Files
swift-mirror/lib/SILOptimizer/Transforms/AccessEnforcementDom.cpp
Andrew Trick bddc69c8a6 Organize SILOptimizer/Utils headers. Remove Local.h.
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.

New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h

Removed:
- Local.h
- Two conflicting CFG.h files

This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.

Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.

Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.

Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
2019-10-02 11:34:54 -07:00

620 lines
23 KiB
C++

//===------ AccessEnforcementDom.cpp - dominated access removal opt -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This function pass removes dominated accesses in two ways:
///
/// 1) Remove accesses dominated by an existing access
///
/// General case:
/// begin_access A (may or may not have no_nested_conflict)
/// load/store
/// end_access
/// ...
/// begin_access A [no_nested_conflict] // dominated by the first access
/// load/store
/// end_access A
///
/// The second access scope does not need to be emitted.
///
/// 2) Add a new dominating accesses to loop's preheader
///
/// General case:
/// <loop preheader>
/// A = ref_element_addr
/// <loop>
/// begin_access A [dynamic] [no_nested_conflict]
///
/// Adding an empty begin_access A in the preheader would allow us to
/// turn the loop's access to [static]
///
/// Warning: This optimization requires that all points within this function
/// that begin an access can be identified. Failure to recognize the beginning
/// of an access scope could weaken dynamic enforcement.
///
/// FIXME: This pass currently only runs in the last-chance pipeline, with a
/// guarantee that no access marker removal is done after it. This happens to
/// work but is dangerous and violates SIL semantics. We should instead add a
/// flag for accesses to give them the semantics that they may guard memory
/// operations other than those enclosed by the access scope.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "access-enforcement-dom"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/DepthFirstIterator.h"
using namespace swift;
// =============================================================================
// DominatedAccessAnalysis
namespace swift {
/// Information about each dynamic access with valid storage.
///
/// This is a pass-specific subclass of AccessedStorage with identical layout.
/// An instance is created for each BeginAccess in the current function. In
/// additional to identifying the access' storage location, it associates that
/// access with pass-specific data in reserved bits. The reserved bits do not
/// participate in equality or hash lookup.
class DomAccessedStorage : public AccessedStorage {
public:
DomAccessedStorage() {}
explicit DomAccessedStorage(const AccessedStorage &storage)
: AccessedStorage(storage) {
Bits.DomAccessedStorage.isInner = false;
Bits.DomAccessedStorage.containsRead = false;
}
// Is this dynamic, identifiable access scope potentially contained within any
// kind of outer scope. The outer scope may be static and/or have unidentified
// storage. For example:
//
// A1: [static] [read]
// A2: [dynamic] [read]
// A3: [dynamic] [modify]
//
// A2 cannot be promoted to modify if its scope overlaps with A1.
bool isInner() const { return Bits.DomAccessedStorage.isInner; }
void setIsInner() { Bits.DomAccessedStorage.isInner = true; }
/// Is this dynamic, identifiable access scope a [read], and does it
/// potentially contain another non-distinct [read] access of any kind?
bool containsRead() const { return Bits.DomAccessedStorage.containsRead; }
void setContainsRead() { Bits.DomAccessedStorage.containsRead = true; }
void dump() const {
AccessedStorage::dump();
llvm::dbgs() << "<" << (isInner() ? "" : "inner")
<< (containsRead() ? "" : "containsRead") << ">\n";
}
};
} // namespace swift
namespace {
// An analysis that maps each valid dynamic BeginAccess to
// DomAccessedStorage. Performs a trivial data flow analysis to populate the map
// with information about nested accesses. Data flow is needed to track open
// access scopes, but only flow-insensitive information is recorded in the
// result.
//
// Note that all access scopes are tracked during data flow, but only valid
// dynamic are mapped to results.
//
// TODO: Separate this into a shared analysis and factor it with
// AccessEnforcementOpts. The optimization that merges accesses would also
// benefit.
//
// TODO: This could be made more precise by querying AccessedStorageAnalysis.
class DominatedAccessAnalysis {
public:
// The result records information for all dynamic accesses in this
// function. If an UnpairedAccess exists, then the result will be
// consevatively empty.
struct Result {
llvm::SmallDenseMap<BeginAccessInst *, DomAccessedStorage, 32> accessMap;
};
private:
// The data flow state for each block. It is only valid between the time at
// least one predecesor block has been finished and before its own block
// has been finished.
