Files
swift-mirror/stdlib/public/core/String.swift
Dave Abrahams ad43a596bd [stdlib] Retire the old lazy subsystem...
...replacing it with the new, after passing API review!

* The lazy free function has become a property.

* Before we could extend protocols, we lacked a means for value types to
  share implementations, and each new lazy algorithm had to be added to
  each of up to four types: LazySequence, LazyForwardCollection,
  LazyBidirectionalCollection, and LazyRandomAccessCollection. These
  generic adapters hid the usual algorithms by defining their own
  versions that returned new lazy generic adapters. Now users can extend
  just one of two protocols to do the same thing: LazySequenceType or
  LazyCollectionType.

* To avoid making the code duplication worse than it already was, the
  generic adapters mentioned above were used to add the lazy generic
  algorithms around simpler adapters such as MapSequence that just
  provided the basic requirements of SequenceType by applying a
  transformation to some base sequence, resulting in deeply nested
  generic types as shown here. Now, MapSequence is an instance of
  LazySequenceType (and is renamed LazyMapSequence), and thus transmits
  laziness to its algorithms automatically.

* Documentation comments have been rewritten.

* The .array property was retired

* various renamings

* A bunch of Gyb files were retired.

Swift SVN r30902
2015-08-01 03:52:13 +00:00

924 lines
29 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// An arbitrary Unicode string value.
///
/// Unicode-Correct
/// ===============
///
/// Swift strings are designed to be Unicode-correct. In particular,
/// the APIs make it easy to write code that works correctly, and does
/// not surprise end-users, regardless of where you venture in the
/// Unicode character space. For example, the `==` operator checks
/// for [Unicode canonical
/// equivalence](http://www.unicode.org/glossary/#deterministic_comparison),
/// so two different representations of the same string will always
/// compare equal.
///
/// Locale-Insensitive
/// ==================
///
/// The fundamental operations on Swift strings are not sensitive to
/// locale settings. That's because, for example, the validity of a
/// `Dictionary<String, T>` in a running program depends on a given
/// string comparison having a single, stable result. Therefore,
/// Swift always uses the default,
/// un-[tailored](http://www.unicode.org/glossary/#tailorable) Unicode
/// algorithms for basic string operations.
///
/// Importing `Foundation` endows swift strings with the full power of
/// the `NSString` API, which allows you to choose more complex
/// locale-sensitive operations explicitly.
///
/// Value Semantics
/// ===============
///
/// Each string variable, `let` binding, or stored property has an
/// independent value, so mutations to the string are not observable
/// through its copies:
///
/// var a = "foo"
/// var b = a
/// b.appendContentsOf("bar")
/// print("a=\(a), b=\(b)") // a=foo, b=foobar
///
/// Strings use Copy-on-Write so that their data is only copied
/// lazily, upon mutation, when more than one string instance is using
/// the same buffer. Therefore, the first in any sequence of mutating
/// operations may cost `O(N)` time and space, where `N` is the length
/// of the string's (unspecified) underlying representation.
///
/// Views
/// =====
///
/// `String` is not itself a collection of anything. Instead, it has
/// properties that present the string's contents as meaningful
/// collections:
///
/// - `characters`: a collection of `Character` ([extended grapheme
/// cluster](http://www.unicode.org/glossary/#extended_grapheme_cluster))
/// elements, a unit of text that is meaningful to most humans.
///
/// - `unicodeScalars`: a collection of `UnicodeScalar` ([Unicode
/// scalar
/// values](http://www.unicode.org/glossary/#unicode_scalar_value))
/// the 21-bit codes that are the basic unit of Unicode. These
/// values are equivalent to UTF-32 code units.
///
/// - `utf16`: a collection of `UTF16.CodeUnit`, the 16-bit
/// elements of the string's UTF-16 encoding.
///
/// - `utf8`: a collection of `UTF8.CodeUnit`, the 8-bit
/// elements of the string's UTF-8 encoding.
///
/// Growth and Capacity
/// ===================
///
/// When a string's contiguous storage fills up, new storage must be
/// allocated and characters must be moved to the new storage.
/// `String` uses an exponential growth strategy that makes `append` a
/// constant time operation *when amortized over many invocations*.
