Files
swift-mirror/lib/SILOptimizer/Transforms/CopyForwarding.cpp
Andrew Trick 9dc59d2967 Fix TempRValue: Add checkTempObjectDestroy bail out logic.
This avoids use-after-free bugs that can be introduced by removing a
copy without replacing all corresponding destroys.

Add more descriptive comments since multiple bugs have been introduced
in this pass.

None of this will be relevant once the pass is converted to OSSA.
2019-10-27 21:42:44 -07:00

1941 lines
70 KiB
C++

//===--- CopyForwarding.cpp - Forward local copies from caller to callee --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Eliminate local copies of either address-only or reference types.
//
// This opportunity frequently results from a calling convention that transfers
// object ownership from caller to callee. In this convention, the caller
// creates a local copy before passing it to the callee. If the original object
// is immediately destroyed after passing off the copy, then the copy was
// unnecessary. Removing the useless copy can be thought of as forwarding the
// original object directly to the call argument in place of the copy. Hence
// "copy forwarding".
//
// There are two classifications of types that copy forwarding applies to:
// address-only types and references.
//
// Useless copies of address-only types look like this:
//
// %copy = alloc_stack $T
// copy_addr %arg to [initialization] %copy : $*T
// %ret = apply %callee<T>(%copy) : $@convention(thin) <τ_0_0> (@in τ_0_0) -> ()
// dealloc_stack %copy : $*T
// destroy_addr %arg : $*T
//
// Eliminating the address-only copies eliminates a very expensive call to
// getGenericMetadata.
//
// Useless copies of references look like this:
//
// strong_retain %arg : $A
// %ret = apply %callee(%arg) : $@convention(thin) (@owned A) -> ()
// strong_release %arg : $A
//
// Eliminating the reference copies, avoids artificially bumping the refcount
// which could save a copy of all elements in a COW container.
//
// The actual analysis and optimization do not depend on the copy being linked
// to call arguments. Any obviously useless copy will be eliminated.
//
// TODO: Currently we only handle the address-only case, not the retain/release
// case.
//
// TODO: We should run this at -Onone even though it's not diagnostic.
//
// TODO: Currently we only handle cases in which one side of the copy is block
// local. Either:
// (1) Forward propagate: copy src -> dest; deinit(dest)
// (2) Backward propagate: init(src); copy src -> dest
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "copy-forwarding"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
STATISTIC(NumCopyNRVO, "Number of copies removed via named return value opt.");
STATISTIC(NumCopyForward, "Number of copies removed via forward propagation");
STATISTIC(NumCopyBackward,
"Number of copies removed via backward propagation");
STATISTIC(NumDeadTemp, "Number of copies removed from unused temporaries");
using namespace swift;
// Temporary debugging flag until this pass is better tested.
static llvm::cl::opt<bool> EnableCopyForwarding("enable-copyforwarding",
llvm::cl::init(true));
static llvm::cl::opt<bool> EnableDestroyHoisting("enable-destroyhoisting",
llvm::cl::init(true));
/// \return true if the given copy source value can only be accessed via the
/// given def (this def uniquely identifies the object).
///
/// (1) An "in" argument.
/// (inouts are also nonaliased, but won't be destroyed in scope)
///
/// (2) A local alloc_stack variable.
static bool isIdentifiedSourceValue(SILValue Def) {
if (auto *Arg = dyn_cast<SILFunctionArgument>(Def)) {
// Check that the argument is passed as an in type. This means there are
// no aliases accessible within this function scope.
SILArgumentConvention Conv = Arg->getArgumentConvention();
switch (Conv) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Guaranteed:
return true;
default:
LLVM_DEBUG(llvm::dbgs() << " Skipping Def: Not an @in argument!\n");
return false;
}
}
if (isa<AllocStackInst>(Def))
return true;
return false;
}
/// \return true if the given copy dest value can only be accessed via the given
/// def (this def uniquely identifies the object).
///
/// (1) An "out" or inout argument.
