Files
swift-mirror/lib/SILOptimizer/LoopTransforms/LICM.cpp
Ravi Kandhadai 935686460c [SIL Optimization] Create a new utility InstructionDeleter to delete instructions
and eliminate dead code. This is meant to be a replacement for the utility:
recursivelyDeleteTriviallyDeadInstructions. The new utility performs more aggresive
dead-code elimination for ownership SIL.

This patch also migrates most non-force-delete uses of
recursivelyDeleteTriviallyDeadInstructions to the new utility.
and migrates one force-delete use of recursivelyDeleteTriviallyDeadInstructions
(in IRGenPrepare) to use the new utility.
2019-12-18 13:17:17 -08:00

1077 lines
36 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- LICM.cpp - Loop invariant code motion ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-licm"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/AccessedStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
namespace {
/// Instructions which can be hoisted:
/// loads, function calls without side effects and (some) exclusivity checks
using InstSet = llvm::SmallPtrSet<SILInstruction *, 8>;
using InstVector = llvm::SmallVector<SILInstruction *, 8>;
/// Returns true if the \p SideEffectInsts set contains any memory writes which
/// may alias with the memory addressed by \a LI.
template <SILInstructionKind K, typename T>
static bool mayWriteTo(AliasAnalysis *AA, InstSet &SideEffectInsts,
UnaryInstructionBase<K, T> *Inst) {
for (auto *I : SideEffectInsts)
if (AA->mayWriteToMemory(I, Inst->getOperand())) {
LLVM_DEBUG(llvm::dbgs() << " mayWriteTo\n" << *I << " to "
<< *Inst << "\n");
return true;
}
return false;
}
/// Returns true if \p I is a store to \p addr.
static StoreInst *isStoreToAddr(SILInstruction *I, SILValue addr) {
auto *SI = dyn_cast<StoreInst>(I);
if (!SI)
return nullptr;
// TODO: handle StoreOwnershipQualifier::Init
if (SI->getOwnershipQualifier() == StoreOwnershipQualifier::Init)
return nullptr;
if (SI->getDest() != addr)
return nullptr;
return SI;
}
/// Returns true if \p I is a load from \p addr or a projected address from
/// \p addr.
static LoadInst *isLoadFromAddr(SILInstruction *I, SILValue addr) {
auto *LI = dyn_cast_or_null<LoadInst>(I);
if (!LI)
return nullptr;
// TODO: handle StoreOwnershipQualifier::Take
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take)
return nullptr;
SILValue v = LI->getOperand();
for (;;) {
if (v == addr) {
return LI;
} else if (isa<StructElementAddrInst>(v) || isa<TupleElementAddrInst>(v)) {
v = cast<SingleValueInstruction>(v)->getOperand(0);
} else {
return nullptr;
}
}
}
/// Returns true if all instructions in \p SideEffectInsts which may alias with
/// \p addr are either loads or stores from \p addr.
static bool isOnlyLoadedAndStored(AliasAnalysis *AA, InstSet &SideEffectInsts,
SILValue addr) {
for (auto *I : SideEffectInsts) {
if (AA->mayReadOrWriteMemory(I, addr) &&
!isStoreToAddr(I, addr) && !isLoadFromAddr(I, addr)) {
return false;
}
}
return true;
}
/// Returns true if the \p SideEffectInsts set contains any memory writes which
/// may alias with any memory which is read by \p AI.
/// Note: This function should only be called on a read-only apply!
static bool mayWriteTo(AliasAnalysis *AA, SideEffectAnalysis *SEA,
InstSet &SideEffectInsts, ApplyInst *AI) {
FunctionSideEffects E;
SEA->getCalleeEffects(E, AI);
assert(E.getMemBehavior(RetainObserveKind::IgnoreRetains) <=
SILInstruction::MemoryBehavior::MayRead &&
"apply should only read from memory");
assert(!E.getGlobalEffects().mayRead() &&
"apply should not have global effects");
for (unsigned Idx = 0, End = AI->getNumArguments(); Idx < End; ++Idx) {
auto &ArgEffect = E.getParameterEffects()[Idx];
assert(!ArgEffect.mayRelease() && "apply should only read from memory");
if (!ArgEffect.mayRead())
continue;
SILValue Arg = AI->getArgument(Idx);
// Check if the memory addressed by the argument may alias any writes.
for (auto *I : SideEffectInsts) {
if (AA->mayWriteToMemory(I, Arg)) {
LLVM_DEBUG(llvm::dbgs() << " mayWriteTo\n" << *I << " to "
<< *AI << "\n");
return true;
}
}
}
return false;
}
// When Hoisting / Sinking,
// Don't descend into control-dependent code.