///
/// Objective-C Bridge
/// ==================
///
/// `String` is bridged to Objective-C as `NSString`, and a `String`
/// that originated in Objective-C may store its characters in an
/// `NSString`. Since any arbitrary subclass of `NSSString` can
/// become a `String`, there are no guarantees about representation or
/// efficiency in this case. Since `NSString` is immutable, it is
/// just as though the storage was shared by some copy: the first in
/// any sequence of mutating operations causes elements to be copied
/// into unique, contiguous storage which may cost `O(N)` time and
/// space, where `N` is the length of the string representation (or
/// more, if the underlying `NSString` is has unusual performance
/// characteristics).
public struct String {
/// An empty `String`.
public init() {
_core = _StringCore()
}
public // @testable
init(_ _core: _StringCore) {
self._core = _core
}
public // @testable
var _core: _StringCore
}
extension String {
public // @testable
static func _fromWellFormedCodeUnitSequence<
Encoding: UnicodeCodecType, Input: CollectionType
where Input.Generator.Element == Encoding.CodeUnit
>(
encoding: Encoding.Type, input: Input
) -> String {
return String._fromCodeUnitSequence(encoding, input: input)!
}
public // @testable
static func _fromCodeUnitSequence<
Encoding: UnicodeCodecType, Input: CollectionType
where Input.Generator.Element == Encoding.CodeUnit
>(
encoding: Encoding.Type, input: Input
) -> String? {
let (stringBufferOptional, _) =
_StringBuffer.fromCodeUnits(encoding, input: input,
repairIllFormedSequences: false)
if let stringBuffer = stringBufferOptional {
return String(_storage: stringBuffer)
} else {
return .None
}
}
public // @testable
static func _fromCodeUnitSequenceWithRepair<
Encoding: UnicodeCodecType, Input: CollectionType
where Input.Generator.Element == Encoding.CodeUnit
>(
encoding: Encoding.Type, input: Input
) -> (String, hadError: Bool) {
let (stringBuffer, hadError) =
_StringBuffer.fromCodeUnits(encoding, input: input,
repairIllFormedSequences: true)
return (String(_storage: stringBuffer!), hadError)
}
}
extension String : _BuiltinUnicodeScalarLiteralConvertible {
@effects(readonly)
public // @testable
init(_builtinUnicodeScalarLiteral value: Builtin.Int32) {
self = String._fromWellFormedCodeUnitSequence(
UTF32.self, input: CollectionOfOne(UInt32(value)))
}
}
extension String : UnicodeScalarLiteralConvertible {
/// Create an instance initialized to `value`.
public init(unicodeScalarLiteral value: String) {
self = value
}
}
extension String : _BuiltinExtendedGraphemeClusterLiteralConvertible {
@effects(readonly)
@_semantics("string.makeUTF8")
public
init(
_builtinExtendedGraphemeClusterLiteral start: Builtin.RawPointer,
byteSize: Builtin.Word,
isASCII: Builtin.Int1) {
self = String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(
start: UnsafeMutablePointer<UTF8.CodeUnit>(start),
count: Int(byteSize)))
}
}
extension String : ExtendedGraphemeClusterLiteralConvertible {
/// Create an instance initialized to `value`.
public init(extendedGraphemeClusterLiteral value: String) {
self = value
}
}
extension String : _BuiltinUTF16StringLiteralConvertible {
@effects(readonly)
@_semantics("string.makeUTF16")
public
init(
_builtinUTF16StringLiteral start: Builtin.RawPointer,
numberOfCodeUnits: Builtin.Word
) {
self = String(
_StringCore(
baseAddress: COpaquePointer(start),
count: Int(numberOfCodeUnits),
elementShift: 1,
hasCocoaBuffer: false,
owner: nil))
}
}
extension String : _BuiltinStringLiteralConvertible {
@effects(readonly)
@_semantics("string.makeUTF8")
public
init(
_builtinStringLiteral start: Builtin.RawPointer,
byteSize: Builtin.Word,
isASCII: Builtin.Int1) {
if Bool(isASCII) {
self = String(
_StringCore(
baseAddress: COpaquePointer(start),
count: Int(byteSize),
elementShift: 0,
hasCocoaBuffer: false,
owner: nil))
}
else {
self = String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(
start: UnsafeMutablePointer<UTF8.CodeUnit>(start),
count: Int(byteSize)))
}
}
}
extension String : StringLiteralConvertible {
/// Create an instance initialized to `value`.