///
/// (2) A local alloc_stack variable.
static bool isIdentifiedDestValue(SILValue Def) {
if (auto *Arg = dyn_cast<SILFunctionArgument>(Def)) {
// Check that the argument is passed as an out type. This means there are
// no aliases accessible within this function scope.
SILArgumentConvention Conv = Arg->getArgumentConvention();
switch (Conv) {
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_Out:
return true;
default:
LLVM_DEBUG(llvm::dbgs() << " Skipping Def: Not an @in argument!\n");
return false;
}
}
if (isa<AllocStackInst>(Def))
return true;
return false;
}
/// Return the parameter convention used by Apply to pass an argument
/// indirectly via Address.
///
/// Set Oper to the Apply operand that passes Address.
static SILArgumentConvention getAddressArgConvention(ApplyInst *Apply,
SILValue Address,
Operand *&Oper) {
Oper = nullptr;
auto Args = Apply->getArgumentOperands();
for (auto ArgIdx : indices(Args)) {
if (Args[ArgIdx].get() != Address)
continue;
assert(!Oper && "Address can only be passed once as an indirection.");
Oper = &Args[ArgIdx];
#ifdef NDEBUG
break;
#endif
}
assert(Oper && "Address value not passed as an argument to this call.");
return ApplySite(Apply).getArgumentConvention(*Oper);
}
/// If the given instruction is a store, return the stored value.
static SILValue getStoredValue(SILInstruction *I) {
switch (I->getKind()) {
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::StoreInst:
case SILInstructionKind::StoreBorrowInst:
return I->getOperand(0);
default:
return SILValue();
}
}
//===----------------------------------------------------------------------===//
// Forward and backward copy propagation
//===----------------------------------------------------------------------===//
// Visitor for visitAddressUsers.
namespace {
class AddressUserVisitor {
public:
virtual ~AddressUserVisitor() {}
virtual bool visitNormalUse(SILInstruction *user) = 0;
virtual bool visitTake(CopyAddrInst *copy) = 0;
virtual bool visitDestroy(DestroyAddrInst *destroy) = 0;
virtual bool visitDebugValue(DebugValueAddrInst *debugValue) = 0;
};
} // namespace
/// Gather all instructions that use the given `address`
///
/// "Normal" uses are a whitelisted set of uses that guarantees the address is
/// only used as if it refers to a single value and all uses are accounted for
/// (no address projections).
///
/// Takes are "copy_addr [take]"
///
/// Destroys are "destroy_addr"
/// -
///
/// If we are unable to find all uses, for example, because we don't look
/// through struct_element_addr, then return false.
///
/// The collected use points will be consulted during forward and backward
/// copy propagation.
///
/// \param ignoredUser will be ignored if it is is non-null.
static bool visitAddressUsers(SILValue address, SILInstruction *ignoredUser,
AddressUserVisitor &visitor) {
for (Operand *use : address->getUses()) {
SILInstruction *UserInst = use->getUser();
if (UserInst == ignoredUser)
continue;
if (auto *Apply = dyn_cast<ApplyInst>(UserInst)) {
/// A call to materializeForSet exposes an address within the parent
/// object. However, we can rely on a subsequent mark_dependent
/// instruction to take that object as an operand, causing it to escape
/// for the purpose of this analysis.
assert(Apply->getSubstCalleeConv()
.getSILArgumentConvention(use->getOperandNumber()
- Apply->getArgumentOperandNumber())
.isIndirectConvention()
&& "copy_addr location should be passed indirect");
if (!visitor.visitNormalUse(UserInst))
return false;
continue;
}
if (auto *CopyInst = dyn_cast<CopyAddrInst>(UserInst)) {
if (CopyInst->getSrc() == use->get() && CopyInst->isTakeOfSrc()) {
if (!visitor.visitTake(CopyInst))
return false;
} else {
if (!visitor.visitNormalUse(CopyInst))
return false;
}
continue;
}
if (auto *Destroy = dyn_cast<DestroyAddrInst>(UserInst)) {
if (!visitor.visitDestroy(Destroy))
return false;
continue;
}
switch (UserInst->getKind()) {
case SILInstructionKind::LoadInst:
if (!visitor.visitNormalUse(UserInst))
return false;
break;
case SILInstructionKind::ExistentialMetatypeInst:
case SILInstructionKind::InjectEnumAddrInst:
case SILInstructionKind::StoreInst:
if (!visitor.visitNormalUse(UserInst))
return false;
break;
case SILInstructionKind::DebugValueAddrInst:
if (!visitor.visitDebugValue(cast<DebugValueAddrInst>(UserInst)))
return false;
break;
case SILInstructionKind::DeallocStackInst:
break;
default:
// Most likely one of:
// init_enum_data_addr
// open_existential_addr
// partial_apply
// struct_element_addr
// unchecked_take_enum_data_addr
//
// TODO: Peek through struct element users like COWArrayOpts.