// Only traverse into basic blocks that dominate all exits.
static void getDominatingBlocks(SmallVectorImpl<SILBasicBlock *> &domBlocks,
SILLoop *Loop, DominanceInfo *DT) {
auto HeaderBB = Loop->getHeader();
auto DTRoot = DT->getNode(HeaderBB);
SmallVector<SILBasicBlock *, 8> ExitingBBs;
Loop->getExitingBlocks(ExitingBBs);
for (llvm::df_iterator<DominanceInfoNode *> It = llvm::df_begin(DTRoot),
E = llvm::df_end(DTRoot);
It != E;) {
auto *CurBB = It->getBlock();
// Don't decent into control-dependent code. Only traverse into basic blocks
// that dominate all exits.
if (!std::all_of(ExitingBBs.begin(), ExitingBBs.end(),
[=](SILBasicBlock *ExitBB) {
return DT->dominates(CurBB, ExitBB);
})) {
LLVM_DEBUG(llvm::dbgs() << " skipping conditional block "
<< *CurBB << "\n");
It.skipChildren();
continue;
}
domBlocks.push_back(CurBB);
// Next block in dominator tree.
++It;
}
}
/// Returns true if \p v is loop invariant in \p L.
static bool isLoopInvariant(SILValue v, SILLoop *L) {
if (SILBasicBlock *parent = v->getParentBlock())
return !L->contains(parent);
return false;
}
static bool hoistInstruction(DominanceInfo *DT, SILInstruction *Inst,
SILLoop *Loop, SILBasicBlock *&Preheader) {
auto Operands = Inst->getAllOperands();
if (!std::all_of(Operands.begin(), Operands.end(), [=](Operand &Op) {
return isLoopInvariant(Op.get(), Loop);
})) {
LLVM_DEBUG(llvm::dbgs() << " loop variant operands\n");
return false;
}
auto mvBefore = Preheader->getTerminator();
ArraySemanticsCall semCall(Inst);
if (semCall.canHoist(mvBefore, DT)) {
semCall.hoist(mvBefore, DT);
} else {
Inst->moveBefore(mvBefore);
}
return true;
}
static bool hoistInstructions(SILLoop *Loop, DominanceInfo *DT,
InstSet &HoistUpSet) {
LLVM_DEBUG(llvm::dbgs() << " Hoisting instructions.\n");
auto Preheader = Loop->getLoopPreheader();
assert(Preheader && "Expected a preheader");
bool Changed = false;
SmallVector<SILBasicBlock *, 8> domBlocks;
getDominatingBlocks(domBlocks, Loop, DT);
for (auto *CurBB : domBlocks) {
// We know that the block is guaranteed to be executed. Hoist if we can.
for (auto InstIt = CurBB->begin(), E = CurBB->end(); InstIt != E;) {
SILInstruction *Inst = &*InstIt;
++InstIt;
LLVM_DEBUG(llvm::dbgs() << " looking at " << *Inst);
if (!HoistUpSet.count(Inst)) {
continue;
}
if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Hoisted " << *Inst);
Changed = true;
}
}
return Changed;
}
/// Summary of side effect instructions occurring in the loop tree rooted at \p
/// Loop. This includes all writes of the sub loops and the loop itself.
struct LoopNestSummary {
SILLoop *Loop;
InstSet SideEffectInsts;
LoopNestSummary(SILLoop *Curr) : Loop(Curr) {}
void copySummary(LoopNestSummary &Other) {
SideEffectInsts.insert(Other.SideEffectInsts.begin(), Other.SideEffectInsts.end());
}
LoopNestSummary(const LoopNestSummary &) = delete;
LoopNestSummary &operator=(const LoopNestSummary &) = delete;
LoopNestSummary(LoopNestSummary &&) = delete;
};
static unsigned getEdgeIndex(SILBasicBlock *BB, SILBasicBlock *ExitingBB) {
auto Succs = ExitingBB->getSuccessors();
for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
SILBasicBlock *CurrBB = Succs[EdgeIdx];
if (CurrBB == BB) {
return EdgeIdx;
}
}
llvm_unreachable("BB is not a Successor");
}
static bool sinkInstruction(DominanceInfo *DT,
std::unique_ptr<LoopNestSummary> &LoopSummary,
SILInstruction *Inst, SILLoopInfo *LI) {
auto *Loop = LoopSummary->Loop;
SmallVector<SILBasicBlock *, 8> ExitBBs;
Loop->getExitBlocks(ExitBBs);
SmallVector<SILBasicBlock *, 8> NewExitBBs;
SmallVector<SILBasicBlock *, 8> ExitingBBs;
Loop->getExitingBlocks(ExitingBBs);
auto *ExitBB = Loop->getExitBlock();
bool Changed = false;
for (auto *ExitingBB : ExitingBBs) {
SmallVector<SILBasicBlock *, 8> BBSuccessors;
auto Succs = ExitingBB->getSuccessors();
for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
SILBasicBlock *BB = Succs[EdgeIdx];
BBSuccessors.push_back(BB);
}
while (!BBSuccessors.empty()) {