//
// The isBottom flag allows the analysis to avoid quadratic behavior where
// each open access must be updated at each conservatively handled
// instruction. Instead, the accesses are only conservatively updated once
// until the next scope is entered. So the complexity is (#OpenScopes)^2
// instead of (#OpenScopes)*(#Applies).
struct BBState {
using DenseAccessSet = llvm::SmallDenseSet<BeginAccessInst *, 4>;
using DenseCoroutineSet = llvm::SmallDenseSet<BeginApplyInst *, 4>;
DenseAccessSet inScopeAccesses;
DenseCoroutineSet inScopeCoroutines;
bool isBottom = false;
};
using BlockStateMap = llvm::DenseMap<SILBasicBlock *, BBState>;
PostOrderFunctionInfo *PO;
Result result; // Flow-insensitive analysis result.
BlockStateMap blockStateMap; // Data flow state.
public:
DominatedAccessAnalysis(PostOrderFunctionInfo *PO) : PO(PO) {}
Result analyze() &&;
protected:
void setBottom(BBState &state);
void analyzeAccess(BeginAccessInst *BAI, BBState &state);
};
} // namespace
// Set information for all in-scope accesses to the worst case "bottom".
// The isInner flag is not affected because it only applies to scopes inside the
// currently open scopes, not the currently open scopes themselves.
void DominatedAccessAnalysis::setBottom(BBState &state) {
if (state.isBottom)
return;
// Unordered iteration over the in-access scopes.
llvm::for_each(state.inScopeAccesses, [this](BeginAccessInst *BAI) {
if (auto &domStorage = result.accessMap[BAI])
domStorage.setContainsRead();
});
}
// Perform the analysis and return the Result, relinquishing internal state.
DominatedAccessAnalysis::Result DominatedAccessAnalysis::analyze() && {
// A single RPO traversal is sufficient to visit access scopes in order. The
// set of open accesses entering a block cannot grow as a result of loops, and
// within an open scope the results are flow-insensitive.
for (auto *BB : PO->getReversePostOrder()) {
BBState state = blockStateMap[BB];
for (auto &I : *BB) {
if (auto *BAI = dyn_cast<BeginAccessInst>(&I)) {
analyzeAccess(BAI, state);
continue;
}
if (auto *EAI = dyn_cast<EndAccessInst>(&I)) {
bool erased = state.inScopeAccesses.erase(EAI->getBeginAccess());
(void)erased;
assert(erased);
continue;
}
// Check for BeginApply before checking FullApplySite below.
if (auto *beginApply = dyn_cast<BeginApplyInst>(&I)) {
auto iterAndInserted = state.inScopeCoroutines.insert(beginApply);
(void)iterAndInserted;
assert(iterAndInserted.second);
continue;
}
if (auto *endApply = dyn_cast<EndApplyInst>(&I)) {
bool erased = state.inScopeCoroutines.erase(endApply->getBeginApply());
(void)erased;
assert(erased);
continue;
}
if (FullApplySite::isa(&I)) {
setBottom(state);
continue;
}
if (isa<BeginUnpairedAccessInst>(&I)) {
// Unpaired accesses could be tracked, but are ignored because they are
// mostly irrelevant and hard to test. Completely bail on this function.
result.accessMap.clear();
return std::move(result);
}
}
auto successors = BB->getTerminator()->getSuccessors();
unsigned numSucc = successors.size();
for (unsigned succIdx : indices(successors)) {
SILBasicBlock *succBB = successors[succIdx].getBB();
if (succBB == BB)
continue;
if (succIdx != numSucc - 1)
blockStateMap.try_emplace(succBB, state);
else
// Move the state into the last successor to avoid copying sets.
blockStateMap.try_emplace(succBB, std::move(state));
}
}
return std::move(result);
}
// The data flow transfer function for BeginAccess. Creates the
// DomAccessedStorage for this access and inserts it in the result.
void DominatedAccessAnalysis::analyzeAccess(BeginAccessInst *BAI,
BBState &state) {
DomAccessedStorage domStorage;
// Only track dynamic access in the result. Static accesses still need to be
// tracked by data flow, but they can't be optimized as "dominating".
if (BAI->getEnforcement() == SILAccessEnforcement::Dynamic) {
AccessedStorage storage = findAccessedStorageNonNested(BAI->getSource());
// Copy the AccessStorage into DomAccessedStorage. All pass-specific bits
// are initialized to zero.
domStorage = DomAccessedStorage(storage);
}
// Continue to handle both untracked access and invalid domStorage
// conservatively below...
