Files
swift-mirror/lib/SIL/Utils/OwnershipUtils.cpp
2021-10-06 09:23:02 -07:00

1401 lines
48 KiB
C++

//===--- OwnershipUtils.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/OwnershipUtils.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
using namespace swift;
bool swift::isValueAddressOrTrivial(SILValue v) {
return v->getType().isAddress() ||
v.getOwnershipKind() == OwnershipKind::None;
}
// These operations forward both owned and guaranteed ownership.
static bool isOwnershipForwardingInstructionKind(SILInstructionKind kind) {
switch (kind) {
case SILInstructionKind::TupleInst:
case SILInstructionKind::StructInst:
case SILInstructionKind::EnumInst:
case SILInstructionKind::DifferentiableFunctionInst:
case SILInstructionKind::LinearFunctionInst:
case SILInstructionKind::OpenExistentialRefInst:
case SILInstructionKind::UpcastInst:
case SILInstructionKind::UncheckedValueCastInst:
case SILInstructionKind::UncheckedRefCastInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::RefToBridgeObjectInst:
case SILInstructionKind::BridgeObjectToRefInst:
case SILInstructionKind::UnconditionalCheckedCastInst:
case SILInstructionKind::UncheckedEnumDataInst:
case SILInstructionKind::SelectEnumInst:
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::CheckedCastBranchInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::InitExistentialRefInst:
return true;
default:
return false;
}
}
// These operations forward guaranteed ownership, but don't necessarily forward
// owned values.
static bool isGuaranteedForwardingInstructionKind(SILInstructionKind kind) {
switch (kind) {
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::DifferentiableFunctionExtractInst:
case SILInstructionKind::LinearFunctionExtractInst:
case SILInstructionKind::OpenExistentialValueInst:
case SILInstructionKind::OpenExistentialBoxValueInst:
return true;
default:
return isOwnershipForwardingInstructionKind(kind);
}
}
bool swift::canOpcodeForwardGuaranteedValues(SILValue value) {
// If we have an argument from a transforming terminator, we can forward
// guaranteed.
if (auto *arg = dyn_cast<SILArgument>(value))
if (auto *ti = arg->getSingleTerminator())
if (ti->isTransformationTerminator()) {
assert(OwnershipForwardingMixin::isa(ti));
return true;
}
auto *inst = value->getDefiningInstruction();
if (!inst)
return false;
bool result = isGuaranteedForwardingInstructionKind(inst->getKind());
if (result) {
assert(!isa<OwnedFirstArgForwardingSingleValueInst>(inst));
assert(OwnershipForwardingMixin::isa(inst));
}
return result;
}
bool swift::canOpcodeForwardGuaranteedValues(Operand *use) {
auto *user = use->getUser();
bool result = isOwnershipForwardingInstructionKind(user->getKind());
if (result) {
assert(!isa<GuaranteedFirstArgForwardingSingleValueInst>(user));
assert(OwnershipForwardingMixin::isa(user));
}
return result;
}
static bool isOwnedForwardingValueKind(SILInstructionKind kind) {
switch (kind) {
case SILInstructionKind::MarkUninitializedInst:
return true;
default:
return isOwnershipForwardingInstructionKind(kind);
}
}
bool swift::canOpcodeForwardOwnedValues(SILValue value) {
// If we have a SILArgument and we are the successor block of a transforming
// terminator, we are fine.
if (auto *arg = dyn_cast<SILPhiArgument>(value))
if (auto *predTerm = arg->getSingleTerminator())
if (predTerm->isTransformationTerminator()) {
assert(OwnershipForwardingMixin::isa(predTerm));
return true;
}
auto *inst = value->getDefiningInstruction();
if (!inst)
return false;
bool result = isOwnedForwardingValueKind(inst->getKind());
if (result) {
assert(!isa<GuaranteedFirstArgForwardingSingleValueInst>(inst));
assert(OwnershipForwardingMixin::isa(inst));
}
return result;
}
bool swift::canOpcodeForwardOwnedValues(Operand *use) {
auto *user = use->getUser();
bool result = isOwnershipForwardingInstructionKind(user->getKind());
if (result) {
assert(OwnershipForwardingMixin::isa(user));
}
return result;
}
//===----------------------------------------------------------------------===//
// Guaranteed Use-Point (Lifetime) Discovery
//===----------------------------------------------------------------------===//
// Find all use points of \p guaranteedValue within its borrow scope. All uses
// are naturally dominated by \p guaranteedValue. If a PointerEscape is found,
// then no assumption can be made about \p guaranteedValue's lifetime. Therefore
// the use points are incomplete and this returns false.
//
// Accumulate results in \p usePoints, ignoring existing elements.
//
// Skip over nested borrow scopes. Their scope-ending instructions are their use
// points. Transitively find all nested scope-ending instructions by looking
// through nested reborrows. Nested reborrows are not use points and \p
// visitReborrow is not called for them.
bool swift::
findInnerTransitiveGuaranteedUses(SILValue guaranteedValue,
SmallVectorImpl<Operand *> &usePoints) {
// Push the value's immediate uses.
unsigned firstOffset = usePoints.size();
for (Operand *use : guaranteedValue->getUses()) {
if (use->getOperandOwnership() != OperandOwnership::NonUse)
usePoints.push_back(use);
}
// --- Transitively follow forwarded uses and look for escapes.
// TODO: Remove this SmallPtrSet if destructures are changed to be represented
// as reborrows. Currently it forwards multiple results! This means that
// usePoints could grow exponentially without a membership check. It's fine to
// do this membership check locally in this function (within a borrow
// scope). It isn't needed for the immediate uses, only the transitive uses.