SILBasicBlock *BB = BBSuccessors.pop_back_val();
if (std::find(NewExitBBs.begin(), NewExitBBs.end(), BB) !=
NewExitBBs.end()) {
// Already got a copy there
continue;
}
auto EdgeIdx = getEdgeIndex(BB, ExitingBB);
SILBasicBlock *OutsideBB = nullptr;
if (std::find(ExitBBs.begin(), ExitBBs.end(), BB) != ExitBBs.end()) {
auto *SplitBB =
splitCriticalEdge(ExitingBB->getTerminator(), EdgeIdx, DT, LI);
OutsideBB = SplitBB ? SplitBB : BB;
NewExitBBs.push_back(OutsideBB);
}
if (!OutsideBB) {
continue;
}
// If OutsideBB already contains Inst -> skip
// This might happen if we have a conditional control flow
// And a pair
// We hoisted the first part, we can safely ignore sinking
auto matchPred = [&](SILInstruction &CurrIns) {
return Inst->isIdenticalTo(&CurrIns);
};
if (std::find_if(OutsideBB->begin(), OutsideBB->end(), matchPred) !=
OutsideBB->end()) {
LLVM_DEBUG(llvm::errs() << " instruction already at exit BB "
<< *Inst);
ExitBB = nullptr;
} else if (ExitBB) {
// easy case
LLVM_DEBUG(llvm::errs() << " moving instruction to exit BB " << *Inst);
Inst->moveBefore(&*OutsideBB->begin());
} else {
LLVM_DEBUG(llvm::errs() << " cloning instruction to exit BB "
<< *Inst);
Inst->clone(&*OutsideBB->begin());
}
Changed = true;
}
}
if (Changed && !ExitBB) {
// Created clones of instruction
// Remove it from the side-effect set - dangling pointer
LoopSummary->SideEffectInsts.erase(Inst);
Inst->getParent()->erase(Inst);
}
return Changed;
}
static bool sinkInstructions(std::unique_ptr<LoopNestSummary> &LoopSummary,
DominanceInfo *DT, SILLoopInfo *LI,
InstVector &SinkDownSet) {
auto *Loop = LoopSummary->Loop;
LLVM_DEBUG(llvm::errs() << " Sink instructions attempt\n");
SmallVector<SILBasicBlock *, 8> domBlocks;
getDominatingBlocks(domBlocks, Loop, DT);
bool Changed = false;
for (auto *Inst : SinkDownSet) {
// only sink if the block is guaranteed to be executed.
if (std::find(domBlocks.begin(), domBlocks.end(), Inst->getParent()) ==
domBlocks.end()) {
continue;
}
Changed |= sinkInstruction(DT, LoopSummary, Inst, LI);
}
return Changed;
}
static void getEndAccesses(BeginAccessInst *BI,
SmallVectorImpl<EndAccessInst *> &EndAccesses) {
for (auto Use : BI->getUses()) {
auto *User = Use->getUser();
auto *EI = dyn_cast<EndAccessInst>(User);
if (!EI) {
continue;
}
EndAccesses.push_back(EI);
}
}
static bool
hoistSpecialInstruction(std::unique_ptr<LoopNestSummary> &LoopSummary,
DominanceInfo *DT, SILLoopInfo *LI, InstVector &Special) {
auto *Loop = LoopSummary->Loop;
LLVM_DEBUG(llvm::errs() << " Hoist and Sink pairs attempt\n");
auto Preheader = Loop->getLoopPreheader();
assert(Preheader && "Expected a preheader");
bool Changed = false;
for (auto *Inst : Special) {
if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
continue;
}
if (auto *BI = dyn_cast<BeginAccessInst>(Inst)) {
SmallVector<EndAccessInst *, 2> Ends;
getEndAccesses(BI, Ends);
LLVM_DEBUG(llvm::dbgs() << "Hoisted BeginAccess " << *BI);
for (auto *instSink : Ends) {
if (!sinkInstruction(DT, LoopSummary, instSink, LI)) {
llvm_unreachable("LICM: Could not perform must-sink instruction");
}
}
LLVM_DEBUG(llvm::errs() << " Successfully hoisted and sank pair\n");
} else {
LLVM_DEBUG(llvm::dbgs() << "Hoisted RefElementAddr "
<< *static_cast<RefElementAddrInst *>(Inst));
}
Changed = true;
}
return Changed;
}
/// Optimize the loop tree bottom up propagating loop's summaries up the
/// loop tree.
class LoopTreeOptimization {
llvm::DenseMap<SILLoop *, std::unique_ptr<LoopNestSummary>>
LoopNestSummaryMap;
SmallVector<SILLoop *, 8> BotUpWorkList;
SILLoopInfo *LoopInfo;
AliasAnalysis *AA;
SideEffectAnalysis *SEA;
DominanceInfo *DomTree;
AccessedStorageAnalysis *ASA;
bool Changed;
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
bool RunsOnHighLevelSIL;
/// Instructions that we may be able to hoist up
InstSet HoistUp;
/// Instructions that we may be able to sink down
InstVector SinkDown;
/// Load and store instructions that we may be able to move out of the loop.