//
// TODO: Attempt to analyze partial applies or run closure propagation
// first.
//
// TODO: assert that this list is consistent with
// isTransitiveEscapeInst().
LLVM_DEBUG(llvm::dbgs() << " Skipping copy: use exposes def"
<< *UserInst);
return false;
}
}
return true;
}
namespace {
/// Analyze an instruction that operates on the Address of a forward propagated
/// value.
///
/// Set Oper to the operand that may be safely replaced by an address
/// pointing to an equivalent value. If UserInst cannot be analyzed, Oper is set
/// to nullptr.
///
/// Return true if the instruction destroys the value at Address.
///
/// This checks for the following cases of deinit:
/// - 'in' argument
/// - copy_addr [take] src
/// - copy_addr [!init] dest
/// - destroy_addr
/// - unchecked_take_enum_data_addr
///
/// The copy_addr [!init] case is special because the operand cannot simply be
/// replaced with a new address without causing that location to be
/// reinitialized (after being deinitialized). The caller must check for and
/// handle this case.
///
/// This returns false and sets Oper to a valid operand if the instruction is a
/// projection of the value at the given address. The assumption is that we
/// cannot deinitialize memory via projections.
class AnalyzeForwardUse
: public SILInstructionVisitor<AnalyzeForwardUse, bool> {
public:
SILValue Address;
Operand *Oper;
AnalyzeForwardUse(SILValue Address): Address(Address), Oper(nullptr) {}
bool visitApplyInst(ApplyInst *Apply) {
switch (getAddressArgConvention(Apply, Address, Oper)) {
case SILArgumentConvention::Indirect_In:
return true;
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
return false;
default:
llvm_unreachable("unexpected calling convention for copy_addr user");
}
}
bool visitCopyAddrInst(CopyAddrInst *CopyInst) {
if (CopyInst->getSrc() == Address) {
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Src];
return CopyInst->isTakeOfSrc();
}
assert(!CopyInst->isInitializationOfDest() && "illegal reinitialization");
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Dest];
return true;
}
bool visitStoreInst(StoreInst *Store) {
llvm_unreachable("illegal reinitialization or store of an address");
}
bool visitDestroyAddrInst(DestroyAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return true;
}
bool visitUncheckedTakeEnumDataAddrInst(
UncheckedTakeEnumDataAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return true;
}
bool visitExistentialMetatypeInst(ExistentialMetatypeInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitLoadInst(LoadInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitOpenExistentialAddrInst(OpenExistentialAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitStructElementAddrInst(StructElementAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitDebugValueAddrInst(DebugValueAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitInitEnumDataAddrInst(InitEnumDataAddrInst *UserInst) {
llvm_unreachable("illegal reinitialization");
}
bool visitInjectEnumAddrInst(InjectEnumAddrInst *UserInst) {
llvm_unreachable("illegal reinitialization");
}
bool visitSILInstruction(SILInstruction *UserInst) {
return false;
}
};
/// Analyze an instruction that operates on the Address of a backward propagated
/// value.
///
/// Set Oper to the operand that my be safely replaced by an address
/// pointing to an equivalent value. If UserInst cannot be analyzed, Oper is set
/// to nullptr.
///
/// Return true if the instruction initializes the value at Address.