// unordered set iteration...
llvm::for_each(state.inScopeAccesses, [&](BeginAccessInst *outerBegin) {
auto &outerInfo = result.accessMap[outerBegin];
// If the current access is mapped, set its isInner flag.
if (domStorage && !domStorage.isInner()) {
if (domStorage.isDistinctFrom(outerInfo))
return;
domStorage.setIsInner();
}
// The results for tracked in-scope accesses still need to be
// updated even if the current access is not be tracked.
if (outerInfo && BAI->getAccessKind() == SILAccessKind::Read
&& outerBegin->getAccessKind() == SILAccessKind::Read) {
outerInfo.setContainsRead();
}
});
// Track this access even if it is invalid or unmapped.
{
auto iterAndInserted = state.inScopeAccesses.insert(BAI);
(void)iterAndInserted;
assert(iterAndInserted.second);
}
// Update the results if this access will be mapped.
if (!domStorage)
return;
// Set the current accesss isInner flag if it's inside a coroutine scope.
if (!state.inScopeCoroutines.empty())
domStorage.setIsInner();
// Map the current access.
{
auto iterAndInserted = result.accessMap.try_emplace(BAI, domStorage);
(void)iterAndInserted;
assert(iterAndInserted.second);
}
state.isBottom = false;
}
// =============================================================================
// DominatedAccessRemoval optimization.
namespace {
using DomTreeNode = llvm::DomTreeNodeBase<SILBasicBlock>;
// Visit the dominator tree top down, tracking the current set of dominating
// dynamic accesses. Dominated dynamic accesses with identical storage are
// marked static during traversal. If a dynamic access inside a loop has no
// dominating access, insert a new access in the preheader.
class DominatedAccessRemoval {
// Record the first access of a given storage location and the dominator node
// in which the access occurred.
struct DominatingAccess {
BeginAccessInst *beginAccess;
DomTreeNode *domNode;
DominatingAccess(BeginAccessInst *beginAccess, DomTreeNode *domNode)
: beginAccess(beginAccess), domNode(domNode) {}
};
using StorageToDomMap = llvm::DenseMap<AccessedStorage, DominatingAccess>;
SILFunction &func;
DominanceInfo *domInfo;
SILLoopInfo *loopInfo;
DominatedAccessAnalysis::Result &DAA;
// Hash map from each storage location to the dominating access.
StorageToDomMap storageToDomMap;
DomTreeNode *currDomNode = nullptr;
bool hasChanged = false;
public:
DominatedAccessRemoval(SILFunction &func, DominanceInfo *domInfo,
SILLoopInfo *loopInfo,
DominatedAccessAnalysis::Result &DAA)
: func(func), domInfo(domInfo), loopInfo(loopInfo), DAA(DAA) {}
bool optimize();
protected:
void visitBeginAccess(BeginAccessInst *BAI);
bool checkDominatedAccess(BeginAccessInst *BAI,
DomAccessedStorage currDomStorage);
bool optimizeDominatedAccess(BeginAccessInst *currBegin,
DomAccessedStorage currDomStorage,
const DominatingAccess &domAccess);
void tryInsertLoopPreheaderAccess(BeginAccessInst *BAI,
DomAccessedStorage currDomStorage);
};
} // namespace
// Optimize the current function, and return true if any optimization was
// performed.
bool DominatedAccessRemoval::optimize() {
DomTreeNode *entryNode = domInfo->getNode(func.getEntryBlock());
for (DomTreeNode *domNode : llvm::depth_first(entryNode)) {
currDomNode = domNode;
// Optimize dominated accesses in this block.
for (auto &instr : *domNode->getBlock()) {
if (auto *BAI = dyn_cast<BeginAccessInst>(&instr))
visitBeginAccess(BAI);
}
}
return hasChanged;
}
// Visit a BeginAccessInst once-and-only-once in domtree order.
// Attempt to find a dominating access with identical storage.
// If that fails, attempt to insert a new dominating access in the preheader.
void DominatedAccessRemoval::visitBeginAccess(BeginAccessInst *BAI) {
if (BAI->getEnforcement() != SILAccessEnforcement::Dynamic)
return;
DomAccessedStorage currDomStorage = DAA.accessMap.lookup(BAI);
if (!currDomStorage)
return;
// Only track "identifiable" storage.
if (currDomStorage.isUniquelyIdentifiedOrClass()) {
if (checkDominatedAccess(BAI, currDomStorage))
return;
}
tryInsertLoopPreheaderAccess(BAI, currDomStorage);
}
// Track this identifiable dynamic access in storageToDomMap, and optimize it if
// possible. Return true if the optimization suceeds.
bool DominatedAccessRemoval::checkDominatedAccess(
BeginAccessInst *BAI, DomAccessedStorage currDomStorage) {
// Attempt to add this access to storageToDomMap using its base storage
// location as the key.