InstVector LoadsAndStores;
/// All addresses of the \p LoadsAndStores instructions.
llvm::SetVector<SILValue> LoadAndStoreAddrs;
/// Hoistable Instructions that need special treatment
/// e.g. begin_access
InstVector SpecialHoist;
public:
LoopTreeOptimization(SILLoop *TopLevelLoop, SILLoopInfo *LI,
AliasAnalysis *AA, SideEffectAnalysis *SEA,
DominanceInfo *DT, AccessedStorageAnalysis *ASA,
bool RunsOnHighLevelSil)
: LoopInfo(LI), AA(AA), SEA(SEA), DomTree(DT), ASA(ASA), Changed(false),
RunsOnHighLevelSIL(RunsOnHighLevelSil) {
// Collect loops for a recursive bottom-up traversal in the loop tree.
BotUpWorkList.push_back(TopLevelLoop);
for (unsigned i = 0; i < BotUpWorkList.size(); ++i) {
auto *L = BotUpWorkList[i];
for (auto *SubLoop : *L)
BotUpWorkList.push_back(SubLoop);
}
}
/// Optimize this loop tree.
bool optimize();
protected:
/// Propagate the sub-loops' summaries up to the current loop.
void propagateSummaries(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// Collect a set of instructions that can be hoisted
void analyzeCurrentLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// Optimize the current loop nest.
bool optimizeLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// Move all loads and stores from/to \p addr out of the \p loop.
void hoistLoadsAndStores(SILValue addr, SILLoop *loop, InstVector &toDelete);
/// Move all loads and stores from all addresses in LoadAndStoreAddrs out of
/// the \p loop.
///
/// This is a combination of load hoisting and store sinking, e.g.
/// \code
/// preheader:
/// br header_block
/// header_block:
/// %x = load %not_aliased_addr
/// // use %x and define %y
/// store %y to %not_aliased_addr
/// ...
/// exit_block:
/// \endcode
/// is transformed to:
/// \code
/// preheader:
/// %x = load %not_aliased_addr
/// br header_block
/// header_block:
/// // use %x and define %y
/// ...
/// exit_block:
/// store %y to %not_aliased_addr
/// \endcode
bool hoistAllLoadsAndStores(SILLoop *loop);
};
} // end anonymous namespace
bool LoopTreeOptimization::optimize() {
// Process loops bottom up in the loop tree.
while (!BotUpWorkList.empty()) {
SILLoop *CurrentLoop = BotUpWorkList.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Processing loop " << *CurrentLoop);
// Collect all summary of all sub loops of the current loop. Since we
// process the loop tree bottom up they are guaranteed to be available in
// the map.
auto CurrLoopSummary = llvm::make_unique<LoopNestSummary>(CurrentLoop);
propagateSummaries(CurrLoopSummary);
// If the current loop changed, then we might reveal more instr to hoist
// For example, a fix_lifetime's operand, if hoisted outside,
// Might allow us to sink the instruction out of the loop
bool currChanged = false;
do {
// Analyze the current loop for instructions that can be hoisted.
analyzeCurrentLoop(CurrLoopSummary);
currChanged = optimizeLoop(CurrLoopSummary);
if (currChanged) {
CurrLoopSummary->SideEffectInsts.clear();
Changed = true;
}
// Reset the data structures for next loop in the list
HoistUp.clear();
SinkDown.clear();
SpecialHoist.clear();
} while (currChanged);
// Store the summary for parent loops to use.
LoopNestSummaryMap[CurrentLoop] = std::move(CurrLoopSummary);
}
return Changed;
}
void LoopTreeOptimization::propagateSummaries(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
for (auto *SubLoop : *CurrSummary->Loop) {
assert(LoopNestSummaryMap.count(SubLoop) && "Must have data for sub loops");
CurrSummary->copySummary(*LoopNestSummaryMap[SubLoop]);
LoopNestSummaryMap.erase(SubLoop);
}
}
static bool isSafeReadOnlyApply(SideEffectAnalysis *SEA, ApplyInst *AI) {
FunctionSideEffects E;
SEA->getCalleeEffects(E, AI);
if (E.getGlobalEffects().mayRead()) {
// If we have Global effects,
// we don't know which memory is read in the callee.