SmallPtrSet<Operand *, 16> visitedUses;
auto pushUse = [&](Operand *use) {
if (use->getOperandOwnership() != OperandOwnership::NonUse) {
if (visitedUses.insert(use).second)
usePoints.push_back(use);
}
return true;
};
// usePoints grows in this loop.
for (unsigned i = firstOffset; i < usePoints.size(); ++i) {
Operand *use = usePoints[i];
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
case OperandOwnership::TrivialUse:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::DestroyingConsume:
llvm_unreachable("this operand cannot handle an inner guaranteed use");
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
return false;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
// Reborrow only happens when this is called on a value that creates a
// borrow scope.
case OperandOwnership::Reborrow:
// EndBorrow either happens when this is called on a value that creates a
// borrow scope, or when it is pushed as a use when processing a nested
// borrow.
case OperandOwnership::EndBorrow:
break;
case OperandOwnership::InteriorPointer:
// If our base guaranteed value does not have any consuming uses (consider
// function arguments), we need to be sure to include interior pointer
// operands since we may not get a use from a end_scope instruction.
if (!InteriorPointerOperand(use).findTransitiveUses(usePoints)) {
return false;
}
break;
case OperandOwnership::ForwardingBorrow:
ForwardingOperand(use).visitForwardedValues(
[&](SILValue transitiveValue) {
// Do not include transitive uses with 'none' ownership
if (transitiveValue.getOwnershipKind() == OwnershipKind::None)
return true;
for (auto *transitiveUse : transitiveValue->getUses()) {
pushUse(transitiveUse);
}
return true;
});
break;
case OperandOwnership::Borrow:
BorrowingOperand(use).visitExtendedScopeEndingUses(pushUse);
}
}
return true;
}
// Find all use points of \p guaranteedValue within its borrow scope. All use
// points will be dominated by \p guaranteedValue.
//
// Record (non-nested) reborrows as uses and call \p visitReborrow.
//
// BorrowedValues (which introduce a borrow scope) are fundamentally different
// than "inner" guaranteed values. Their only use points are their scope-ending
// uses. There is no need to transitively process uses. However, unlike inner
// guaranteed values, they can have reborrows. To transitively process
// reborrows, use findExtendedTransitiveBorrowedUses.
bool swift::findTransitiveGuaranteedUses(
SILValue guaranteedValue, SmallVectorImpl<Operand *> &usePoints,
function_ref<void(Operand *)> visitReborrow) {
// Handle local borrow introducers without following uses.
// SILFunctionArguments are *not* borrow introducers in this context--we're
// trying to find lifetime of values within a function.
if (auto borrowedValue = BorrowedValue(guaranteedValue)) {
if (borrowedValue.isLocalScope()) {
borrowedValue.visitLocalScopeEndingUses([&](Operand *scopeEnd) {
// Initially push the reborrow as a use point. visitReborrow may pop it
// if it only wants to compute the extended lifetime's use points.
usePoints.push_back(scopeEnd);
if (scopeEnd->getOperandOwnership() == OperandOwnership::Reborrow)
visitReborrow(scopeEnd);
return true;
});
}
return true;
}
return findInnerTransitiveGuaranteedUses(guaranteedValue, usePoints);
}
// Find all use points of \p guaranteedValue within its borrow scope. If the
// guaranteed value introduces a borrow scope, then this includes the extended
// borrow scope by following reborrows.
bool swift::
findExtendedTransitiveGuaranteedUses(SILValue guaranteedValue,
SmallVectorImpl<Operand *> &usePoints) {
// Multiple paths may reach the same reborrows, and reborrow may even be
// recursive, so the working set requires a membership check.
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitReborrow = [&](Operand *reborrow) {
// Pop the reborrow. It should not appear in the use points of the
// extend lifetime.
assert(reborrow == usePoints.back());
usePoints.pop_back();
auto borrowedPhi =
BorrowingOperand(reborrow).getBorrowIntroducingUserResult();
reborrows.insert(borrowedPhi.value);
};
if (!findTransitiveGuaranteedUses(guaranteedValue, usePoints, visitReborrow))
return false;
// For guaranteed values that do not introduce a borrow scope, reborrows will
// be empty at this point.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
bool result =
findTransitiveGuaranteedUses(reborrows[idx], usePoints, visitReborrow);
// It is impossible to find a Pointer escape while traversing reborrows.
assert(result && "visiting reborrows always succeeds");
(void)result;
}
return true;
}
//===----------------------------------------------------------------------===//
// Borrowing Operand
//===----------------------------------------------------------------------===//
void BorrowingOperandKind::print(llvm::raw_ostream &os) const {
switch (value) {
case Kind::Invalid:
llvm_unreachable("Using an unreachable?!");
case Kind::BeginBorrow:
os << "BeginBorrow";
return;
case Kind::BeginApply:
os << "BeginApply";
return;
case Kind::Branch:
os << "Branch";
return;
case Kind::Apply:
os << "Apply";
return;
case Kind::TryApply:
os << "TryApply";
return;
case Kind::Yield:
os << "Yield";
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
BorrowingOperandKind kind) {
kind.print(os);
return os;
}
void BorrowingOperand::print(llvm::raw_ostream &os) const {
os << "BorrowScopeOperand:\n"
"Kind: " << kind << "\n"
"Value: " << op->get()
<< "User: " << *op->getUser();
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const BorrowingOperand &operand) {
operand.print(os);
return os;
}
bool BorrowingOperand::visitScopeEndingUses(
function_ref<bool(Operand *)> func) const {
switch (kind) {
case BorrowingOperandKind::Invalid:
llvm_unreachable("Using invalid case");
case BorrowingOperandKind::BeginBorrow:
for (auto *use : cast<BeginBorrowInst>(op->getUser())->getUses()) {
if (use->isLifetimeEnding()) {
if (!func(use))
return false;
}
}
return true;
case BorrowingOperandKind::BeginApply: {
auto *user = cast<BeginApplyInst>(op->getUser());
for (auto *use : user->getTokenResult()->getUses()) {
if (!func(use))
return false;
}
return true;
}
// These are instantaneous borrow scopes so there aren't any special end
// scope instructions.
