, const StoredPointer *)>
Call) {
std::string BacktraceListName =
"_swift_debug_metadataAllocationBacktraceList";
auto BacktraceListAddr = getReader().getSymbolAddress(BacktraceListName);
if (!BacktraceListAddr)
return "unable to look up debug variable " + BacktraceListName;
auto BacktraceListNextPtr =
getReader().readPointer(BacktraceListAddr, sizeof(StoredPointer));
if (!BacktraceListNextPtr)
return std::nullopt;
// Limit how many iterations of this loop we'll do, to avoid potential
// infinite loops when reading bad data. Limit to 1 billion iterations. In
// normal operation, a program shouldn't have anywhere near 1 billion
// metadata allocations.
unsigned LoopCount = 0;
unsigned LoopLimit = 1000000000;
auto BacktraceListNext = BacktraceListNextPtr->getResolvedAddress();
while (BacktraceListNext && LoopCount++ < LoopLimit) {
auto HeaderBytes = getReader().readBytes(
RemoteAddress(BacktraceListNext),
sizeof(MetadataAllocationBacktraceHeader<Runtime>));
if (!HeaderBytes) {
// FIXME: std::stringstream would be better, but LLVM's standard library
// introduces a vtable and we don't want that.
char result[128];
std::snprintf(result, sizeof(result),
"unable to read Next pointer %#" PRIx64,
BacktraceListNext.getAddressData());
return std::string(result);
}
auto HeaderPtr =
reinterpret_cast<const MetadataAllocationBacktraceHeader<Runtime> *>(
HeaderBytes.get());
auto BacktraceAddrPtr =
BacktraceListNext +
sizeof(MetadataAllocationBacktraceHeader<Runtime>);
auto BacktraceBytes =
getReader().readBytes(RemoteAddress(BacktraceAddrPtr),
HeaderPtr->Count * sizeof(StoredPointer));
auto BacktracePtr =
reinterpret_cast<const StoredPointer *>(BacktraceBytes.get());
Call(HeaderPtr->Allocation, HeaderPtr->Count, BacktracePtr);
BacktraceListNext = RemoteAddress(HeaderPtr->Next);
}
return std::nullopt;
}
std::pair<std::optional<std::string>, AsyncTaskSlabInfo>
asyncTaskSlabAllocations(StoredPointer SlabPtr) {
using StackAllocator = StackAllocator<Runtime>;
auto SlabBytes = getReader().readBytes(
RemoteAddress(SlabPtr), sizeof(typename StackAllocator::Slab));
auto Slab = reinterpret_cast<const typename StackAllocator::Slab *>(
SlabBytes.get());
if (!Slab)
return {std::string("failure reading slab"), {}};
// For now, we won't try to walk the allocations in the slab, we'll just
// provide the whole thing as one big chunk.
size_t HeaderSize =
llvm::alignTo(sizeof(*Slab), llvm::Align(MaximumAlignment));
AsyncTaskAllocationChunk AllocatedSpaceChunk;
AllocatedSpaceChunk.Start = SlabPtr + HeaderSize;
AllocatedSpaceChunk.Length = Slab->CurrentOffset;
AllocatedSpaceChunk.Kind = AsyncTaskAllocationChunk::ChunkKind::Unknown;
// Provide a second chunk just for the Next pointer, so the client knows
// that there's an allocation there.
AsyncTaskAllocationChunk NextPtrChunk;
NextPtrChunk.Start =
SlabPtr + offsetof(typename StackAllocator::Slab, Next);
NextPtrChunk.Length = sizeof(Slab->Next);
NextPtrChunk.Kind = AsyncTaskAllocationChunk::ChunkKind::RawPointer;
// Total slab size is the slab's capacity plus the header.