public init(stringLiteral value: String) {
self = value
}
}
extension String : CustomDebugStringConvertible {
/// A textual representation of `self`, suitable for debugging.
public var debugDescription: String {
var result = "\""
for us in self.unicodeScalars {
result += us.escape(asASCII: false)
}
result += "\""
return result
}
}
extension String {
/// Return the number of code units occupied by this string
/// in the given encoding.
func _encodedLength<
Encoding: UnicodeCodecType
>(encoding: Encoding.Type) -> Int {
var codeUnitCount = 0
let output: (Encoding.CodeUnit) -> () = { _ in ++codeUnitCount }
self._encode(encoding, output: output)
return codeUnitCount
}
// FIXME: this function does not handle the case when a wrapped NSString
// contains unpaired surrogates. Fix this before exposing this function as a
// public API. But it is unclear if it is valid to have such an NSString in
// the first place. If it is not, we should not be crashing in an obscure
// way -- add a test for that.
// Related: <rdar://problem/17340917> Please document how NSString interacts
// with unpaired surrogates
func _encode<
Encoding: UnicodeCodecType
>(encoding: Encoding.Type, output: (Encoding.CodeUnit) -> ())
{
return _core.encode(encoding, output: output)
}
}
#if _runtime(_ObjC)
/// Compare two strings using the Unicode collation algorithm in the
/// deterministic comparison mode. (The strings which are equivalent according
/// to their NFD form are considered equal. Strings which are equivalent
/// according to the plain Unicode collation algorithm are additionaly ordered
/// based on their NFD.)
///
/// See Unicode Technical Standard #10.
///
/// The behavior is equivalent to `NSString.compare()` with default options.
///
/// - returns:
/// * an unspecified value less than zero if `lhs < rhs`,
/// * zero if `lhs == rhs`,
/// * an unspecified value greater than zero if `lhs > rhs`.
@asmname("swift_stdlib_compareNSStringDeterministicUnicodeCollation")
public func _stdlib_compareNSStringDeterministicUnicodeCollation(
lhs: AnyObject, _ rhs: AnyObject
)-> Int32
#endif
extension String : Equatable {
}
public func ==(lhs: String, rhs: String) -> Bool {
if lhs._core.isASCII && rhs._core.isASCII {
if lhs._core.count != rhs._core.count {
return false
}
return memcmp(
lhs._core.startASCII, rhs._core.startASCII,
rhs._core.count) == 0
}
return lhs._compareString(rhs) == 0
}
extension String : Comparable {
}
extension String {
#if _runtime(_ObjC)
/// This is consistent with Foundation, but incorrect as defined by Unicode.
/// Unicode weights some ASCII punctuation in a different order than ASCII
/// value. Such as:
/// 0022 ; [*02FF.0020.0002] # QUOTATION MARK
/// 0023 ; [*038B.0020.0002] # NUMBER SIGN
/// 0025 ; [*038C.0020.0002] # PERCENT SIGN
/// 0026 ; [*0389.0020.0002] # AMPERSAND
/// 0027 ; [*02F8.0020.0002] # APOSTROPHE
/// - Precondition: Both self and rhs are ASCII strings.
public // @testable
func _compareASCII(rhs: String) -> Int {
var compare = Int(memcmp(
self._core.startASCII, rhs._core.startASCII,
min(self._core.count, rhs._core.count)))
if compare == 0 {
compare = self._core.count - rhs._core.count
}
// This efficiently normalizes the result to -1, 0, or 1 to match the
// behaviour of NSString's compare function.
return (compare > 0 ? 1 : 0) - (compare < 0 ? 1 : 0)
}
#endif
/// Compares two strings with the Unicode Collation Algorithm.
@inline(never) @_semantics("stdlib_binary_only") // Hide the CF/ICU dependency
public // @testable
func _compareDeterministicUnicodeCollation(rhs: String) -> Int {
// Note: this operation should be consistent with equality comparison of
// Character.