//
// Cast this DomAccessedStorage back to a plain storage location. The
// pass-specific bits will be ignored, but reset them anyway for sanity.
AccessedStorage storage = static_cast<AccessedStorage>(currDomStorage);
storage.resetSubclassData();
auto iterAndInserted =
storageToDomMap.try_emplace(storage, DominatingAccess(BAI, currDomNode));
if (iterAndInserted.second)
return false;
// An access has already been recorded for this storage.
// If the previous domNode does not dominate currDomNode, then replace it.
DominatingAccess &domAccess = iterAndInserted.first->second;
if (!domInfo->dominates(domAccess.domNode, currDomNode)) {
domAccess = DominatingAccess(BAI, currDomNode);
return false;
}
// The previously mapped access still dominates this block, so the current
// access can potentially be optimized.
return optimizeDominatedAccess(BAI, currDomStorage, domAccess);
}
// If possible, optimize the current access by converting it to [static]. Return
// true if the optimization succeeds.
//
// This function is not allowed to add or erase instructions, only change
// instruction flags.
//
// The four required conditions for converting this access to static are:
//
// 1. A closed dominating access has identical storage.
//
// The caller looked up this access' storage in storageToDomMap and checked
// that the previously seen access dominates this block. As long as this access'
// isInner flag from DominatedAccessAnalysis is not set, the dominating access
// must be closed.
//
// 2. There is no open (overlapping) access with nondistinct storage (that isn't
// also open at the dominating access).
//
// The isInner flag from DominatedAccessAnalysis indicates no enclosing
// nondistinct scopes within this function. Any outer scope would enclose the
// whole function, thereby also enclosing the dominating scope.
//
// 3. This access has no_nested_conflict.
//
// This is a direct check on this BeginAccessInst flag.
//
// 4. The current and dominating access kinds are compatible:
//
// read -> read: OK
//
// modify -> read: OK
//
// modify -> modify: OK
//
// read -> modify: Requires promoting the dominating access to a modify. This
// can be done as long as the dominating access does not contain another
// non-distinct read and isn't contained by another non-distinct read. The
// containsRead and isInner flags from in DominatedAccessAnalysis answer this
// conservatively.
//
// Note: Promoting an earlier access to a modify could cause a program to
// trap when optimized even if the unoptimized program does not trap; the
// original modify access may be on an unreachable code path. This is acceptable
// because:
//
// (a) in theory, exclusivity violations do not need to be executed to be
// considered program violations. Promoting the access does not introduce any
// new conflict where one didn't already exist statically. Catching these
// violations at runtime is only an implementation compromise, and the more true
// violations are caught, the better.
//
// (b) in practice, this situation is so exceedingly unlikely that it won't
// cause any pervasive usability problem where programs have stronger
// enforcement only when optimized.
bool DominatedAccessRemoval::optimizeDominatedAccess(
BeginAccessInst *BAI, DomAccessedStorage currAccessInfo,
const DominatingAccess &domAccess) {
// 1. and 2. If any nondistinct scopes are open, it must remain dynamic.
if (currAccessInfo.isInner())
return false;
// 3. If BAI may have a nested conflict, it must remain dynamic.
if (!BAI->hasNoNestedConflict())
return false;
// 4. Promoting a read to a modify is only safe with no nested reads.
if (domAccess.beginAccess->getAccessKind() == SILAccessKind::Read
&& BAI->getAccessKind() == SILAccessKind::Modify) {
DomAccessedStorage domStorage = DAA.accessMap[domAccess.beginAccess];
if (domStorage.containsRead() || domStorage.isInner())
return false;
LLVM_DEBUG(llvm::dbgs()
<< "Promoting to modify: " << *domAccess.beginAccess << "\n");
domAccess.beginAccess->setAccessKind(SILAccessKind::Modify);
}
LLVM_DEBUG(llvm::dbgs() << "Setting static enforcement: " << *BAI << "\n");
LLVM_DEBUG(llvm::dbgs() << "Dominated by: " << *domAccess.beginAccess
<< "\n");
BAI->setEnforcement(SILAccessEnforcement::Static);
hasChanged = true;
return true;
}
// Attempt to insert a new access in the loop preheader. If successful, insert
// the new access in DominatedAccessAnalysis so it can be used to dominate other
// accesses. Also convert the current access to static and update the current
// storageToDomMap since the access may already have been recorded (when it was
// still dynamic).