// Therefore we bail for safety
return false;
}
auto MB = E.getMemBehavior(RetainObserveKind::ObserveRetains);
return (MB <= SILInstruction::MemoryBehavior::MayRead);
}
static void checkSideEffects(swift::SILInstruction &Inst,
InstSet &SideEffectInsts) {
if (Inst.mayHaveSideEffects()) {
SideEffectInsts.insert(&Inst);
}
}
/// Returns true if the \p Inst follows the default hoisting heuristic
static bool canHoistUpDefault(SILInstruction *inst, SILLoop *Loop,
DominanceInfo *DT, bool RunsOnHighLevelSil) {
auto Preheader = Loop->getLoopPreheader();
if (!Preheader) {
return false;
}
if (isa<TermInst>(inst) || isa<AllocationInst>(inst) ||
isa<DeallocationInst>(inst)) {
return false;
}
if (inst->getMemoryBehavior() == SILInstruction::MemoryBehavior::None) {
return true;
}
if (!RunsOnHighLevelSil) {
return false;
}
// We cant hoist everything that is hoist-able
// The canHoist method does not do all the required analysis
// Some of the work is done at COW Array Opt
// TODO: Refactor COW Array Opt + canHoist - radar 41601468
ArraySemanticsCall semCall(inst);
switch (semCall.getKind()) {
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
return semCall.canHoist(Preheader->getTerminator(), DT);
default:
return false;
}
}
// Check If all the end accesses of the given begin do not prevent hoisting
// There are only two legal placements for the end access instructions:
// 1) Inside the same loop (sink to loop exists)
// Potential TODO: At loop exit block
static bool handledEndAccesses(BeginAccessInst *BI, SILLoop *Loop) {
SmallVector<EndAccessInst *, 2> AllEnds;
getEndAccesses(BI, AllEnds);
if (AllEnds.empty()) {
return false;
}
for (auto *User : AllEnds) {
auto *BB = User->getParent();
if (Loop->getBlocksSet().count(BB) != 0) {
continue;
}
return false;
}
return true;
}
static bool isCoveredByScope(BeginAccessInst *BI, DominanceInfo *DT,
SILInstruction *applyInstr) {
if (!DT->dominates(BI, applyInstr))
return false;
for (auto *EI : BI->getEndAccesses()) {
if (!DT->dominates(applyInstr, EI))
return false;
}
return true;
}
static bool analyzeBeginAccess(BeginAccessInst *BI,
SmallVector<BeginAccessInst *, 8> &BeginAccesses,
SmallVector<FullApplySite, 8> &fullApplies,
InstSet &SideEffectInsts,
AccessedStorageAnalysis *ASA,
DominanceInfo *DT) {
const AccessedStorage &storage =
findAccessedStorageNonNested(BI->getSource());
if (!storage) {
return false;
}
auto BIAccessedStorageNonNested = findAccessedStorageNonNested(BI);
auto safeBeginPred = [&](BeginAccessInst *OtherBI) {
if (BI == OtherBI) {
return true;
}
return BIAccessedStorageNonNested.isDistinctFrom(
findAccessedStorageNonNested(OtherBI));
};
if (!std::all_of(BeginAccesses.begin(), BeginAccesses.end(), safeBeginPred))
return false;
for (auto fullApply : fullApplies) {
FunctionAccessedStorage callSiteAccesses;
ASA->getCallSiteEffects(callSiteAccesses, fullApply);
SILAccessKind accessKind = BI->getAccessKind();
if (!callSiteAccesses.mayConflictWith(accessKind, storage))
continue;
// Check if we can ignore this conflict:
// If the apply is “sandwiched” between the begin and end access,
// theres no reason we cant hoist out of the loop.
auto *applyInstr = fullApply.getInstruction();
if (!isCoveredByScope(BI, DT, applyInstr))
return false;
}
// Check may releases
// Only class and global access that may alias would conflict
const AccessedStorage::Kind kind = storage.getKind();
if (kind != AccessedStorage::Class && kind != AccessedStorage::Global) {
return true;
}
// TODO Introduce "Pure Swift" deinitializers
// We can then make use of alias information for instr's operands
// If they don't alias - we might get away with not recording a conflict
for (SILInstruction *I : SideEffectInsts) {
// we actually compute all SideEffectInsts in analyzeCurrentLoop
if (!I->mayRelease()) {
continue;
}
if (!isCoveredByScope(BI, DT, I))
return false;
}
return true;
}
// Analyzes current loop for hosting/sinking potential:
// Computes set of instructions we may be able to move out of the loop
// Important Note:
// We can't bail out of this method! we have to run it on all loops.
