Files
swift-mirror/stdlib/private/StdlibUnittest/RaceTest.swift
Dave Abrahams ad43a596bd [stdlib] Retire the old lazy subsystem...
...replacing it with the new, after passing API review!

* The lazy free function has become a property.

* Before we could extend protocols, we lacked a means for value types to
  share implementations, and each new lazy algorithm had to be added to
  each of up to four types: LazySequence, LazyForwardCollection,
  LazyBidirectionalCollection, and LazyRandomAccessCollection. These
  generic adapters hid the usual algorithms by defining their own
  versions that returned new lazy generic adapters. Now users can extend
  just one of two protocols to do the same thing: LazySequenceType or
  LazyCollectionType.

* To avoid making the code duplication worse than it already was, the
  generic adapters mentioned above were used to add the lazy generic
  algorithms around simpler adapters such as MapSequence that just
  provided the basic requirements of SequenceType by applying a
  transformation to some base sequence, resulting in deeply nested
  generic types as shown here. Now, MapSequence is an instance of
  LazySequenceType (and is renamed LazyMapSequence), and thus transmits
  laziness to its algorithms automatically.

* Documentation comments have been rewritten.

* The .array property was retired

* various renamings

* A bunch of Gyb files were retired.

Swift SVN r30902
2015-08-01 03:52:13 +00:00

573 lines
16 KiB
Swift

//===--- RaceTest.swift ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This file implements support for race tests.
///
/// Race test harness executes the given operation in multiple threads over a
/// set of shared data, trying to ensure that executions overlap in time.
///
/// The name "race test" does not imply that the race actually happens in the
/// harness or in the operation being tested. The harness contains all the
/// necessary synchronization for its own data, and for publishing test data to
/// threads. But if the operation under test is, in fact, racy, it should be
/// easier to discover the bug in this environment.
///
/// Every execution of a race test is called a trial. During a single trial
/// the operation under test is executed multiple times in each thread over
/// different data items (`RaceData` instances). Different threads process
/// data in different order. Choosing an appropriate balance between the
/// number of threads and data items, the harness uses the birthday paradox to
/// increase the probability of "collisions" between threads.
///
/// After performing the operation under test, the thread should observe the
/// data in a test-dependent way to detect if presence of other concurrent
/// actions disturbed the result. The observation should be as short as
/// possible, and the results should be returned as `Observation`. Evaluation
/// (cross-checking) of observations is deferred until the end of the trial.
///
//===----------------------------------------------------------------------===//
import SwiftPrivate
import SwiftPrivatePthreadExtras
#if os(OSX) || os(iOS)
import Darwin
#elseif os(Linux)
import Glibc
#endif
#if _runtime(_ObjC)
import ObjectiveC
#else
func autoreleasepool(@noescape code: () -> ()) {
// Native runtime does not have autorelease pools. Execute the code
// directly.
code()
}
#endif
/// Race tests that need a fresh set of data for every trial should implement
/// this protocol.
///
/// All racing threads execute the same operation, `thread1`.
///
/// Types conforming to this protocol should be structs. (The type
/// should be a struct to reduce unnecessary reference counting during
/// the test.) The types should be stateless.
public protocol RaceTestWithPerTrialDataType {
/// Input for threads.
///
/// This type should be a class. (The harness will not pass struct instances
/// between threads correctly.)