///
/// We currently check for the following cases of init:
/// - 'out' argument
/// - copy_addr [init] dest
/// - copy_addr [!init] dest
/// - store
///
/// The copy_addr [!init] case is special because the operand cannot simply be
/// replaced with a new address without causing that location to be
/// deinitialized (before being initialized). The caller must check for and
/// handle this case.
///
/// This returns false and sets Oper to nullptr for projections of the value at
/// the given address. For example, init_enum_data_addr and struct_element_addr
/// may be part of a decoupled initialization sequence.
class AnalyzeBackwardUse
: public SILInstructionVisitor<AnalyzeBackwardUse, bool> {
public:
SILValue Address;
Operand *Oper;
AnalyzeBackwardUse(SILValue Address): Address(Address), Oper(nullptr) {}
bool visitApplyInst(ApplyInst *Apply) {
switch (getAddressArgConvention(Apply, Address, Oper)) {
case SILArgumentConvention::Indirect_Out:
return true;
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_In_Guaranteed:
return false;
case SILArgumentConvention::Indirect_In:
llvm_unreachable("copy_addr src destroyed without reinitialization");
default:
llvm_unreachable("unexpected calling convention for copy_addr user");
}
}
bool visitCopyAddrInst(CopyAddrInst *CopyInst) {
if (CopyInst->getDest() == Address) {
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Dest];
return true;
}
Oper = &CopyInst->getAllOperands()[CopyAddrInst::Src];
assert(!CopyInst->isTakeOfSrc() && "illegal deinitialization");
return false;
}
bool visitStoreInst(StoreInst *Store) {
Oper = &Store->getAllOperands()[StoreInst::Dest];
assert(Oper->get() == Address && "illegal store of an address");
return true;
}
bool visitExistentialMetatypeInst(ExistentialMetatypeInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitInjectEnumAddrInst(InjectEnumAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitLoadInst(LoadInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitOpenExistentialAddrInst(OpenExistentialAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitDestroyAddrInst(DestroyAddrInst *UserInst) {
llvm_unreachable("illegal deinitialization");
}
bool visitUncheckedTakeEnumDataAddrInst(
UncheckedTakeEnumDataAddrInst *UserInst) {
llvm_unreachable("illegal deinitialization");
}
bool visitUncheckedRefCastAddrInst(
UncheckedRefCastAddrInst *UserInst) {
if (UserInst->getDest() == Address) {
Oper = &UserInst->getAllOperands()[UncheckedRefCastAddrInst::Dest];
}
return true;
}
bool visitDebugValueAddrInst(DebugValueAddrInst *UserInst) {
Oper = &UserInst->getOperandRef();
return false;
}
bool visitSILInstruction(SILInstruction *UserInst) {
return false;
}
};
class CopyForwarding {
// Per-function state.
PostOrderAnalysis *PostOrder;
DominanceAnalysis *DomAnalysis;
RCIdentityAnalysis *RCIAnalysis;
bool DoGlobalHoisting;
bool HasChanged;
bool HasChangedCFG;
// --- Per copied-def state ---
// Transient state for the current Def valid during forwardCopiesOf.
SILValue CurrentDef;
// Is the addressed defined by CurrentDef ever loaded from?
// This indicates that lifetime of any transitively referenced objects lives
// beyond the value's immediate uses.
bool IsSrcLoadedFrom;
// Does the address defined by CurrentDef have unrecognized uses of a
// nontrivial value stored at its address?
bool HasUnknownStoredValue;
bool HasForwardedToCopy;
SmallPtrSet<SILInstruction*, 16> SrcUserInsts;
SmallPtrSet<DebugValueAddrInst*, 4> SrcDebugValueInsts;
SmallVector<CopyAddrInst*, 4> TakePoints;
SmallPtrSet<SILInstruction *, 16> StoredValueUserInsts;
SmallVector<DestroyAddrInst*, 4> DestroyPoints;
SmallPtrSet<SILBasicBlock*, 32> DeadInBlocks;
// --- Per copy_addr state ---
CopyAddrInst *CurrentCopy = nullptr;
class CopySrcUserVisitor : public AddressUserVisitor {
CopyForwarding &CPF;
public:
CopySrcUserVisitor(CopyForwarding &CPF) : CPF(CPF) {}
virtual bool visitNormalUse(SILInstruction *user) {
if (isa<LoadInst>(user))
CPF.IsSrcLoadedFrom = true;
if (SILValue storedValue = getStoredValue(user)) {
if (!CPF.markStoredValueUsers(storedValue))
CPF.HasUnknownStoredValue = true;
}
// Bail on multiple uses in the same instruction to avoid complexity.