// We *need* to discover all SideEffectInsts -
// even if the loop is otherwise skipped!
// This is because outer loops will depend on the inner loop's writes.
void LoopTreeOptimization::analyzeCurrentLoop(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
InstSet &sideEffects = CurrSummary->SideEffectInsts;
SILLoop *Loop = CurrSummary->Loop;
LLVM_DEBUG(llvm::dbgs() << " Analyzing accesses.\n");
auto *Preheader = Loop->getLoopPreheader();
if (!Preheader) {
// Can't hoist/sink instructions
return;
}
// Interesting instructions in the loop:
SmallVector<ApplyInst *, 8> ReadOnlyApplies;
SmallVector<LoadInst *, 8> Loads;
SmallVector<StoreInst *, 8> Stores;
SmallVector<FixLifetimeInst *, 8> FixLifetimes;
SmallVector<BeginAccessInst *, 8> BeginAccesses;
SmallVector<FullApplySite, 8> fullApplies;
for (auto *BB : Loop->getBlocks()) {
for (auto &Inst : *BB) {
switch (Inst.getKind()) {
case SILInstructionKind::FixLifetimeInst: {
auto *FL = cast<FixLifetimeInst>(&Inst);
if (DomTree->dominates(FL->getOperand()->getParentBlock(), Preheader))
FixLifetimes.push_back(FL);
// We can ignore the side effects of FixLifetimes
break;
}
case SILInstructionKind::LoadInst:
Loads.push_back(cast<LoadInst>(&Inst));
LoadsAndStores.push_back(&Inst);
break;
case SILInstructionKind::StoreInst: {
Stores.push_back(cast<StoreInst>(&Inst));
LoadsAndStores.push_back(&Inst);
checkSideEffects(Inst, sideEffects);
break;
}
case SILInstructionKind::BeginAccessInst:
BeginAccesses.push_back(cast<BeginAccessInst>(&Inst));
checkSideEffects(Inst, sideEffects);
break;
case SILInstructionKind::RefElementAddrInst:
SpecialHoist.push_back(cast<RefElementAddrInst>(&Inst));
break;
case swift::SILInstructionKind::CondFailInst:
// We can (and must) hoist cond_fail instructions if the operand is
// invariant. We must hoist them so that we preserve memory safety. A
// cond_fail that would have protected (executed before) a memory access
// must - after hoisting - also be executed before said access.
HoistUp.insert(&Inst);
checkSideEffects(Inst, sideEffects);
break;
case SILInstructionKind::ApplyInst: {
auto *AI = cast<ApplyInst>(&Inst);
if (isSafeReadOnlyApply(SEA, AI)) {
ReadOnlyApplies.push_back(AI);
}
// check for array semantics and side effects - same as default
LLVM_FALLTHROUGH;
}
default:
if (auto fullApply = FullApplySite::isa(&Inst)) {
fullApplies.push_back(fullApply);
}
checkSideEffects(Inst, sideEffects);
if (canHoistUpDefault(&Inst, Loop, DomTree, RunsOnHighLevelSIL)) {
HoistUp.insert(&Inst);
}
break;
}
}
}
for (auto *AI : ReadOnlyApplies) {
if (!mayWriteTo(AA, SEA, sideEffects, AI)) {
HoistUp.insert(AI);
}
}
for (auto *LI : Loads) {
if (!mayWriteTo(AA, sideEffects, LI)) {
HoistUp.insert(LI);
}
}
// Collect memory locations for which we can move all loads and stores out
// of the loop.
for (StoreInst *SI : Stores) {
SILValue addr = SI->getDest();
if (isLoopInvariant(addr, Loop) &&
isOnlyLoadedAndStored(AA, sideEffects, addr)) {
LoadAndStoreAddrs.insert(addr);
}
}
if (!FixLifetimes.empty()) {
bool sideEffectsMayRelease =
std::any_of(sideEffects.begin(), sideEffects.end(),
[&](SILInstruction *W) { return W->mayRelease(); });
for (auto *FL : FixLifetimes) {
if (!sideEffectsMayRelease || !mayWriteTo(AA, sideEffects, FL)) {
SinkDown.push_back(FL);
}
}
}
for (auto *BI : BeginAccesses) {
if (!handledEndAccesses(BI, Loop)) {
LLVM_DEBUG(llvm::dbgs() << "Skipping: " << *BI);
LLVM_DEBUG(llvm::dbgs() << "Some end accesses can't be handled\n");
continue;
}
if (analyzeBeginAccess(BI, BeginAccesses, fullApplies, sideEffects, ASA,
DomTree)) {
SpecialHoist.push_back(BI);
}
}
}
bool LoopTreeOptimization::optimizeLoop(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
auto *CurrentLoop = CurrSummary->Loop;
// We only support Loops with a preheader
if (!CurrentLoop->getLoopPreheader())
return false;
bool currChanged = false;
if (hoistAllLoadsAndStores(CurrentLoop))
return true;
currChanged |= hoistInstructions(CurrentLoop, DomTree, HoistUp);
currChanged |= sinkInstructions(CurrSummary, DomTree, LoopInfo, SinkDown);
currChanged |=
hoistSpecialInstruction(CurrSummary, DomTree, LoopInfo, SpecialHoist);
return currChanged;
}
/// Creates a value projection from \p rootVal based on the address projection
/// from \a rootAddr to \a addr.