typealias RaceData : AnyObject
/// Type of thread-local data.
///
/// Thread-local data is newly created for every trial.
typealias ThreadLocalData
/// Results of the observation made after performing an operation.
typealias Observation
init()
/// Creates a fresh instance of `RaceData`.
func makeRaceData() -> RaceData
/// Creates a fresh instance of `ThreadLocalData`.
func makeThreadLocalData() -> ThreadLocalData
/// Performs the operation under test and makes an observation.
func thread1(
raceData: RaceData, inout _ threadLocalData: ThreadLocalData) -> Observation
/// Evaluates the observations made by all threads for a particular instance
/// of `RaceData`.
func evaluateObservations(observations: [Observation],
_ sink: (RaceTestObservationEvaluation) -> ())
}
/// The result of evaluating observations.
///
/// Case payloads can carry test-specific data. Results will be grouped
/// according to it.
public enum RaceTestObservationEvaluation : Equatable, CustomStringConvertible {
/// Normal 'pass'.
case Pass
/// An unusual 'pass'.
case PassInteresting(String)
/// A failure.
case Failure
case FailureInteresting(String)
public var description: String {
switch self {
case .Pass:
return "Pass"
case .PassInteresting(let s):
return "Pass(\(s))"
case .Failure:
return "Failure"
case .FailureInteresting(let s):
return "Failure(\(s))"
}
}
}
public func == (
lhs: RaceTestObservationEvaluation, rhs: RaceTestObservationEvaluation
) -> Bool {
switch (lhs, rhs) {
case (.Pass, .Pass),
(.Failure, .Failure):
return true
case (.PassInteresting(let s1), .PassInteresting(let s2)):
return s1 == s2
default:
return false
}
}
/// An observation result that consists of one `UInt`.
public struct Observation1UInt : Equatable, CustomStringConvertible {
public var data1: UInt
public init(_ data1: UInt) {
self.data1 = data1
}
public var description: String {
return "(\(data1))"
}
}
public func == (lhs: Observation1UInt, rhs: Observation1UInt) -> Bool {
return lhs.data1 == rhs.data1
}
/// An observation result that consists of four `UInt`s.
public struct Observation4UInt : Equatable, CustomStringConvertible {
public var data1: UInt
public var data2: UInt
public var data3: UInt
public var data4: UInt
public init(_ data1: UInt, _ data2: UInt, _ data3: UInt, _ data4: UInt) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4))"
}
}
public func == (lhs: Observation4UInt, rhs: Observation4UInt) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4
}
/// An observation result that consists of three `Int`s.
public struct Observation3Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public init(_ data1: Int, _ data2: Int, _ data3: Int) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
}
public var description: String {
return "(\(data1), \(data2), \(data3))"
}
}
public func == (lhs: Observation3Int, rhs: Observation3Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3
}
/// An observation result that consists of four `Int`s.
public struct Observation4Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public var data4: Int
public init(_ data1: Int, _ data2: Int, _ data3: Int, _ data4: Int) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4))"
}
}
public func == (lhs: Observation4Int, rhs: Observation4Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4
}
/// An observation result that consists of five `Int`s.
public struct Observation5Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public var data4: Int
public var data5: Int
public init(
_ data1: Int, _ data2: Int, _ data3: Int, _ data4: Int, _ data5: Int
) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
self.data5 = data5
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4), \(data5))"
}
}
public func == (lhs: Observation5Int, rhs: Observation5Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4 &&
lhs.data5 == rhs.data5
}
/// An observation result that consists of nine `Int`s.