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::Yield:
return true;
case BorrowingOperandKind::Branch: {
auto *br = cast<BranchInst>(op->getUser());
for (auto *use : br->getArgForOperand(op)->getUses())
if (use->isLifetimeEnding())
if (!func(use))
return false;
return true;
}
}
llvm_unreachable("Covered switch isn't covered");
}
bool BorrowingOperand::visitExtendedScopeEndingUses(
function_ref<bool(Operand *)> func) const {
if (hasBorrowIntroducingUser()) {
return visitBorrowIntroducingUserResults(
[func](BorrowedValue borrowedValue) {
return borrowedValue.visitExtendedLocalScopeEndingUses(func);
});
}
return visitScopeEndingUses(func);
}
bool BorrowingOperand::visitBorrowIntroducingUserResults(
function_ref<bool(BorrowedValue)> visitor) const {
switch (kind) {
case BorrowingOperandKind::Invalid:
llvm_unreachable("Using invalid case");
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::BeginApply:
case BorrowingOperandKind::Yield:
llvm_unreachable("Never has borrow introducer results!");
case BorrowingOperandKind::BeginBorrow: {
auto value = BorrowedValue(cast<BeginBorrowInst>(op->getUser()));
assert(value);
return visitor(value);
}
case BorrowingOperandKind::Branch: {
auto *bi = cast<BranchInst>(op->getUser());
auto value = BorrowedValue(
bi->getDestBB()->getArgument(op->getOperandNumber()));
assert(value && "guaranteed-to-unowned conversion not allowed on branches");
return visitor(value);
}
}
llvm_unreachable("Covered switch isn't covered?!");
}
BorrowedValue BorrowingOperand::getBorrowIntroducingUserResult() {
switch (kind) {
case BorrowingOperandKind::Invalid:
case BorrowingOperandKind::Apply:
case BorrowingOperandKind::TryApply:
case BorrowingOperandKind::BeginApply:
case BorrowingOperandKind::Yield:
return BorrowedValue();
case BorrowingOperandKind::BeginBorrow:
return BorrowedValue(cast<BeginBorrowInst>(op->getUser()));
case BorrowingOperandKind::Branch: {
auto *bi = cast<BranchInst>(op->getUser());
return BorrowedValue(bi->getDestBB()->getArgument(op->getOperandNumber()));
}
}
llvm_unreachable("covered switch");
}
void BorrowingOperand::getImplicitUses(
SmallVectorImpl<Operand *> &foundUses,
std::function<void(Operand *)> *errorFunction) const {
visitScopeEndingUses([&](Operand *op) {
foundUses.push_back(op);
return true;
});
}
//===----------------------------------------------------------------------===//
// Borrow Introducers
//===----------------------------------------------------------------------===//
void BorrowedValueKind::print(llvm::raw_ostream &os) const {
switch (value) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
os << "SILFunctionArgument";
return;
case BorrowedValueKind::BeginBorrow:
os << "BeginBorrowInst";
return;
case BorrowedValueKind::LoadBorrow:
os << "LoadBorrowInst";
return;
case BorrowedValueKind::Phi:
os << "Phi";
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
void BorrowedValue::print(llvm::raw_ostream &os) const {
os << "BorrowScopeIntroducingValue:\n"
"Kind: " << kind << "\n"
"Value: " << value;
}
void BorrowedValue::getLocalScopeEndingInstructions(
SmallVectorImpl<SILInstruction *> &scopeEndingInsts) const {
assert(isLocalScope() && "Should only call this given a local scope");
switch (kind) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
llvm_unreachable("Should only call this with a local scope");
case BorrowedValueKind::BeginBorrow:
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::Phi:
for (auto *use : value->getUses()) {
if (use->isLifetimeEnding()) {
scopeEndingInsts.push_back(use->getUser());
}
}
return;
}
llvm_unreachable("Covered switch isn't covered?!");
}
// Note: BorrowedLifetimeExtender assumes no intermediate values between a
// borrow introducer and its reborrow. The borrowed value must be an operand of
// the reborrow.
bool BorrowedValue::visitLocalScopeEndingUses(
function_ref<bool(Operand *)> visitor) const {
assert(isLocalScope() && "Should only call this given a local scope");
switch (kind) {
case BorrowedValueKind::Invalid:
llvm_unreachable("Using invalid case?!");
case BorrowedValueKind::SILFunctionArgument:
llvm_unreachable("Should only call this with a local scope");
case BorrowedValueKind::LoadBorrow:
case BorrowedValueKind::BeginBorrow:
case BorrowedValueKind::Phi:
for (auto *use : value->getUses()) {
if (use->isLifetimeEnding()) {
if (!visitor(use))
return false;
}
}
return true;
}
llvm_unreachable("Covered switch isn't covered?!");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
BorrowedValueKind kind) {
kind.print(os);
return os;
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const BorrowedValue &value) {
value.print(os);
return os;
}
bool BorrowedValue::areUsesWithinScope(
ArrayRef<Operand *> uses, SmallVectorImpl<Operand *> &scratchSpace,
DeadEndBlocks &deadEndBlocks) const {
// Make sure that we clear our scratch space/utilities before we exit.