static SILValue projectLoadValue(SILValue addr, SILValue rootAddr,
SILValue rootVal, SILInstruction *beforeInst) {
if (addr == rootAddr)
return rootVal;
if (auto *SEI = dyn_cast<StructElementAddrInst>(addr)) {
SILValue val = projectLoadValue(SEI->getOperand(), rootAddr, rootVal,
beforeInst);
SILBuilder B(beforeInst);
return B.createStructExtract(beforeInst->getLoc(), val, SEI->getField(),
SEI->getType().getObjectType());
}
if (auto *TEI = dyn_cast<TupleElementAddrInst>(addr)) {
SILValue val = projectLoadValue(TEI->getOperand(), rootAddr, rootVal,
beforeInst);
SILBuilder B(beforeInst);
return B.createTupleExtract(beforeInst->getLoc(), val, TEI->getFieldNo(),
TEI->getType().getObjectType());
}
llvm_unreachable("unknown projection");
}
/// Returns true if all stores to \p addr commonly dominate the loop exitst of
/// \p loop.
static bool storesCommonlyDominateLoopExits(SILValue addr, SILLoop *loop,
ArrayRef<SILBasicBlock *> exitingBlocks) {
SmallPtrSet<SILBasicBlock *, 16> stores;
for (Operand *use : addr->getUses()) {
SILInstruction *user = use->getUser();
if (isa<StoreInst>(user))
stores.insert(user->getParent());
}
SILBasicBlock *header = loop->getHeader();
// If a store is in the loop header, we already know that it's dominating all
// loop exits.
if (stores.count(header) != 0)
return true;
// Propagate the store-is-not-alive flag through the control flow in the loop,
// starting at the header.
SmallPtrSet<SILBasicBlock *, 16> storesNotAlive;
storesNotAlive.insert(header);
bool changed = false;
do {
changed = false;
for (SILBasicBlock *block : loop->blocks()) {
bool storeAlive = (storesNotAlive.count(block) == 0);
if (storeAlive && stores.count(block) == 0 &&
std::any_of(block->pred_begin(), block->pred_end(),
[&](SILBasicBlock *b) { return storesNotAlive.count(b) != 0; })) {
storesNotAlive.insert(block);
changed = true;
}
}
} while (changed);
auto isUnreachableBlock = [](SILBasicBlock *succ) {
return isa<UnreachableInst>(succ->getTerminator());
};
// Check if the store-is-not-alive flag reaches any of the exits.
for (SILBasicBlock *eb : exitingBlocks) {
// Ignore loop exits to blocks which end in an unreachable.
if (!std::any_of(eb->succ_begin(), eb->succ_end(), isUnreachableBlock) &&
storesNotAlive.count(eb) != 0) {
return false;
}
}
return true;
}
void LoopTreeOptimization::hoistLoadsAndStores(SILValue addr, SILLoop *loop, InstVector &toDelete) {
SmallVector<SILBasicBlock *, 4> exitingBlocks;
loop->getExitingBlocks(exitingBlocks);
// This is not a requirement for functional correctness, but we don't want to
// _speculatively_ load and store the value (outside of the loop).
if (!storesCommonlyDominateLoopExits(addr, loop, exitingBlocks))
return;
// Inserting the stores requires the exit edges to be not critical.
for (SILBasicBlock *exitingBlock : exitingBlocks) {
for (unsigned idx = 0, e = exitingBlock->getSuccessors().size();
idx != e; ++idx) {
// exitingBlock->getSuccessors() must not be moved out of this loop,
// because the successor list is invalidated by splitCriticalEdge.
if (!loop->contains(exitingBlock->getSuccessors()[idx])) {
splitCriticalEdge(exitingBlock->getTerminator(), idx, DomTree, LoopInfo);
}
}
}
SILBasicBlock *preheader = loop->getLoopPreheader();
assert(preheader && "Expected a preheader");
// Initially load the value in the loop pre header.