public struct Observation9Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public var data4: Int
public var data5: Int
public var data6: Int
public var data7: Int
public var data8: Int
public var data9: Int
public init(
_ data1: Int, _ data2: Int, _ data3: Int, _ data4: Int,
_ data5: Int, _ data6: Int, _ data7: Int, _ data8: Int,
_ data9: Int
) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
self.data5 = data5
self.data6 = data6
self.data7 = data7
self.data8 = data8
self.data9 = data9
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4), \(data5), \(data6), \(data7), \(data8), \(data9))"
}
}
public func == (lhs: Observation9Int, rhs: Observation9Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4 &&
lhs.data5 == rhs.data5 &&
lhs.data6 == rhs.data6 &&
lhs.data7 == rhs.data7 &&
lhs.data8 == rhs.data8 &&
lhs.data9 == rhs.data9
}
/// A helper that is useful to implement
/// `RaceTestWithPerTrialDataType.evaluateObservations()` in race tests.
public func evaluateObservationsAllEqual<T : Equatable>(observations: [T])
-> RaceTestObservationEvaluation {
let first = observations.first!
for x in observations {
if x != first {
return .Failure
}
}
return .Pass
}
struct _RaceTestAggregatedEvaluations : CustomStringConvertible {
var passCount: Int = 0
var passInterestingCount = [String: Int]()
var failureCount: Int = 0
var failureInterestingCount = [String: Int]()
init() {}
mutating func addEvaluation(evaluation: RaceTestObservationEvaluation) {
switch evaluation {
case .Pass:
++passCount
case .PassInteresting(let s):
if passInterestingCount[s] == nil {
passInterestingCount[s] = 0
}
passInterestingCount[s] = passInterestingCount[s]! + 1
case .Failure:
++failureCount
case .FailureInteresting(let s):
if failureInterestingCount[s] == nil {
failureInterestingCount[s] = 0
}
failureInterestingCount[s] = failureInterestingCount[s]! + 1
}
}
var isFailed: Bool {
return failureCount != 0 || !failureInterestingCount.isEmpty
}
var description: String {
var result = ""
result += "Pass: \(passCount) times\n"
for desc in passInterestingCount.keys.sort() {
let count = passInterestingCount[desc]!
result += "Pass \(desc): \(count) times\n"
}
result += "Failure: \(failureCount) times\n"
for desc in failureInterestingCount.keys.sort() {
let count = failureInterestingCount[desc]!
result += "Failure \(desc): \(count) times\n"
}
return result
}
}
// FIXME: protect this class against false sharing.
class _RaceTestWorkerState<RT : RaceTestWithPerTrialDataType> {
// FIXME: protect every element of 'raceData' against false sharing.
var raceData: [RT.RaceData] = []
var raceDataShuffle: [Int] = []
var observations: [RT.Observation] = []
}
class _RaceTestSharedState<RT : RaceTestWithPerTrialDataType> {
var racingThreadCount: Int
var trialBarrier: _stdlib_Barrier
var trialSpinBarrier: _stdlib_AtomicInt = _stdlib_AtomicInt()
var raceData: [RT.RaceData] = []
var workerStates: [_RaceTestWorkerState<RT>] = []
var aggregatedEvaluations: _RaceTestAggregatedEvaluations =
_RaceTestAggregatedEvaluations()
init(racingThreadCount: Int) {
self.racingThreadCount = racingThreadCount
self.trialBarrier = _stdlib_Barrier(threadCount: racingThreadCount + 1)
self.workerStates.reserveCapacity(racingThreadCount)
for _ in 0..<racingThreadCount {
self.workerStates.append(_RaceTestWorkerState<RT>())
}
}
}
func _masterThreadOneTrial<RT : RaceTestWithPerTrialDataType>(
sharedState: _RaceTestSharedState<RT>
) {
let racingThreadCount = sharedState.racingThreadCount
let raceDataCount = racingThreadCount * racingThreadCount
let rt = RT()
sharedState.raceData.removeAll(keepCapacity: true)
sharedState.raceData.appendContentsOf(
(0..<raceDataCount).lazy.map { i in rt.makeRaceData() })
let identityShuffle = Array(0..<sharedState.raceData.count)
sharedState.workerStates.removeAll(keepCapacity: true)
sharedState.workerStates.appendContentsOf(
(0..<racingThreadCount).lazy.map {