SWIFT_DEFER {
scratchSpace.clear();
};
// First make sure that we actually have a local scope. If we have a non-local
// scope, then we have something (like a SILFunctionArgument) where a larger
// semantic construct (in the case of SILFunctionArgument, the function
// itself) acts as the scope. So we already know that our passed in
// instructions must be in the same scope.
if (!isLocalScope())
return true;
// Otherwise, gather up our local scope ending instructions, looking through
// guaranteed phi nodes.
visitExtendedLocalScopeEndingUses([&scratchSpace](Operand *op) {
scratchSpace.emplace_back(op);
return true;
});
LinearLifetimeChecker checker(deadEndBlocks);
return checker.validateLifetime(value, scratchSpace, uses);
}
// The visitor \p func is only called on final scope-ending uses, not reborrows.
bool BorrowedValue::visitExtendedLocalScopeEndingUses(
function_ref<bool(Operand *)> func) const {
assert(isLocalScope());
SmallPtrSetVector<SILValue, 4> reborrows;
auto visitEnd = [&](Operand *scopeEndingUse) {
if (scopeEndingUse->getOperandOwnership() == OperandOwnership::Reborrow) {
BorrowingOperand(scopeEndingUse).visitBorrowIntroducingUserResults(
[&](BorrowedValue borrowedValue) {
reborrows.insert(borrowedValue.value);
return true;
});
return true;
}
return func(scopeEndingUse);
};
if (!visitLocalScopeEndingUses(visitEnd))
return false;
// reborrows grows in this loop.
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
if (!BorrowedValue(reborrows[idx]).visitLocalScopeEndingUses(visitEnd))
return false;
}
return true;
}
bool BorrowedValue::visitInteriorPointerOperandHelper(
function_ref<void(InteriorPointerOperand)> func,
BorrowedValue::InteriorPointerOperandVisitorKind kind) const {
using Kind = BorrowedValue::InteriorPointerOperandVisitorKind;
SmallVector<Operand *, 32> worklist(value->getUses());
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
if (auto interiorPointer = InteriorPointerOperand(op)) {
func(interiorPointer);
continue;
}
if (auto borrowingOperand = BorrowingOperand(op)) {
switch (kind) {
case Kind::NoNestedNoReborrows:
// We do not look through nested things and or reborrows, so just
// continue.
continue;
case Kind::YesNestedNoReborrows:
// We only look through nested borrowing operands, we never look through
// reborrows though.
if (borrowingOperand.isReborrow())
continue;
break;
case Kind::YesNestedYesReborrows:
// Look through everything!
break;
}
borrowingOperand.visitBorrowIntroducingUserResults([&](auto bv) {
for (auto *use : bv->getUses()) {
if (auto intPtrOperand = InteriorPointerOperand(use)) {
func(intPtrOperand);
continue;
}
worklist.push_back(use);
}
return true;
});
continue;
}
auto *user = op->getUser();
if (isa<DebugValueInst>(user) || isa<SuperMethodInst>(user) ||
isa<ClassMethodInst>(user) || isa<CopyValueInst>(user) ||
isa<EndBorrowInst>(user) || isa<ApplyInst>(user) ||
isa<StoreInst>(user) || isa<PartialApplyInst>(user) ||
isa<UnmanagedRetainValueInst>(user) ||
isa<UnmanagedReleaseValueInst>(user) ||
isa<UnmanagedAutoreleaseValueInst>(user)) {
continue;
}
// These are interior pointers that have not had support yet added for them.
if (isa<ProjectExistentialBoxInst>(user)) {
continue;
}
// Look through object.
if (auto *svi = dyn_cast<SingleValueInstruction>(user)) {
if (Projection::isObjectProjection(svi)) {
for (SILValue result : user->getResults()) {
llvm::copy(result->getUses(), std::back_inserter(worklist));
}
continue;
}
}
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// InteriorPointerOperand
//===----------------------------------------------------------------------===//
bool InteriorPointerOperand::findTransitiveUsesForAddress(
SILValue projectedAddress, SmallVectorImpl<Operand *> &foundUses,
std::function<void(Operand *)> *onError) {
SmallVector<Operand *, 8> worklist(projectedAddress->getUses());
bool foundError = false;
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
// Skip type dependent operands.
if (op->isTypeDependent())
continue;
// Before we do anything, add this operand to our implicit regular user
// list.
foundUses.push_back(op);
// Then update the worklist with new things to find if we recognize this
// inst and then continue. If we fail, we emit an error at the bottom of the
// loop that we didn't recognize the user.
auto *user = op->getUser();
// First, eliminate "end point uses" that we just need to check liveness at
// and do not need to check transitive uses of.
if (isa<LoadInst>(user) || isa<CopyAddrInst>(user) ||
isIncidentalUse(user) || isa<StoreInst>(user) ||
isa<PartialApplyInst>(user) || isa<DestroyAddrInst>(user) ||
isa<AssignInst>(user) || isa<AddressToPointerInst>(user) ||
isa<YieldInst>(user) || isa<LoadUnownedInst>(user) ||
isa<StoreUnownedInst>(user) || isa<EndApplyInst>(user) ||
isa<LoadWeakInst>(user) || isa<StoreWeakInst>(user) ||
isa<AssignByWrapperInst>(user) || isa<BeginUnpairedAccessInst>(user) ||
isa<EndUnpairedAccessInst>(user) || isa<WitnessMethodInst>(user) ||
isa<SwitchEnumAddrInst>(user) || isa<CheckedCastAddrBranchInst>(user) ||
isa<SelectEnumAddrInst>(user) || isa<InjectEnumAddrInst>(user) ||
isa<IsUniqueInst>(user)) {
continue;
}
// Then handle users that we need to look at transitive uses of.