#if _runtime(_ObjC)
return Int(_stdlib_compareNSStringDeterministicUnicodeCollation(
_bridgeToObjectiveCImpl(), rhs._bridgeToObjectiveCImpl()))
#else
switch (_core.isASCII, rhs._core.isASCII) {
case (true, false):
let lhsPtr = UnsafePointer<Int8>(_core.startASCII)
let rhsPtr = UnsafePointer<UTF16.CodeUnit>(rhs._core.startUTF16)
return Int(_swift_stdlib_unicode_compare_utf8_utf16(
lhsPtr, Int32(_core.count), rhsPtr, Int32(rhs._core.count)))
case (false, true):
// Just invert it and recurse for this case.
return -rhs._compareDeterministicUnicodeCollation(self)
case (false, false):
let lhsPtr = UnsafePointer<UTF16.CodeUnit>(_core.startUTF16)
let rhsPtr = UnsafePointer<UTF16.CodeUnit>(rhs._core.startUTF16)
return Int(_swift_stdlib_unicode_compare_utf16_utf16(
lhsPtr, Int32(_core.count),
rhsPtr, Int32(rhs._core.count)))
case (true, true):
let lhsPtr = UnsafePointer<Int8>(_core.startASCII)
let rhsPtr = UnsafePointer<Int8>(rhs._core.startASCII)
return Int(_swift_stdlib_unicode_compare_utf8_utf8(
lhsPtr, Int32(_core.count),
rhsPtr, Int32(rhs._core.count)))
}
#endif
}
public // @testable
func _compareString(rhs: String) -> Int {
#if _runtime(_ObjC)
// We only want to perform this optimization on objc runtimes. Elsewhere,
// we will make it follow the unicode collation algorithm even for ASCII.
if (_core.isASCII && rhs._core.isASCII) {
return _compareASCII(rhs)
}
#endif
return _compareDeterministicUnicodeCollation(rhs)
}
}
public func <(lhs: String, rhs: String) -> Bool {
return lhs._compareString(rhs) < 0
}
// Support for copy-on-write
extension String {
/// Append the elements of `other` to `self`.
public mutating func appendContentsOf(other: String) {
_core.append(other._core)
}
/// Append `x` to `self`.
///
/// - Complexity: Amortized O(1).
public mutating func append(x: UnicodeScalar) {
_core.append(x)
}
var _utf16Count: Int {
return _core.count
}
public // SPI(Foundation)
init(_storage: _StringBuffer) {
_core = _StringCore(_storage)
}
}
#if _runtime(_ObjC)
@asmname("swift_stdlib_NSStringNFDHashValue")
func _stdlib_NSStringNFDHashValue(str: AnyObject) -> Int
@asmname("swift_stdlib_NSStringASCIIHashValue")
func _stdlib_NSStringASCIIHashValue(str: AnyObject) -> Int
#endif
extension String : Hashable {
/// The hash value.
///
/// **Axiom:** `x == y` implies `x.hashValue == y.hashValue`.
///
/// - Note: The hash value is not guaranteed to be stable across
/// different invocations of the same program. Do not persist the
/// hash value across program runs.
public var hashValue: Int {
#if _runtime(_ObjC)
// Mix random bits into NSString's hash so that clients don't rely on
// Swift.String.hashValue and NSString.hash being the same.
#if arch(i386) || arch(arm)
let hashOffset = Int(bitPattern: 0x88dd_cc21)
#else
let hashOffset = Int(bitPattern: 0x429b_1266_88dd_cc21)
#endif
// FIXME(performance): constructing a temporary NSString is extremely
// wasteful and inefficient.
let cocoaString = unsafeBitCast(
self._bridgeToObjectiveCImpl(), _NSStringCoreType.self)
// If we have an ASCII string, we do not need to normalize.
if self._core.isASCII {
return hashOffset ^ _stdlib_NSStringASCIIHashValue(cocoaString)
} else {
return hashOffset ^ _stdlib_NSStringNFDHashValue(cocoaString)
}
#else
if self._core.isASCII {
return _swift_stdlib_unicode_hash_ascii(
UnsafeMutablePointer<Int8>(_core.startASCII),
Int32(_core.count))
} else {
return _swift_stdlib_unicode_hash(
UnsafeMutablePointer<UInt16>(_core.startUTF16),
Int32(_core.count))
}
#endif
}
}
@effects(readonly)
@_semantics("string.concat")
public func +(var lhs: String, rhs: String) -> String {
if (lhs.isEmpty) {
return rhs
}
lhs._core.append(rhs._core)
return lhs
}
// String append
public func += (inout lhs: String, rhs: String) {
if lhs.isEmpty {
lhs = rhs
}
else {
lhs._core.append(rhs._core)
}
}
extension String {
/// Constructs a `String` in `resultStorage` containing the given UTF-8.