return CPF.SrcUserInsts.insert(user).second;
}
virtual bool visitTake(CopyAddrInst *take) {
if (take->getSrc() == take->getDest())
return false;
CPF.TakePoints.push_back(take);
return true;
}
virtual bool visitDestroy(DestroyAddrInst *destroy) {
CPF.DestroyPoints.push_back(destroy);
return true;
}
virtual bool visitDebugValue(DebugValueAddrInst *debugValue) {
return CPF.SrcDebugValueInsts.insert(debugValue).second;
}
};
public:
CopyForwarding(PostOrderAnalysis *PO, DominanceAnalysis *DA,
RCIdentityAnalysis *RCIAnalysis)
: PostOrder(PO), DomAnalysis(DA), RCIAnalysis(RCIAnalysis),
DoGlobalHoisting(false), HasChanged(false), HasChangedCFG(false),
IsSrcLoadedFrom(false), HasUnknownStoredValue(false),
HasForwardedToCopy(false), CurrentCopy(nullptr) {}
void reset(SILFunction *F) {
// Don't hoist destroy_addr globally in transparent functions. Avoid cloning
// destroy_addr instructions and splitting critical edges before mandatory
// diagnostic passes. For example, PredictableMemOps can no longer remove
// some alloc_stack cases after global destroy hoisting. CopyForwarding will
// be reapplied after the transparent function is inlined at which point
// global hoisting will be done.
DoGlobalHoisting = !F->isTransparent();
if (HasChangedCFG) {
// We are only invalidating the analysis that we use internally.
// We'll invalidate the analysis that are used by other passes at the end.
DomAnalysis->invalidate(F, SILAnalysis::InvalidationKind::Everything);
PostOrder->invalidate(F, SILAnalysis::InvalidationKind::Everything);
RCIAnalysis->invalidate(F, SILAnalysis::InvalidationKind::Everything);
}
CurrentDef = SILValue();
IsSrcLoadedFrom = false;
HasUnknownStoredValue = false;
HasForwardedToCopy = false;
SrcUserInsts.clear();
SrcDebugValueInsts.clear();
TakePoints.clear();
StoredValueUserInsts.clear();
DestroyPoints.clear();
DeadInBlocks.clear();
CurrentCopy = nullptr;
}
bool hasChanged() const { return HasChanged; }
bool hasChangedCFG() const { return HasChangedCFG; }
/// Return true if CurrentDef has been forwarded through one copy into
/// another. This means we should iterate.
bool hasForwardedToCopy() const { return HasForwardedToCopy; }
void forwardCopiesOf(SILValue Def, SILFunction *F);
protected:
bool propagateCopy(CopyAddrInst *CopyInst, bool hoistingDestroy);
CopyAddrInst *findCopyIntoDeadTemp(CopyAddrInst *destCopy);
bool forwardDeadTempCopy(CopyAddrInst *srcCopy, CopyAddrInst *destCopy);
bool forwardPropagateCopy();
bool backwardPropagateCopy();
bool hoistDestroy(SILInstruction *DestroyPoint, SILLocation DestroyLoc);
bool isSourceDeadAtCopy();
typedef llvm::SmallSetVector<SILInstruction *, 16> UserVector;
bool doesCopyDominateDestUsers(const UserVector &DirectDestUses);
bool markStoredValueUsers(SILValue storedValue);
};
class CopyDestUserVisitor : public AddressUserVisitor {
SmallPtrSetImpl<SILInstruction *> &DestUsers;
public:
CopyDestUserVisitor(SmallPtrSetImpl<SILInstruction *> &DestUsers)
: DestUsers(DestUsers) {}
virtual bool visitNormalUse(SILInstruction *user) {
// Bail on multiple uses in the same instruction to avoid complexity.