if (Projection::isAddressProjection(user) ||
isa<ProjectBlockStorageInst>(user) ||
isa<OpenExistentialAddrInst>(user) ||
isa<InitExistentialAddrInst>(user) || isa<InitEnumDataAddrInst>(user) ||
isa<BeginAccessInst>(user) || isa<TailAddrInst>(user) ||
isa<IndexAddrInst>(user) || isa<StoreBorrowInst>(user) ||
isa<UnconditionalCheckedCastAddrInst>(user) ||
isa<UncheckedAddrCastInst>(user)
|| isa<MarkFunctionEscapeInst>(user)) {
for (SILValue r : user->getResults()) {
llvm::copy(r->getUses(), std::back_inserter(worklist));
}
continue;
}
if (auto *builtin = dyn_cast<BuiltinInst>(user)) {
if (auto kind = builtin->getBuiltinKind()) {
if (*kind == BuiltinValueKind::TSanInoutAccess) {
continue;
}
}
}
// If we have a load_borrow, add it's end scope to the liveness requirement.
if (auto *lbi = dyn_cast<LoadBorrowInst>(user)) {
transform(lbi->getEndBorrows(), std::back_inserter(foundUses),
[](EndBorrowInst *ebi) { return &ebi->getAllOperands()[0]; });
continue;
}
// TODO: Merge this into the full apply site code below.
if (auto *beginApply = dyn_cast<BeginApplyInst>(user)) {
// TODO: Just add this to implicit regular user list?
llvm::copy(beginApply->getTokenResult()->getUses(),
std::back_inserter(foundUses));
continue;
}
if (auto fas = FullApplySite::isa(user)) {
continue;
}
if (auto *mdi = dyn_cast<MarkDependenceInst>(user)) {
// If this is the base, just treat it as a liveness use.
if (op->get() == mdi->getBase()) {
continue;
}
// If we are the value use, look through it.
llvm::copy(mdi->getUses(), std::back_inserter(worklist));
continue;
}
// We were unable to recognize this user, so return true that we failed.
if (onError) {
(*onError)(op);
}
foundError = true;
}
// We were able to recognize all of the uses of the address, so return false
// that we did not find any errors.
return foundError;
}
// Determine whether \p address may be in a borrow scope and if so record the
// InteriorPointerOperand that produces the address from a guaranteed value.
BorrowedAddress::BorrowedAddress(SILValue address) {
assert(address->getType().isAddress());
auto storageWithBase = AccessStorageWithBase::compute(address);
switch (storageWithBase.storage.getKind()) {
case AccessStorage::Argument:
case AccessStorage::Stack:
case AccessStorage::Global:
// Unidentified storage is from an "escaped pointer", so it need not be
// restricted to a borrow scope.
case AccessStorage::Unidentified:
this->mayBeBorrowed = false;
return;
case AccessStorage::Box:
case AccessStorage::Yield:
case AccessStorage::Class:
case AccessStorage::Tail:
// The base object might be within a borrow scope.
break;
case AccessStorage::Nested:
llvm_unreachable("unexpected storage");
};
auto base = storageWithBase.base;
if (!base)
return; // bail on unexpected patterns
auto intPtrOp = InteriorPointerOperand::inferFromResult(base);
if (!intPtrOp)
return;
SILValue nonAddressValue = intPtrOp.operand->get();
if (nonAddressValue->getOwnershipKind() != OwnershipKind::Guaranteed) {
this->mayBeBorrowed = false;
return;
}
this->interiorPointerOp = intPtrOp;
}
//===----------------------------------------------------------------------===//
// Owned Value Introducers
//===----------------------------------------------------------------------===//
void OwnedValueIntroducerKind::print(llvm::raw_ostream &os) const {
switch (value) {
case OwnedValueIntroducerKind::Invalid:
llvm_unreachable("Using invalid case?!");
case OwnedValueIntroducerKind::Apply:
os << "Apply";
return;
case OwnedValueIntroducerKind::BeginApply:
os << "BeginApply";
return;
case OwnedValueIntroducerKind::TryApply:
os << "TryApply";
return;
case OwnedValueIntroducerKind::Copy:
os << "Copy";
return;
case OwnedValueIntroducerKind::LoadCopy:
os << "LoadCopy";
return;
case OwnedValueIntroducerKind::LoadTake:
os << "LoadTake";
return;
case OwnedValueIntroducerKind::Phi:
os << "Phi";
return;
case OwnedValueIntroducerKind::Struct:
os << "Struct";
return;
case OwnedValueIntroducerKind::Tuple:
os << "Tuple";
return;
case OwnedValueIntroducerKind::FunctionArgument:
os << "FunctionArgument";
return;
case OwnedValueIntroducerKind::PartialApplyInit:
os << "PartialApplyInit";
return;
case OwnedValueIntroducerKind::AllocBoxInit:
os << "AllocBoxInit";
return;
case OwnedValueIntroducerKind::AllocRefInit:
os << "AllocRefInit";
return;
}
llvm_unreachable("Covered switch isn't covered");
}
//===----------------------------------------------------------------------===//
// Introducer Searching Routines
//===----------------------------------------------------------------------===//
bool swift::getAllBorrowIntroducingValues(SILValue inputValue,
SmallVectorImpl<BorrowedValue> &out) {
if (inputValue.getOwnershipKind() != OwnershipKind::Guaranteed)
return false;
SmallVector<SILValue, 32> worklist;
worklist.emplace_back(inputValue);
while (!worklist.empty()) {
SILValue value = worklist.pop_back_val();
// First check if v is an introducer. If so, stash it and continue.