i in
let workerState = _RaceTestWorkerState<RT>()
// Shuffle the data so that threads process it in different order.
let shuffle = randomShuffle(identityShuffle)
workerState.raceData = scatter(sharedState.raceData, shuffle)
workerState.raceDataShuffle = shuffle
workerState.observations = []
workerState.observations.reserveCapacity(sharedState.raceData.count)
return workerState
})
sharedState.trialSpinBarrier.store(0)
sharedState.trialBarrier.wait()
// Race happens.
sharedState.trialBarrier.wait()
// Collect and compare results.
for i in 0..<racingThreadCount {
let shuffle = sharedState.workerStates[i].raceDataShuffle
sharedState.workerStates[i].raceData =
gather(sharedState.workerStates[i].raceData, shuffle)
sharedState.workerStates[i].observations =
gather(sharedState.workerStates[i].observations, shuffle)
}
if true {
// FIXME: why doesn't the bracket syntax work?
// <rdar://problem/18305718> Array sugar syntax does not work when used
// with associated types
var observations: [RT.Observation] = []
observations.reserveCapacity(racingThreadCount)
for i in 0..<raceDataCount {
for j in 0..<racingThreadCount {
observations.append(sharedState.workerStates[j].observations[i])
}
let sink = { sharedState.aggregatedEvaluations.addEvaluation($0) }
rt.evaluateObservations(observations, sink)
observations.removeAll(keepCapacity: true)
}
}
}
func _workerThreadOneTrial<RT : RaceTestWithPerTrialDataType>(
tid: Int, _ sharedState: _RaceTestSharedState<RT>
) {
sharedState.trialBarrier.wait()
let racingThreadCount = sharedState.racingThreadCount
let workerState = sharedState.workerStates[tid]
let rt = RT()
var threadLocalData = rt.makeThreadLocalData()
if true {
let trialSpinBarrier = sharedState.trialSpinBarrier
trialSpinBarrier.fetchAndAdd(1)
while trialSpinBarrier.load() < racingThreadCount {}
}
// Perform racy operations.
// Warning: do not add any synchronization in this loop, including
// any implicit reference counting of shared data.
for raceData in workerState.raceData {
workerState.observations.append(rt.thread1(raceData, &threadLocalData))
}
sharedState.trialBarrier.wait()
}
public func runRaceTest<RT : RaceTestWithPerTrialDataType>(
_: RT.Type,
trials: Int,
threads: Int? = nil
) {
let racingThreadCount = threads ?? max(2, _stdlib_getHardwareConcurrency())
let sharedState = _RaceTestSharedState<RT>(racingThreadCount: racingThreadCount)
let masterThreadBody: (_: ())->() = {
(_: ())->() in
for _ in 0..<trials {
autoreleasepool {
_masterThreadOneTrial(sharedState)
}
}
}
let racingThreadBody: (Int)->() = {
(tid: Int)->() in
for _ in 0..<trials {
_workerThreadOneTrial(tid, sharedState)
}
}
var allTids = [pthread_t]()
// Create the master thread.
if true {
let (ret, tid) = _stdlib_pthread_create_block(
nil, masterThreadBody, ())
expectEqual(0, ret)
allTids.append(tid!)
}
// Create racing threads.
for i in 0..<racingThreadCount {
let (ret, tid) = _stdlib_pthread_create_block(
nil, racingThreadBody, i)
expectEqual(0, ret)
allTids.append(tid!)
}
// Join all threads.
for tid in allTids {
let (ret, _) = _stdlib_pthread_join(tid, Void.self)
expectEqual(0, ret)
}
let aggregatedEvaluations = sharedState.aggregatedEvaluations
expectFalse(aggregatedEvaluations.isFailed)
print(aggregatedEvaluations)
}
internal func _divideRoundUp(lhs: Int, _ rhs: Int) -> Int {
return (lhs + rhs) / rhs
}
public func runRaceTest<RT : RaceTestWithPerTrialDataType>(
test: RT.Type,
operations: Int,
threads: Int? = nil
) {
let racingThreadCount = threads ?? max(2, _stdlib_getHardwareConcurrency())
// Each trial runs threads^2 operations.
let operationsPerTrial = racingThreadCount * racingThreadCount
let trials = _divideRoundUp(operations, operationsPerTrial)
runRaceTest(test, trials: trials, threads: threads)
}
public func consumeCPU(units amountOfWork: Int) {
for _ in 0..<amountOfWork {
let scale = 16
for _ in 0..<scale {
_blackHole(42)
}
}
}