StoredPointer SlabSize = Slab->Capacity + HeaderSize;
return {std::nullopt,
{Slab->Next, SlabSize, {NextPtrChunk, AllocatedSpaceChunk}}};
}
std::pair<std::optional<std::string>, AsyncTaskInfo>
asyncTaskInfo(StoredPointer AsyncTaskPtr, unsigned ChildTaskLimit,
unsigned AsyncBacktraceLimit) {
loadTargetPointers();
if (supportsPriorityEscalation)
return asyncTaskInfo<
AsyncTask<Runtime, ActiveTaskStatusWithEscalation<Runtime>>>(
AsyncTaskPtr, ChildTaskLimit, AsyncBacktraceLimit);
else
return asyncTaskInfo<
AsyncTask<Runtime, ActiveTaskStatusWithoutEscalation<Runtime>>>(
AsyncTaskPtr, ChildTaskLimit, AsyncBacktraceLimit);
}
std::pair<std::optional<std::string>, ActorInfo>
actorInfo(StoredPointer ActorPtr) {
if (supportsPriorityEscalation)
return actorInfo<
DefaultActorImpl<Runtime, ActiveActorStatusWithEscalation<Runtime>>>(
ActorPtr);
else
return actorInfo<DefaultActorImpl<
Runtime, ActiveActorStatusWithoutEscalation<Runtime>>>(ActorPtr);
}
StoredPointer nextJob(StoredPointer JobPtr) {
using Job = Job<Runtime>;
auto JobBytes = getReader().readBytes(RemoteAddress(JobPtr), sizeof(Job));
auto *JobObj = reinterpret_cast<const Job *>(JobBytes.get());
if (!JobObj)
return 0;
// This is a JobRef which stores flags in the low bits.
return JobObj->SchedulerPrivate[0] & ~StoredPointer(0x3);
}
private:
void setIsRunning(
AsyncTaskInfo &Info,
const AsyncTask<Runtime, ActiveTaskStatusWithEscalation<Runtime>> *Task) {
#if HAS_DISPATCH_LOCK_IS_LOCKED
Info.HasIsRunning = true;
Info.IsRunning =
dispatch_lock_is_locked(Task->PrivateStorage.Status.ExecutionLock[0]);
#else
// The target runtime was built with priority escalation but we don't have
// the swift_concurrency_private.h header needed to decode the running
// status in the task. Set HasIsRunning to false to indicate that we can't
// tell whether or not the task is running.
Info.HasIsRunning = false;
#endif
}
void setIsRunning(
AsyncTaskInfo &Info,
const AsyncTask<Runtime, ActiveTaskStatusWithoutEscalation<Runtime>>
*Task) {
Info.HasIsRunning = true;
Info.IsRunning =
Task->PrivateStorage.Status.Flags[0] & ActiveTaskStatusFlags::IsRunning;
}
std::pair<bool, uint32_t> getThreadPort(
const AsyncTask<Runtime, ActiveTaskStatusWithEscalation<Runtime>> *Task) {
#if HAS_DISPATCH_LOCK_IS_LOCKED
return {true,
dispatch_lock_owner(Task->PrivateStorage.Status.ExecutionLock[0])};
#else
// The target runtime was built with priority escalation but we don't have
// the swift_concurrency_private.h header needed to decode the lock.
return {false, 0};
#endif
}
std::pair<bool, uint32_t> getThreadPort(
const AsyncTask<Runtime, ActiveTaskStatusWithoutEscalation<Runtime>>
*Task) {
// Tasks without escalation have no thread port to query.
return {false, 0};
}
std::pair<bool, uint32_t> getThreadPort(
const DefaultActorImpl<Runtime, ActiveActorStatusWithEscalation<Runtime>>
*Actor) {
#if HAS_DISPATCH_LOCK_IS_LOCKED
return {true, dispatch_lock_owner(Actor->Status.DrainLock[0])};
#else
// The target runtime was built with priority escalation but we don't have
// the swift_concurrency_private.h header needed to decode the lock.
return {false, 0};
#endif
}
std::pair<bool, uint32_t>
getThreadPort(const DefaultActorImpl<
Runtime, ActiveActorStatusWithoutEscalation<Runtime>> *Actor) {
// Actors without escalation have no thread port to query.