if (auto scopeIntroducer = BorrowedValue(value)) {
out.push_back(scopeIntroducer);
continue;
}
// If v produces .none ownership, then we can ignore it. It is important
// that we put this before checking for guaranteed forwarding instructions,
// since we want to ignore guaranteed forwarding instructions that in this
// specific case produce a .none value.
if (value.getOwnershipKind() == OwnershipKind::None)
continue;
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingBorrow(value)) {
if (auto *i = value->getDefiningInstruction()) {
llvm::copy(i->getOperandValues(true /*skip type dependent ops*/),
std::back_inserter(worklist));
continue;
}
// Otherwise, we should have a block argument that is defined by a single
// predecessor terminator.
auto *arg = cast<SILPhiArgument>(value);
auto *termInst = arg->getSingleTerminator();
assert(termInst && termInst->isTransformationTerminator());
assert(termInst->getNumOperands() == 1 &&
"Transforming terminators should always have a single operand");
worklist.push_back(termInst->getAllOperands()[0].get());
continue;
}
// Otherwise, this is an introducer we do not understand. Bail and return
// false.
return false;
}
return true;
}
BorrowedValue swift::getSingleBorrowIntroducingValue(SILValue inputValue) {
if (inputValue.getOwnershipKind() != OwnershipKind::Guaranteed)
return {};
SILValue currentValue = inputValue;
while (true) {
// First check if our initial value is an introducer. If we have one, just
// return it.
if (auto scopeIntroducer = BorrowedValue(currentValue)) {
return scopeIntroducer;
}
if (currentValue.getOwnershipKind() == OwnershipKind::None)
return {};
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingBorrow(currentValue)) {
if (auto *i = currentValue->getDefiningInstruction()) {
auto instOps = i->getOperandValues(true /*ignore type dependent ops*/);
// If we have multiple incoming values, return .None. We can't handle
// this.
auto begin = instOps.begin();
if (std::next(begin) != instOps.end()) {
return {};
}
// Otherwise, set currentOp to the single operand and continue.
currentValue = *begin;
continue;
}
// Otherwise, we should have a block argument that is defined by a single
// predecessor terminator.
auto *arg = cast<SILPhiArgument>(currentValue);
auto *termInst = arg->getSingleTerminator();
assert(termInst && termInst->isTransformationTerminator());
assert(termInst->getNumOperands() == 1 &&
"Transformation terminators should only have single operands");
currentValue = termInst->getAllOperands()[0].get();
continue;
}
// Otherwise, this is an introducer we do not understand. Bail and return
// None.
return {};
}
llvm_unreachable("Should never hit this");
}
bool swift::getAllOwnedValueIntroducers(
SILValue inputValue, SmallVectorImpl<OwnedValueIntroducer> &out) {
if (inputValue.getOwnershipKind() != OwnershipKind::Owned)
return false;
SmallVector<SILValue, 32> worklist;
worklist.emplace_back(inputValue);
while (!worklist.empty()) {
SILValue value = worklist.pop_back_val();
// First check if v is an introducer. If so, stash it and continue.
if (auto introducer = OwnedValueIntroducer::get(value)) {
out.push_back(introducer);
continue;
}
// If v produces .none ownership, then we can ignore it. It is important
// that we put this before checking for guaranteed forwarding instructions,
// since we want to ignore guaranteed forwarding instructions that in this
// specific case produce a .none value.
if (value.getOwnershipKind() == OwnershipKind::None)
continue;
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingConsume(value)) {
if (auto *i = value->getDefiningInstruction()) {
llvm::copy(i->getOperandValues(true /*skip type dependent ops*/),
std::back_inserter(worklist));
continue;
}
// Otherwise, we should have a block argument that is defined by a single
// predecessor terminator.
auto *arg = cast<SILPhiArgument>(value);
auto *termInst = arg->getSingleTerminator();
assert(termInst && termInst->isTransformationTerminator());
assert(termInst->getNumOperands() == 1 &&
"Transforming terminators should always have a single operand");
worklist.push_back(termInst->getAllOperands()[0].get());
continue;
}
// Otherwise, this is an introducer we do not understand. Bail and return
// false.
return false;
}
return true;
}
OwnedValueIntroducer swift::getSingleOwnedValueIntroducer(SILValue inputValue) {
if (inputValue.getOwnershipKind() != OwnershipKind::Owned)
return {};
SILValue currentValue = inputValue;
while (true) {
// First check if our initial value is an introducer. If we have one, just
// return it.
if (auto introducer = OwnedValueIntroducer::get(currentValue)) {
return introducer;
}
// Otherwise if v is an ownership forwarding value, add its defining
// instruction
if (isForwardingConsume(currentValue)) {
if (auto *i = currentValue->getDefiningInstruction()) {
auto instOps = i->getOperandValues(true /*ignore type dependent ops*/);
// If we have multiple incoming values, return .None. We can't handle
// this.
auto begin = instOps.begin();
if (std::next(begin) != instOps.end()) {
return {};
}
// Otherwise, set currentOp to the single operand and continue.
currentValue = *begin;
continue;
}
// Otherwise, we should have a block argument that is defined by a single
// predecessor terminator.
auto *arg = cast<SILPhiArgument>(currentValue);
auto *termInst = arg->getSingleTerminator();
assert(termInst && termInst->isTransformationTerminator());
assert(termInst->getNumOperands()
- termInst->getNumTypeDependentOperands() == 1 &&
"Transformation terminators should only have single operands");
currentValue = termInst->getAllOperands()[0].get();
continue;
}
// Otherwise, this is an introducer we do not understand. Bail and return
// None.