SILBuilder B(preheader->getTerminator());
auto *initialLoad = B.createLoad(preheader->getTerminator()->getLoc(), addr,
LoadOwnershipQualifier::Unqualified);
SILSSAUpdater ssaUpdater;
ssaUpdater.Initialize(initialLoad->getType());
ssaUpdater.AddAvailableValue(preheader, initialLoad);
// Set all stored values as available values in the ssaUpdater.
// If there are multiple stores in a block, only the last one counts.
Optional<SILLocation> loc;
for (SILInstruction *I : LoadsAndStores) {
if (auto *SI = isStoreToAddr(I, addr)) {
loc = SI->getLoc();
// If a store just stores the loaded value, bail. The operand (= the load)
// will be removed later, so it cannot be used as available value.
// This corner case is suprisingly hard to handle, so we just give up.
if (isLoadFromAddr(dyn_cast<LoadInst>(SI->getSrc()), addr))
return;
ssaUpdater.AddAvailableValue(SI->getParent(), SI->getSrc());
}
}
// Remove all stores and replace the loads with the current value.
SILBasicBlock *currentBlock = nullptr;
SILValue currentVal;
for (SILInstruction *I : LoadsAndStores) {
SILBasicBlock *block = I->getParent();
if (block != currentBlock) {
currentBlock = block;
currentVal = SILValue();
}
if (auto *SI = isStoreToAddr(I, addr)) {
currentVal = SI->getSrc();
toDelete.push_back(SI);
} else if (auto *LI = isLoadFromAddr(I, addr)) {
// If we didn't see a store in this block yet, get the current value from
// the ssaUpdater.
if (!currentVal)
currentVal = ssaUpdater.GetValueInMiddleOfBlock(block);
SILValue projectedValue = projectLoadValue(LI->getOperand(), addr,
currentVal, LI);
LI->replaceAllUsesWith(projectedValue);
toDelete.push_back(LI);
}
}
// Store back the value at all loop exits.
for (SILBasicBlock *exitingBlock : exitingBlocks) {
for (SILBasicBlock *succ : exitingBlock->getSuccessors()) {
if (!loop->contains(succ)) {
assert(succ->getSinglePredecessorBlock() &&
"should have split critical edges");
SILBuilder B(succ->begin());
B.createStore(loc.getValue(), ssaUpdater.GetValueInMiddleOfBlock(succ),
addr, StoreOwnershipQualifier::Unqualified);
}
}
}
// In case the value is only stored but never loaded in the loop.
eliminateDeadInstruction(initialLoad);
}
bool LoopTreeOptimization::hoistAllLoadsAndStores(SILLoop *loop) {
InstVector toDelete;
for (SILValue addr : LoadAndStoreAddrs) {
hoistLoadsAndStores(addr, loop, toDelete);
}
LoadsAndStores.clear();
LoadAndStoreAddrs.clear();
for (SILInstruction *I : toDelete) {
I->eraseFromParent();
}
return !toDelete.empty();
}
namespace {
/// Hoist loop invariant code out of innermost loops.
///
/// Transforms are identified by type, not instance. Split this
/// Into two types: "High-level Loop Invariant Code Motion"
/// and "Loop Invariant Code Motion".
class LICM : public SILFunctionTransform {
public:
LICM(bool RunsOnHighLevelSil) : RunsOnHighLevelSil(RunsOnHighLevelSil) {}
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
/// We only hoist semantic calls on high-level SIL because we can be sure that
/// e.g. an Array as SILValue is really immutable (including its content).
bool RunsOnHighLevelSil;
void run() override {
SILFunction *F = getFunction();
// If our function has ownership, skip it.
if (F->hasOwnership())
return;
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
SILLoopInfo *LoopInfo = LA->get(F);
if (LoopInfo->empty()) {
LLVM_DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
return;
}
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
AliasAnalysis *AA = PM->getAnalysis<AliasAnalysis>();
SideEffectAnalysis *SEA = PM->getAnalysis<SideEffectAnalysis>();
AccessedStorageAnalysis *ASA = getAnalysis<AccessedStorageAnalysis>();
DominanceInfo *DomTree = nullptr;
LLVM_DEBUG(llvm::dbgs() << "Processing loops in " << F->getName() << "\n");
bool Changed = false;
for (auto *TopLevelLoop : *LoopInfo) {
if (!DomTree) DomTree = DA->get(F);
LoopTreeOptimization Opt(TopLevelLoop, LoopInfo, AA, SEA, DomTree, ASA,
RunsOnHighLevelSil);
Changed |= Opt.optimize();
}
if (Changed) {
LA->lockInvalidation();
DA->lockInvalidation();
PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::FunctionBody);
LA->unlockInvalidation();
DA->unlockInvalidation();
}
}
};
} // end anonymous namespace
SILTransform *swift::createLICM() {
return new LICM(false);
}
SILTransform *swift::createHighLevelLICM() {
return new LICM(true);
}