///
/// Low-level construction interface used by introspection
/// implementation in the runtime library.
@asmname("swift_stringFromUTF8InRawMemory")
public // COMPILER_INTRINSIC
static func _fromUTF8InRawMemory(
resultStorage: UnsafeMutablePointer<String>,
start: UnsafeMutablePointer<UTF8.CodeUnit>, utf8Count: Int
) {
resultStorage.initialize(
String._fromWellFormedCodeUnitSequence(UTF8.self,
input: UnsafeBufferPointer(start: start, count: utf8Count)))
}
}
extension String {
public typealias Index = CharacterView.Index
/// The position of the first `Character` in `self.characters` if
/// `self` is non-empty; identical to `endIndex` otherwise.
public var startIndex: Index { return characters.startIndex }
/// The "past the end" position in `self.characters`.
///
/// `endIndex` is not a valid argument to `subscript`, and is always
/// reachable from `startIndex` by zero or more applications of
/// `successor()`.
public var endIndex: Index { return characters.endIndex }
/// Access the `Character` at `position`.
///
/// - Requires: `position` is a valid position in `self.characters`
/// and `position != endIndex`.
public subscript(i: Index) -> Character { return characters[i] }
}
public func == (lhs: String.Index, rhs: String.Index) -> Bool {
return lhs._base == rhs._base
}
public func < (lhs: String.Index, rhs: String.Index) -> Bool {
return lhs._base < rhs._base
}
extension String {
/// Access the characters in the given `subRange`.
///
/// - Complexity: O(1) unless bridging from Objective-C requires an
/// O(N) conversion.
public subscript(subRange: Range<Index>) -> String {
return String(characters[subRange])
}
}
extension String {
public mutating func reserveCapacity(n: Int) {
withMutableCharacters {
(inout v: CharacterView) in v.reserveCapacity(n)
}
}
public mutating func append(c: Character) {
withMutableCharacters {
(inout v: CharacterView) in v.append(c)
}
}
public mutating func appendContentsOf<
S : SequenceType
where S.Generator.Element == Character
>(newElements: S) {
withMutableCharacters {
(inout v: CharacterView) in v.appendContentsOf(newElements)
}
}
/// Create an instance containing `characters`.
public init<
S : SequenceType
where S.Generator.Element == Character
>(_ characters: S) {
self._core = CharacterView(characters)._core
}
}
extension String {
/// Interpose `self` between every pair of consecutive `elements`,
/// then concatenate the result. For example:
///
/// "-|-".join(["foo", "bar", "baz"]) // "foo-|-bar-|-baz"
public func join<
S : SequenceType where S.Generator.Element == String
>(elements: S) -> String {
return String(
characters.join(elements.lazy.map { $0.characters })
)
}
}
extension String {
/// Replace the given `subRange` of elements with `newElements`.
///
/// Invalidates all indices with respect to `self`.
///
/// - Complexity: O(`subRange.count`) if `subRange.endIndex
/// == self.endIndex` and `isEmpty(newElements)`, O(N) otherwise.
public mutating func replaceRange<
C: CollectionType where C.Generator.Element == Character
>(
subRange: Range<Index>, with newElements: C
) {
withMutableCharacters {
(inout v: CharacterView) in v.replaceRange(subRange, with: newElements)
}
}
/// Replace the given `subRange` of elements with `newElements`.
///
/// Invalidates all indices with respect to `self`.
///
/// - Complexity: O(`subRange.count`) if `subRange.endIndex
/// == self.endIndex` and `isEmpty(newElements)`, O(N) otherwise.
public mutating func replaceRange(
subRange: Range<Index>, with newElements: String
) {
replaceRange(subRange, with: newElements.characters)
}
/// Insert `newElement` at index `i`.
///
/// Invalidates all indices with respect to `self`.
///
/// - Complexity: O(`self.count`).
public mutating func insert(newElement: Character, atIndex i: Index) {
withMutableCharacters {
(inout v: CharacterView) in v.insert(newElement, atIndex: i)
}
}
/// Insert `newElements` at index `i`.
///
/// Invalidates all indices with respect to `self`.