return {};
}
llvm_unreachable("Should never hit this");
}
//===----------------------------------------------------------------------===//
// Forwarding Operand
//===----------------------------------------------------------------------===//
ForwardingOperand::ForwardingOperand(Operand *use) {
if (use->isTypeDependent())
return;
if (!OwnershipForwardingMixin::isa(use->getUser())) {
return;
}
#ifndef NDEBUG
switch (use->getOperandOwnership()) {
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::ForwardingConsume:
case OperandOwnership::ForwardingBorrow:
break;
case OperandOwnership::NonUse:
case OperandOwnership::TrivialUse:
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::PointerEscape:
case OperandOwnership::BitwiseEscape:
case OperandOwnership::Borrow:
case OperandOwnership::DestroyingConsume:
case OperandOwnership::InteriorPointer:
case OperandOwnership::EndBorrow:
case OperandOwnership::Reborrow:
llvm_unreachable("this isn't the operand being forwarding!");
}
#endif
this->use = use;
}
ValueOwnershipKind ForwardingOperand::getOwnershipKind() const {
auto *user = use->getUser();
// NOTE: This if chain is meant to be a covered switch, so make sure to return
// in each if itself since we have an unreachable at the bottom to ensure if a
// new subclass of OwnershipForwardingInst is added
if (auto *ofsvi = dyn_cast<AllArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->getForwardingOwnershipKind();
if (auto *ofsvi = dyn_cast<FirstArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->getForwardingOwnershipKind();
if (auto *ofci = dyn_cast<OwnershipForwardingConversionInst>(user))
return ofci->getForwardingOwnershipKind();
if (auto *ofseib = dyn_cast<OwnershipForwardingSelectEnumInstBase>(user))
return ofseib->getForwardingOwnershipKind();
if (auto *ofmvi =
dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
assert(ofmvi->getNumOperands() == 1);
return ofmvi->getForwardingOwnershipKind();
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
assert(ofti->getNumOperands() == 1);
return ofti->getForwardingOwnershipKind();
}
llvm_unreachable("Unhandled forwarding inst?!");
}
void ForwardingOperand::setOwnershipKind(ValueOwnershipKind newKind) const {
auto *user = use->getUser();
// NOTE: This if chain is meant to be a covered switch, so make sure to return
// in each if itself since we have an unreachable at the bottom to ensure if a
// new subclass of OwnershipForwardingInst is added
if (auto *ofsvi = dyn_cast<AllArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->setForwardingOwnershipKind(newKind);
if (auto *ofsvi = dyn_cast<FirstArgOwnershipForwardingSingleValueInst>(user))
return ofsvi->setForwardingOwnershipKind(newKind);
if (auto *ofci = dyn_cast<OwnershipForwardingConversionInst>(user))
return ofci->setForwardingOwnershipKind(newKind);
if (auto *ofseib = dyn_cast<OwnershipForwardingSelectEnumInstBase>(user))
return ofseib->setForwardingOwnershipKind(newKind);
if (auto *ofmvi = dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
assert(ofmvi->getNumOperands() == 1);
if (!ofmvi->getOperand(0)->getType().isTrivial(*ofmvi->getFunction())) {
ofmvi->setForwardingOwnershipKind(newKind);
// TODO: Refactor this better.
if (auto *dsi = dyn_cast<DestructureStructInst>(ofmvi)) {
for (auto &result : dsi->getAllResultsBuffer()) {
if (result.getType().isTrivial(*dsi->getFunction()))
continue;
result.setOwnershipKind(newKind);
}
} else {
auto *dti = cast<DestructureTupleInst>(ofmvi);
for (auto &result : dti->getAllResultsBuffer()) {
if (result.getType().isTrivial(*dti->getFunction()))
continue;
result.setOwnershipKind(newKind);
}
}
}
return;
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
assert(ofti->getNumOperands() == 1);
if (!ofti->getOperand()->getType().isTrivial(*ofti->getFunction())) {
ofti->setForwardingOwnershipKind(newKind);
// Then convert all of its incoming values that are owned to be guaranteed.
for (auto &succ : ofti->getSuccessors()) {
auto *succBlock = succ.getBB();
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
continue;
for (auto *succArg : succBlock->getSILPhiArguments()) {
// If we have an any value, just continue.
if (!succArg->getType().isTrivial(*ofti->getFunction()))
continue;
succArg->setOwnershipKind(newKind);
}
}
}
return;
}
llvm_unreachable("Out of sync with OperandOwnership");
}
void ForwardingOperand::replaceOwnershipKind(ValueOwnershipKind oldKind,
ValueOwnershipKind newKind) const {
auto *user = use->getUser();
if (auto *fInst = dyn_cast<AllArgOwnershipForwardingSingleValueInst>(user))
if (fInst->getForwardingOwnershipKind() == oldKind)
return fInst->setForwardingOwnershipKind(newKind);
if (auto *fInst = dyn_cast<FirstArgOwnershipForwardingSingleValueInst>(user))
if (fInst->getForwardingOwnershipKind() == oldKind)
return fInst->setForwardingOwnershipKind(newKind);
if (auto *ofci = dyn_cast<OwnershipForwardingConversionInst>(user))
if (ofci->getForwardingOwnershipKind() == oldKind)
return ofci->setForwardingOwnershipKind(newKind);
if (auto *ofseib = dyn_cast<OwnershipForwardingSelectEnumInstBase>(user))
if (ofseib->getForwardingOwnershipKind() == oldKind)
return ofseib->setForwardingOwnershipKind(newKind);
if (auto *ofmvi = dyn_cast<OwnershipForwardingMultipleValueInstruction>(user)) {
if (ofmvi->getForwardingOwnershipKind() == oldKind) {
ofmvi->setForwardingOwnershipKind(newKind);
}
// TODO: Refactor this better.