return DestUsers.insert(user).second;
}
virtual bool visitTake(CopyAddrInst *take) {
return DestUsers.insert(take).second;
}
virtual bool visitDestroy(DestroyAddrInst *destroy) {
return DestUsers.insert(destroy).second;
}
virtual bool visitDebugValue(DebugValueAddrInst *debugValue) {
return DestUsers.insert(debugValue).second;
}
};
} // end anonymous namespace
/// Attempt to forward, then backward propagate this copy.
///
/// The caller has already proven that lifetime of the value being copied ends
/// at the copy. (Either it is a [take] or is immediately destroyed).
///
///
/// If the forwarded copy is not an [init], then insert a destroy of the copy's
/// dest.
bool CopyForwarding::
propagateCopy(CopyAddrInst *CopyInst, bool hoistingDestroy) {
if (!EnableCopyForwarding)
return false;
// CopyForwarding should be split into per-def-state vs. per-copy-state, but
// this hack is good enough for a pass that's going away "soon".
struct RAIISetCurrentCopy {
CopyAddrInst *&CurrentCopy;
RAIISetCurrentCopy(CopyAddrInst *&CurrentCopy, CopyAddrInst *CopyInst)
: CurrentCopy(CurrentCopy) {
assert(!CurrentCopy);
CurrentCopy = CopyInst;
}
~RAIISetCurrentCopy() {
CurrentCopy = nullptr;
}
};
RAIISetCurrentCopy setCurrentCopy(CurrentCopy, CopyInst);
// Handle copy-of-copy without analyzing uses.
// Assumes that CurrentCopy->getSrc() is dead after CurrentCopy.
assert(CurrentCopy->isTakeOfSrc() || hoistingDestroy);
if (auto *srcCopy = findCopyIntoDeadTemp(CurrentCopy)) {
if (forwardDeadTempCopy(srcCopy, CurrentCopy)) {
HasChanged = true;
++NumDeadTemp;
return true;
}
}
if (forwardPropagateCopy()) {
LLVM_DEBUG(llvm::dbgs() << " Forwarding Copy:" << *CurrentCopy);
if (!CurrentCopy->isInitializationOfDest()) {
// Replace the original copy with a destroy. We may be able to hoist it
// more in another pass but don't currently iterate.
SILBuilderWithScope(CurrentCopy)
.createDestroyAddr(CurrentCopy->getLoc(), CurrentCopy->getDest());
}
CurrentCopy->eraseFromParent();
HasChanged = true;
++NumCopyForward;
return true;
}
// Forward propagation failed. Attempt to backward propagate.
if (CurrentCopy->isInitializationOfDest() && backwardPropagateCopy()) {
LLVM_DEBUG(llvm::dbgs() << " Reversing Copy:" << *CurrentCopy);
CurrentCopy->eraseFromParent();
HasChanged = true;
++NumCopyBackward;
return true;
}
return false;
}
/// Find a copy into an otherwise dead temporary:
///
/// The given copy is copying out of the temporary
/// copy_addr %temp, %dest
///
/// Precondition: The lifetime of %temp ends at `destCopy`
/// (%temp is CurrentDef).
///
/// Find a previous copy:
/// copy_addr %src, %temp
///
/// Such that it is safe to forward its source into the source of
/// `destCopy`. i.e. `destCopy` can be safely rewritten as:
/// copy_addr %src, %dest
///
/// Otherwise return nullptr. No instructions are harmed in this analysis.
///
/// This can be checked with a simple instruction walk that ends at:
/// - an intervening instruction that may write to memory
/// - a use of the temporary, %temp
///
/// Unlike the forward and backward propagation that finds all use points, this
/// handles copies of address projections. By conservatively checking all
/// intervening instructions, it avoids the need to analyze projection paths.