///
/// - Complexity: O(`self.count + newElements.count`).
public mutating func insertContentsOf<
S : CollectionType where S.Generator.Element == Character
>(newElements: S, at i: Index) {
withMutableCharacters {
(inout v: CharacterView) in v.insertContentsOf(newElements, at: i)
}
}
/// Remove and return the element at index `i`.
///
/// Invalidates all indices with respect to `self`.
///
/// - Complexity: O(`self.count`).
public mutating func removeAtIndex(i: Index) -> Character {
return withMutableCharacters {
(inout v: CharacterView) in v.removeAtIndex(i)
}
}
/// Remove the indicated `subRange` of characters.
///
/// Invalidates all indices with respect to `self`.
///
/// - Complexity: O(`self.count`).
public mutating func removeRange(subRange: Range<Index>) {
withMutableCharacters {
(inout v: CharacterView) in v.removeRange(subRange)
}
}
/// Remove all characters.
///
/// Invalidates all indices with respect to `self`.
///
/// - parameter keepCapacity: If `true`, prevents the release of
/// allocated storage, which can be a useful optimization
/// when `self` is going to be grown again.
public mutating func removeAll(keepCapacity keepCapacity: Bool = false) {
withMutableCharacters {
(inout v: CharacterView) in v.removeAll(keepCapacity: keepCapacity)
}
}
}
#if _runtime(_ObjC)
@asmname("swift_stdlib_NSStringLowercaseString")
func _stdlib_NSStringLowercaseString(str: AnyObject) -> _CocoaStringType
@asmname("swift_stdlib_NSStringUppercaseString")
func _stdlib_NSStringUppercaseString(str: AnyObject) -> _CocoaStringType
#else
internal func _nativeUnicodeLowercaseString(str: String) -> String {
var buffer = _StringBuffer(
capacity: str._core.count, initialSize: str._core.count, elementWidth: 2)
// Try to write it out to the same length.
let dest = UnsafeMutablePointer<UTF16.CodeUnit>(buffer.start)
let z = _swift_stdlib_unicode_strToLower(
dest, Int32(str._core.count),
str._core.startUTF16, Int32(str._core.count))
let correctSize = Int(z)
// If more space is needed, do it again with the correct buffer size.
if correctSize != str._core.count {
buffer = _StringBuffer(
capacity: correctSize, initialSize: correctSize, elementWidth: 2)
_swift_stdlib_unicode_strToLower(
dest, Int32(correctSize), str._core.startUTF16, Int32(str._core.count))
}
return String(_storage: buffer)
}
internal func _nativeUnicodeUppercaseString(str: String) -> String {
var buffer = _StringBuffer(
capacity: str._core.count, initialSize: str._core.count, elementWidth: 2)
// Try to write it out to the same length.
let dest = UnsafeMutablePointer<UTF16.CodeUnit>(buffer.start)
let z = _swift_stdlib_unicode_strToUpper(
dest, Int32(str._core.count),
str._core.startUTF16, Int32(str._core.count))
let correctSize = Int(z)
// If more space is needed, do it again with the correct buffer size.
if correctSize != str._core.count {
buffer = _StringBuffer(
capacity: correctSize, initialSize: correctSize, elementWidth: 2)
_swift_stdlib_unicode_strToUpper(
dest, Int32(correctSize), str._core.startUTF16, Int32(str._core.count))
}
return String(_storage: buffer)
}
#endif
// Unicode algorithms
extension String {
// FIXME: implement case folding without relying on Foundation.
// <rdar://problem/17550602> [unicode] Implement case folding
/// A "table" for which ASCII characters need to be upper cased.
/// To determine which bit corresponds to which ASCII character, subtract 1
/// from the ASCII value of that character and divide by 2. The bit is set iff
/// that character is a lower case character.
internal var _asciiLowerCaseTable: UInt64 {
@inline(__always)
get {
return 0b0001_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000
}
}
/// The same table for upper case characters.
internal var _asciiUpperCaseTable: UInt64 {
@inline(__always)
get {
return 0b0000_0000_0000_0000_0001_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000
}
}
public var lowercaseString: String {
if self._core.isASCII {
let length = self._core.count
let source = self._core.startASCII
let buffer = _StringBuffer(
capacity: length, initialSize: length, elementWidth: 1)
let dest = UnsafeMutablePointer<UInt8>(buffer.start)
for i in 0..<length {
// For each character in the string, we lookup if it should be shifted
// in our ascii table, then we return 0x20 if it should, 0x0 if not.