if (auto *dsi = dyn_cast<DestructureStructInst>(ofmvi)) {
for (auto &result : dsi->getAllResultsBuffer()) {
if (result.getOwnershipKind() != oldKind)
continue;
result.setOwnershipKind(newKind);
}
} else {
auto *dti = cast<DestructureTupleInst>(ofmvi);
for (auto &result : dti->getAllResultsBuffer()) {
if (result.getOwnershipKind() != oldKind)
continue;
result.setOwnershipKind(newKind);
}
}
return;
}
if (auto *ofti = dyn_cast<OwnershipForwardingTermInst>(user)) {
if (ofti->getForwardingOwnershipKind() == oldKind) {
ofti->setForwardingOwnershipKind(newKind);
// Then convert all of its incoming values that are owned to be guaranteed.
for (auto &succ : ofti->getSuccessors()) {
auto *succBlock = succ.getBB();
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
continue;
for (auto *succArg : succBlock->getSILPhiArguments()) {
// If we have an any value, just continue.
if (succArg->getOwnershipKind() == oldKind) {
succArg->setOwnershipKind(newKind);
}
}
}
}
return;
}
llvm_unreachable("Missing Case! Out of sync with OperandOwnership");
}
SILValue ForwardingOperand::getSingleForwardedValue() const {
if (auto *svi = dyn_cast<SingleValueInstruction>(use->getUser()))
return svi;
return SILValue();
}
bool ForwardingOperand::visitForwardedValues(
function_ref<bool(SILValue)> visitor) {
auto *user = use->getUser();
// See if we have a single value instruction... if we do that is always the
// transitive result.
if (auto *svi = dyn_cast<SingleValueInstruction>(user)) {
return visitor(svi);
}
if (auto *mvri = dyn_cast<MultipleValueInstruction>(user)) {
return llvm::all_of(mvri->getResults(), [&](SILValue value) {
if (value.getOwnershipKind() == OwnershipKind::None)
return true;
return visitor(value);
});
}
// This is an instruction like switch_enum and checked_cast_br that are
// "transforming terminators"... We know that this means that we should at
// most have a single phi argument.
auto *ti = cast<TermInst>(user);
return llvm::all_of(ti->getSuccessorBlocks(), [&](SILBasicBlock *succBlock) {
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
return true;
auto args = succBlock->getSILPhiArguments();
assert(args.size() == 1 && "Transforming terminator with multiple args?!");
return visitor(args[0]);
});
}
void swift::findTransitiveReborrowBaseValuePairs(
BorrowingOperand initialScopedOperand, SILValue origBaseValue,
function_ref<void(SILPhiArgument *, SILValue)> visitReborrowBaseValuePair) {
// We need a SetVector to make sure we don't revisit the same reborrow operand
// again.
SmallSetVector<std::tuple<Operand *, SILValue>, 4> worklist;
// Populate the worklist with reborrow and the base value
initialScopedOperand.visitScopeEndingUses([&](Operand *op) {
if (op->getOperandOwnership() == OperandOwnership::Reborrow) {
worklist.insert(std::make_tuple(op, origBaseValue));
}
return true;
});
// Size of worklist changes in this loop
for (unsigned idx = 0; idx < worklist.size(); idx++) {
Operand *reborrowOp;
SILValue baseValue;
std::tie(reborrowOp, baseValue) = worklist[idx];
BorrowingOperand borrowingOperand(reborrowOp);
assert(borrowingOperand.isReborrow());
auto *branchInst = cast<BranchInst>(reborrowOp->getUser());
auto *succBlock = branchInst->getDestBB();
auto *phiArg = cast<SILPhiArgument>(
succBlock->getArgument(reborrowOp->getOperandNumber()));
SILValue newBaseVal = baseValue;
// If the previous base value was also passed as a phi arg, that will be
// the new base value.
for (auto *arg : succBlock->getArguments()) {
if (arg->getIncomingPhiValue(branchInst->getParent()) == baseValue) {
newBaseVal = arg;
break;
}
}
// Call the visitor function
visitReborrowBaseValuePair(phiArg, newBaseVal);
BorrowedValue scopedValue(phiArg);
scopedValue.visitLocalScopeEndingUses([&](Operand *op) {
if (op->getOperandOwnership() == OperandOwnership::Reborrow) {
worklist.insert(std::make_tuple(op, newBaseVal));
}
return true;
});
}
}
void swift::visitTransitiveEndBorrows(
BorrowedValue beginBorrow,
function_ref<void(EndBorrowInst *)> visitEndBorrow) {
SmallSetVector<SILValue, 4> worklist;
worklist.insert(beginBorrow.value);
while (!worklist.empty()) {
auto val = worklist.pop_back_val();
for (auto *consumingUse : val->getConsumingUses()) {
auto *consumingUser = consumingUse->getUser();
if (auto *branch = dyn_cast<BranchInst>(consumingUser)) {
auto *succBlock = branch->getSingleSuccessorBlock();
auto *phiArg = cast<SILPhiArgument>(
succBlock->getArgument(consumingUse->getOperandNumber()));
worklist.insert(phiArg);
} else {
visitEndBorrow(cast<EndBorrowInst>(consumingUser));
}
}
}
}