return {false, 0};
}
template <typename AsyncTaskType>
std::pair<std::optional<std::string>, AsyncTaskInfo>
asyncTaskInfo(StoredPointer AsyncTaskPtr, unsigned ChildTaskLimit,
unsigned AsyncBacktraceLimit) {
auto AsyncTaskObj = readObj<AsyncTaskType>(AsyncTaskPtr);
if (!AsyncTaskObj)
return {std::string("failure reading async task"), {}};
AsyncTaskInfo Info{};
swift::JobFlags JobFlags(AsyncTaskObj->Flags);
Info.Kind = static_cast<unsigned>(JobFlags.getKind());
Info.EnqueuePriority = static_cast<unsigned>(JobFlags.getPriority());
Info.IsChildTask = JobFlags.task_isChildTask();
Info.IsFuture = JobFlags.task_isFuture();
Info.IsGroupChildTask = JobFlags.task_isGroupChildTask();
Info.IsAsyncLetTask = JobFlags.task_isAsyncLetTask();
uint32_t TaskStatusFlags = AsyncTaskObj->PrivateStorage.Status.Flags[0];
Info.IsCancelled = TaskStatusFlags & ActiveTaskStatusFlags::IsCancelled;
Info.IsStatusRecordLocked =
TaskStatusFlags & ActiveTaskStatusFlags::IsStatusRecordLocked;
Info.IsEscalated = TaskStatusFlags & ActiveTaskStatusFlags::IsEscalated;
Info.IsEnqueued = TaskStatusFlags & ActiveTaskStatusFlags::IsEnqueued;
Info.IsComplete = TaskStatusFlags & ActiveTaskStatusFlags::IsComplete;
setIsRunning(Info, AsyncTaskObj.get());
std::tie(Info.HasThreadPort, Info.ThreadPort) =
getThreadPort(AsyncTaskObj.get());
Info.Id =
AsyncTaskObj->Id | ((uint64_t)AsyncTaskObj->PrivateStorage.Id << 32);
Info.AllocatorSlabPtr = AsyncTaskObj->PrivateStorage.Allocator.FirstSlab;
Info.RunJob = getRunJob(AsyncTaskObj.get());
// Find all child tasks.
unsigned ChildTaskLoopCount = 0;
auto RecordPtr = AsyncTaskObj->PrivateStorage.Status.Record;
while (RecordPtr && ChildTaskLoopCount++ < ChildTaskLimit) {
auto RecordObj = readObj<TaskStatusRecord<Runtime>>(RecordPtr);
if (!RecordObj)
break;
// This cuts off high bits if our size_t doesn't match the target's. We
// only read the Kind bits which are at the bottom, so that's OK here.
// Beware of this when reading anything else.
TaskStatusRecordFlags Flags{RecordObj->Flags};
auto Kind = Flags.getKind();
StoredPointer ChildTask = 0;
if (Kind == TaskStatusRecordKind::ChildTask) {
auto RecordObj = readObj<ChildTaskStatusRecord<Runtime>>(RecordPtr);
if (RecordObj)
ChildTask = RecordObj->FirstChild;
} else if (Kind == TaskStatusRecordKind::TaskGroup) {
auto RecordObj = readObj<TaskGroupTaskStatusRecord<Runtime>>(RecordPtr);
if (RecordObj)
ChildTask = RecordObj->FirstChild;
}
while (ChildTask && ChildTaskLoopCount++ < ChildTaskLimit) {
// Read the child task.
auto ChildTaskObj = readObj<AsyncTaskType>(ChildTask);
if (!ChildTaskObj)
return {std::string("found unreadable child task pointer"), Info};
Info.ChildTasks.push_back(ChildTask);
swift::JobFlags ChildJobFlags(AsyncTaskObj->Flags);
if (ChildJobFlags.task_isChildTask()) {
if (asyncTaskSize == 0)
return {std::string("target async task size unknown, unable to "
"iterate child tasks"),
Info};
StoredPointer ChildFragmentAddr = ChildTask + asyncTaskSize;
auto ChildFragmentObj =
readObj<ChildFragment<Runtime>>(ChildFragmentAddr);
if (ChildFragmentObj)
ChildTask = ChildFragmentObj->NextChild;
else
ChildTask = 0;
} else {
// No child fragment, so we're done iterating.
ChildTask = 0;
}
}
RecordPtr = RecordObj->Parent;
}
const auto TaskResumeContext = AsyncTaskObj->ResumeContextAndReserved[0];
Info.ResumeAsyncContext = TaskResumeContext;
// Walk the async backtrace.