// This code is equivalent to:
// switch source[i] {
// case let x where (x >= 0x41 && x <= 0x5a):
// dest[i] = x &+ 0x20
// case let x:
// dest[i] = x
// }
let value = source[i]
let isUpper =
_asciiUpperCaseTable >>
UInt64(((value &- 1) & 0b0111_1111) >> 1)
let add = (isUpper & 0x1) << 5
// Since we are left with either 0x0 or 0x20, we can safely truncate to
// a UInt8 and add to our ASCII value (this will not overflow numbers in
// the ASCII range).
dest[i] = value &+ UInt8(truncatingBitPattern: add)
}
return String(_storage: buffer)
}
#if _runtime(_ObjC)
return _cocoaStringToSwiftString_NonASCII(
_stdlib_NSStringLowercaseString(self._bridgeToObjectiveCImpl()))
#else
return _nativeUnicodeLowercaseString(self)
#endif
}
public var uppercaseString: String {
if self._core.isASCII {
let length = self._core.count
let source = self._core.startASCII
let buffer = _StringBuffer(
capacity: length, initialSize: length, elementWidth: 1)
let dest = UnsafeMutablePointer<UInt8>(buffer.start)
for i in 0..<length {
// See the comment above in lowercaseString.
let value = source[i]
let isLower =
_asciiLowerCaseTable >>
UInt64(((value &- 1) & 0b0111_1111) >> 1)
let add = (isLower & 0x1) << 5
dest[i] = value &- UInt8(truncatingBitPattern: add)
}
return String(_storage: buffer)
}
#if _runtime(_ObjC)
return _cocoaStringToSwiftString_NonASCII(
_stdlib_NSStringUppercaseString(self._bridgeToObjectiveCImpl()))
#else
return _nativeUnicodeUppercaseString(self)
#endif
}
}
// Index conversions
extension String.Index {
/// Construct the position in `characters` that corresponds exactly to
/// `unicodeScalarIndex`. If no such position exists, the result is `nil`.
///
/// - Requires: `unicodeScalarIndex` is an element of
/// `characters.unicodeScalars.indices`.
public init?(
_ unicodeScalarIndex: String.UnicodeScalarIndex,
within characters: String
) {
if !unicodeScalarIndex._isOnGraphemeClusterBoundary {
return nil
}
self.init(_base: unicodeScalarIndex)
}
/// Construct the position in `characters` that corresponds exactly to
/// `utf16Index`. If no such position exists, the result is `nil`.
///
/// - Requires: `utf16Index` is an element of
/// `characters.utf16.indices`.
public init?(
_ utf16Index: String.UTF16Index,
within characters: String
) {
if let me = utf16Index.samePositionIn(
characters.unicodeScalars
)?.samePositionIn(characters) {
self = me
}
else {
return nil
}
}
/// Construct the position in `characters` that corresponds exactly to
/// `utf8Index`. If no such position exists, the result is `nil`.
///
/// - Requires: `utf8Index` is an element of
/// `characters.utf8.indices`.
public init?(
_ utf8Index: String.UTF8Index,
within characters: String
) {
if let me = utf8Index.samePositionIn(
characters.unicodeScalars
)?.samePositionIn(characters) {
self = me
}
else {
return nil
}
}
/// Return the position in `utf8` that corresponds exactly
/// to `self`.
///
/// - Requires: `self` is an element of `String(utf8).indices`.
public func samePositionIn(
utf8: String.UTF8View
) -> String.UTF8View.Index {
return String.UTF8View.Index(self, within: utf8)
}
/// Return the position in `utf16` that corresponds exactly
/// to `self`.
///
/// - Requires: `self` is an element of `String(utf16).indices`.
public func samePositionIn(
utf16: String.UTF16View
) -> String.UTF16View.Index {
return String.UTF16View.Index(self, within: utf16)
}
/// Return the position in `unicodeScalars` that corresponds exactly
/// to `self`.
///
/// - Requires: `self` is an element of `String(unicodeScalars).indices`.
public func samePositionIn(
unicodeScalars: String.UnicodeScalarView
) -> String.UnicodeScalarView.Index {
return String.UnicodeScalarView.Index(self, within: unicodeScalars)
}
}