//
// This function cannot add or remove instructions in the current block, but
// may add instructions to the current loop's preheader.
//
// The required conditions for inserting a new dominating access are:
//
// 1. The new preheader access is not enclosed in another scope that doesn't
// also enclose the current scope.
//
// This is inferred from the loop structure; any scope that encloses the
// preheader must also enclose the entire loop.
//
// 2. The current access is not enclosed in another scope that doesn't also
// enclose the preheader.
//
// As before, it is sufficient to check this access' isInner flags in
// DominatedAccessAnalysis; if this access isn't enclosed by any scope within
// the function, then it can't be enclosed within a scope inside the loop.
//
// 3. The current header has no nested conflict within its scope.
//
// 4. The access' source operand is available in the loop preheader.
void DominatedAccessRemoval::tryInsertLoopPreheaderAccess(
BeginAccessInst *BAI, DomAccessedStorage currAccessInfo) {
// 2. the current access may be enclosed.
if (currAccessInfo.isInner())
return;
// 3. the current access must be instantaneous.
if (!BAI->hasNoNestedConflict())
return;
SILLoop *currLoop = loopInfo->getLoopFor(BAI->getParent());
if (!currLoop)
return;
SILBasicBlock *preheader = currLoop->getLoopPreheader();
if (!preheader)
return;
// 4. The source operand must be available in the preheader.
auto sourceOperand = BAI->getOperand();
auto *sourceBB = sourceOperand->getParentBlock();
if (!domInfo->dominates(sourceBB, preheader))
return;
// Insert a new access scope immediately before the
// preheader's terminator.
TermInst *preheaderTerm = preheader->getTerminator();
SILBuilderWithScope scopeBuilder(preheaderTerm);
BeginAccessInst *newBegin = scopeBuilder.createBeginAccess(
preheaderTerm->getLoc(), sourceOperand, BAI->getAccessKind(),
SILAccessEnforcement::Dynamic, true /*no nested conflict*/,
BAI->isFromBuiltin());
scopeBuilder.createEndAccess(preheaderTerm->getLoc(), newBegin, false);
LLVM_DEBUG(llvm::dbgs() << "Created loop preheader access: " << *newBegin
<< "\n"
<< "dominating: " << *BAI << "\n");
BAI->setEnforcement(SILAccessEnforcement::Static);
hasChanged = true;
// Insert the new dominating instruction in both DominatedAccessAnalysis and
// storageToDomMap if it has uniquely identifiable storage.
if (!currAccessInfo.isUniquelyIdentifiedOrClass())
return;
AccessedStorage storage = static_cast<AccessedStorage>(currAccessInfo);
storage.resetSubclassData();
// Create a DomAccessedStorage for the new access with no flags set.
DAA.accessMap.try_emplace(newBegin, DomAccessedStorage(storage));
// Track the new access as long as no other accesses from the same storage are
// already tracked. This also necessarily replaces the current access, which
// was just made static.
DominatingAccess newDomAccess(newBegin, domInfo->getNode(preheader));
auto iterAndInserted = storageToDomMap.try_emplace(storage, newDomAccess);
if (!iterAndInserted.second) {
DominatingAccess &curDomAccess = iterAndInserted.first->second;
if (curDomAccess.beginAccess == BAI)
curDomAccess = newDomAccess;
}
}
namespace {
struct AccessEnforcementDom : public SILFunctionTransform {
void run() override;
};
} // namespace
void AccessEnforcementDom::run() {
SILFunction *func = getFunction();
if (func->empty())
return;
PostOrderFunctionInfo *PO = getAnalysis<PostOrderAnalysis>()->get(func);
auto DAA = DominatedAccessAnalysis(PO).analyze();
DominanceAnalysis *domAnalysis = getAnalysis<DominanceAnalysis>();
DominanceInfo *domInfo = domAnalysis->get(func);
SILLoopAnalysis *loopAnalysis = PM->getAnalysis<SILLoopAnalysis>();
SILLoopInfo *loopInfo = loopAnalysis->get(func);
DominatedAccessRemoval eliminationPass(*func, domInfo, loopInfo, DAA);
if (eliminationPass.optimize())
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
SILTransform *swift::createAccessEnforcementDom() {
return new AccessEnforcementDom();
}