if (Info.HasIsRunning && !Info.IsRunning) {
auto ResumeContext = TaskResumeContext;
unsigned AsyncBacktraceLoopCount = 0;
while (ResumeContext && AsyncBacktraceLoopCount++ < AsyncBacktraceLimit) {
auto ResumeContextObj = readObj<AsyncContext<Runtime>>(ResumeContext);
if (!ResumeContextObj)
break;
Info.AsyncBacktraceFrames.push_back(
stripSignedPointer(ResumeContextObj->ResumeParent));
ResumeContext = stripSignedPointer(ResumeContextObj->Parent);
}
}
return {std::nullopt, Info};
}
template <typename ActorType>
std::pair<std::optional<std::string>, ActorInfo>
actorInfo(StoredPointer ActorPtr) {
auto ActorObj = readObj<ActorType>(ActorPtr);
if (!ActorObj)
return {std::string("failure reading actor"), {}};
ActorInfo Info{};
uint32_t Flags = ActorObj->Status.Flags[0];
Info.State = Flags & concurrency::ActorFlagConstants::ActorStateMask;
Info.IsPriorityEscalated =
Flags & concurrency::ActorFlagConstants::IsPriorityEscalated;
Info.MaxPriority =
(Flags & concurrency::ActorFlagConstants::PriorityMask) >>
concurrency::ActorFlagConstants::PriorityShift;
Info.IsDistributedRemote = ActorObj->IsDistributedRemote;
// Don't read FirstJob when idle.
if (Info.State != concurrency::ActorFlagConstants::Idle) {
// This is a JobRef which stores flags in the low bits.
Info.FirstJob = ActorObj->Status.FirstJob & ~StoredPointer(0x3);
}
std::tie(Info.HasThreadPort, Info.ThreadPort) =
getThreadPort(ActorObj.get());
return {std::nullopt, Info};
}
// Get the most human meaningful "run job" function pointer from the task,
// like AsyncTask::getResumeFunctionForLogging does.
template <typename AsyncTaskType>
StoredPointer getRunJob(const AsyncTaskType *AsyncTaskObj) {
auto Fptr = stripSignedPointer(AsyncTaskObj->RunJob);
loadTargetPointers();
auto ResumeContextPtr = AsyncTaskObj->ResumeContextAndReserved[0];
if (target_non_future_adapter && Fptr == target_non_future_adapter) {
using Prefix = AsyncContextPrefix<Runtime>;
auto PrefixAddr = ResumeContextPtr - sizeof(Prefix);
auto PrefixBytes =
getReader().readBytes(RemoteAddress(PrefixAddr), sizeof(Prefix));
if (PrefixBytes) {
auto PrefixPtr = reinterpret_cast<const Prefix *>(PrefixBytes.get());
return stripSignedPointer(PrefixPtr->AsyncEntryPoint);
}
} else if (target_future_adapter && Fptr == target_future_adapter) {
using Prefix = FutureAsyncContextPrefix<Runtime>;
auto PrefixAddr = ResumeContextPtr - sizeof(Prefix);
auto PrefixBytes =
getReader().readBytes(RemoteAddress(PrefixAddr), sizeof(Prefix));
if (PrefixBytes) {
auto PrefixPtr = reinterpret_cast<const Prefix *>(PrefixBytes.get());
return stripSignedPointer(PrefixPtr->AsyncEntryPoint);
}
} else if ((target_task_wait_throwing_resume_adapter &&
Fptr == target_task_wait_throwing_resume_adapter) ||
(target_task_future_wait_resume_adapter &&
Fptr == target_task_future_wait_resume_adapter)) {
// It's only safe to look through these adapters when there's a dependency
// record. If there isn't a dependency record, then the task was resumed
// and the pointers are potentially stale.
if (AsyncTaskObj->PrivateStorage.DependencyRecord) {
auto ContextBytes = getReader().readBytes(
RemoteAddress(ResumeContextPtr), sizeof(AsyncContext<Runtime>));
if (ContextBytes) {
auto ContextPtr = reinterpret_cast<const AsyncContext<Runtime> *>(
ContextBytes.get());
return stripSignedPointer(ContextPtr->ResumeParent);
}
}
}
return Fptr;
}
void loadTargetPointers() {
if (setupTargetPointers)
return;
auto getPointer = [&](const std::string &name) -> StoredPointer {
auto Symbol = getReader().getSymbolAddress(name);
if (!Symbol)
return 0;
auto Pointer = getReader().readPointer(Symbol, sizeof(StoredPointer));
if (!Pointer)
return 0;
return Pointer->getResolvedAddress().getAddressData();
};
target_asyncTaskMetadata =
getPointer("_swift_concurrency_debug_asyncTaskMetadata");
target_non_future_adapter =
getPointer("_swift_concurrency_debug_non_future_adapter");
target_future_adapter =
getPointer("_swift_concurrency_debug_future_adapter");
target_task_wait_throwing_resume_adapter = getPointer(
"_swift_concurrency_debug_task_wait_throwing_resume_adapter");
target_task_future_wait_resume_adapter =
getPointer("_swift_concurrency_debug_task_future_wait_resume_adapter");
auto supportsPriorityEscalationAddr = getReader().getSymbolAddress(
"_swift_concurrency_debug_supportsPriorityEscalation");
if (supportsPriorityEscalationAddr) {
getReader().readInteger(supportsPriorityEscalationAddr,
&supportsPriorityEscalation);
}
auto asyncTaskSizeAddr =
getReader().getSymbolAddress("_swift_concurrency_debug_asyncTaskSize");
if (asyncTaskSizeAddr) {
getReader().readInteger(asyncTaskSizeAddr, &asyncTaskSize);
}
setupTargetPointers = true;
}
const TypeInfo *
getClosureContextInfo(StoredPointer Context, const ClosureContextInfo &Info,
remote::TypeInfoProvider *ExternalTypeInfo) {
RecordTypeInfoBuilder Builder(getBuilder().getTypeConverter(),
RecordKind::ClosureContext);
auto Metadata = readMetadataFromInstance(Context);
if (!Metadata)
return nullptr;
// Calculate the offset of the first capture.
// See GenHeap.cpp, buildPrivateMetadata().
auto OffsetToFirstCapture =
this->readOffsetToFirstCaptureFromMetadata(*Metadata);
if (!OffsetToFirstCapture)
return nullptr;
// Initialize the builder.
Builder.addField(*OffsetToFirstCapture,
/*alignment=*/sizeof(StoredPointer),
/*numExtraInhabitants=*/0,
/*bitwiseTakable=*/true);
// Skip the closure's necessary bindings struct, if it's present.
auto SizeOfNecessaryBindings = Info.NumBindings * sizeof(StoredPointer);
Builder.addField(/*size=*/SizeOfNecessaryBindings,
/*alignment=*/sizeof(StoredPointer),
/*numExtraInhabitants=*/0,
/*bitwiseTakable=*/true);
// FIXME: should be unordered_set but I'm too lazy to write a hash
// functor
std::set<std::pair<const TypeRef *, const MetadataSource *>> Done;
GenericArgumentMap Subs;
llvm::ArrayRef<const TypeRef *> CaptureTypes = Info.CaptureTypes;
// Closure context element layout depends on the layout of the
// captured types, but captured types might depend on element
// layout (of previous elements). Use an iterative approach to
// solve the problem.
while (!CaptureTypes.empty()) {
const TypeRef *OrigCaptureTR = CaptureTypes[0];
// If we failed to demangle the capture type, we cannot proceed.
if (OrigCaptureTR == nullptr)
return nullptr;
const TypeRef *SubstCaptureTR = nullptr;
// If we have enough substitutions to make this captured value's
// type concrete, or we know it's size anyway (because it is a
// class reference or metatype, for example), go ahead and add
// it to the layout.
if (OrigCaptureTR->isConcreteAfterSubstitutions(Subs))
SubstCaptureTR = OrigCaptureTR->subst(getBuilder(), Subs);
else if (getBuilder().getTypeConverter().hasFixedSize(OrigCaptureTR))
SubstCaptureTR = OrigCaptureTR;
if (SubstCaptureTR != nullptr) {
Builder.addField("", SubstCaptureTR, ExternalTypeInfo);
if (Builder.isInvalid())
return nullptr;
// Try the next capture type.
CaptureTypes = CaptureTypes.slice(1);
continue;
}
// Ok, we do not have enough substitutions yet. Perhaps we have
// enough elements figured out that we can pick off some
// metadata sources though, and use those to derive some new
// substitutions.
bool Progress = false;
for (auto Source : Info.MetadataSources) {
// Don't read a source more than once.
if (Done.count(Source))
continue;
// If we don't have enough information to read this source
// (because it is fulfilled by metadata from a capture at
// at unknown offset), keep going.
if (!isMetadataSourceReady(Source.second, Builder))
continue;
auto Metadata = readMetadataSource(Context, Source.second, Builder);
if (!Metadata)
return nullptr;
auto *SubstTR = readTypeFromMetadata(*Metadata);
if (SubstTR == nullptr)
return nullptr;
if (!TypeRef::deriveSubstitutions(Subs, Source.first, SubstTR))
return nullptr;
Done.insert(Source);
Progress = true;
}
// If we failed to make any forward progress above, we're stuck
// and cannot close out this layout.
if (!Progress)
return nullptr;
}
// Ok, we have a complete picture now.
return Builder.build();
}
/// Checks if we have enough information to read the given metadata
/// source.
///
/// \param Builder Used to obtain offsets of elements known so far.
bool isMetadataSourceReady(const MetadataSource *MS,
const RecordTypeInfoBuilder &Builder) {
if (!MS)
return false;
switch (MS->getKind()) {
case MetadataSourceKind::ClosureBinding:
return true;
case MetadataSourceKind::ReferenceCapture: {
unsigned Index = cast<ReferenceCaptureMetadataSource>(MS)->getIndex();
return Index < Builder.getNumFields();
}
case MetadataSourceKind::MetadataCapture: {
unsigned Index = cast<MetadataCaptureMetadataSource>(MS)->getIndex();
return Index < Builder.getNumFields();
}
case MetadataSourceKind::GenericArgument: {
auto Base = cast<GenericArgumentMetadataSource>(MS)->getSource();
return isMetadataSourceReady(Base, Builder);
}
case MetadataSourceKind::Self:
case MetadataSourceKind::SelfWitnessTable:
return true;
}
swift_unreachable("Unhandled MetadataSourceKind in switch.");
}
/// Read metadata for a captured generic type from a closure context.
///
/// \param Context The closure context in the remote process.
///
/// \param MS The metadata source, which must be "ready" as per the
/// above.
///
/// \param Builder Used to obtain offsets of elements known so far.
std::optional<StoredPointer>
readMetadataSource(StoredPointer Context, const MetadataSource *MS,
const RecordTypeInfoBuilder &Builder) {
switch (MS->getKind()) {
case MetadataSourceKind::ClosureBinding: {
unsigned Index = cast<ClosureBindingMetadataSource>(MS)->getIndex();
// Skip the context's HeapObject header
// (one word each for isa pointer and reference counts).
//
// Metadata and conformance tables are stored consecutively after
// the heap object header, in the 'necessary bindings' area.
//
// We should only have the index of a type metadata record here.
unsigned Offset = getSizeOfHeapObject() +
sizeof(StoredPointer) * Index;
StoredPointer MetadataAddress;
if (!getReader().readInteger(RemoteAddress(Context + Offset),
&MetadataAddress))
break;
return MetadataAddress;
}
case MetadataSourceKind::ReferenceCapture: {
unsigned Index = cast<ReferenceCaptureMetadataSource>(MS)->getIndex();
// We should already have enough type information to know the offset
// of this capture in the context.
unsigned CaptureOffset = Builder.getFieldOffset(Index);
StoredPointer CaptureAddress;
if (!getReader().readInteger(RemoteAddress(Context + CaptureOffset),
&CaptureAddress))
break;
// Read the requested capture's isa pointer.
return readMetadataFromInstance(CaptureAddress);
}
case MetadataSourceKind::MetadataCapture: {
unsigned Index = cast<MetadataCaptureMetadataSource>(MS)->getIndex();
// We should already have enough type information to know the offset
// of this capture in the context.
unsigned CaptureOffset = Builder.getFieldOffset(Index);
StoredPointer CaptureAddress;
if (!getReader().readInteger(RemoteAddress(Context + CaptureOffset),
&CaptureAddress))
break;
return CaptureAddress;
}
case MetadataSourceKind::GenericArgument: {
auto *GAMS = cast<GenericArgumentMetadataSource>(MS);
auto Base = readMetadataSource(Context, GAMS->getSource(), Builder);
if (!Base)
break;
unsigned Index = GAMS->getIndex();
auto Arg = readGenericArgFromMetadata(*Base, Index);
if (!Arg)
break;
return *Arg;
}
case MetadataSourceKind::Self:
case MetadataSourceKind::SelfWitnessTable:
break;
}
return std::nullopt;
}
template <typename T>
MemoryReader::ReadObjResult<T> readObj(StoredPointer Ptr) {
return getReader().template readObj<T>(RemoteAddress(Ptr));
}
};
} // end namespace reflection
} // end namespace swift
#endif // SWIFT_REFLECTION_REFLECTIONCONTEXT_H