CopyAddrInst *CopyForwarding::findCopyIntoDeadTemp(CopyAddrInst *destCopy) {
auto tmpVal = destCopy->getSrc();
assert(tmpVal == CurrentDef);
assert(isIdentifiedSourceValue(tmpVal));
for (auto II = destCopy->getIterator(), IB = destCopy->getParent()->begin();
II != IB;) {
--II;
SILInstruction *UserInst = &*II;
if (auto *srcCopy = dyn_cast<CopyAddrInst>(UserInst)) {
if (srcCopy->getDest() == tmpVal)
return srcCopy;
}
if (SrcUserInsts.count(UserInst))
return nullptr;
if (UserInst->mayWriteToMemory())
return nullptr;
}
return nullptr;
}
/// Forward a copy into a dead temporary as identified by
/// `findCopyIntoDeadTemp`.
///
/// Returns true if the copy was successfully forwarded.
///
/// Old SIL:
/// copy_addr %src, %temp
/// copy_addr %temp, %dest
///
/// New SIL:
/// copy_addr %src, %dest
///
/// Precondition: `srcCopy->getDest()` == `destCopy->getSrc()`
/// Precondition: %src is unused between srcCopy and destCopy.
/// Precondition: The lifetime of %temp ends immediate after `destCopy`.
///
/// Postcondition:
/// - `srcCopy` is erased.
/// - Any initial value in %temp is destroyed at `srcCopy` position.
/// - %temp is uninitialized following `srcCopy` and subsequent instruction
/// attempts to destroy this uninitialized value.
bool CopyForwarding::
forwardDeadTempCopy(CopyAddrInst *srcCopy, CopyAddrInst *destCopy) {
LLVM_DEBUG(llvm::dbgs() << " Temp Copy:" << *srcCopy
<< " to " << *destCopy);
assert(srcCopy->getDest() == destCopy->getSrc());
// This pattern can be trivially folded without affecting %temp destroys:
// copy_addr [...] %src, [init] %temp
// copy_addr [take] %temp, [...] %dest
// If copy into temp is not initializing, add a destroy:
// - copy_addr %src, %temp
// + destroy %temp
if (!srcCopy->isInitializationOfDest()) {
SILBuilderWithScope(srcCopy)
.createDestroyAddr(srcCopy->getLoc(), srcCopy->getDest());
}
// Either `destCopy` is a take, or the caller is hoisting a destroy:
// copy_addr %temp, %dest
// ...
// destroy %temp
//
// If the caller is hoisting a destroy, and we return `true` then it will
// erase the destroy for us. Either way, it's safe to simply rewrite destCopy.
// For now, don't bother finding the subsequent destroy, because this isn't
// the common case.
destCopy->setSrc(srcCopy->getSrc());
destCopy->setIsTakeOfSrc(srcCopy->isTakeOfSrc());
srcCopy->eraseFromParent();
return true;
}
/// Check that the lifetime of %src ends at the copy and is not reinitialized
/// thereafter with a new value.
bool CopyForwarding::isSourceDeadAtCopy() {
// A single copy_addr [take] %Src.
if (TakePoints.size() == 1 && DestroyPoints.empty() && SrcUserInsts.empty())
return true;
if (TakePoints.empty() && DestroyPoints.size() == 1 &&
SrcUserInsts.size() == 1) {
assert(*SrcUserInsts.begin() == CurrentCopy);
return true;
}
// For now just check for a single copy_addr that destroys its source.
return false;
}
/// Check that all immediate users of the destination address of the copy are
/// dominated by the copy. There is no path around copy that could initialize
/// %dest with a different value.
bool CopyForwarding::doesCopyDominateDestUsers(
const UserVector &DirectDestUsers) {
DominanceInfo *DT = DomAnalysis->get(CurrentCopy->getFunction());
for (auto *user : DirectDestUsers) {
// Check dominance of the parent blocks.
if (!DT->properlyDominates(CurrentCopy, user))
return false;
}
return true;
}
// Add all recognized users of storedValue to StoredValueUserInsts. Return true
// if all users were recgonized.
//
// To find all SSA users of storedValue, we first find the RC root, then search
// past any instructions that may propagate the reference.
bool CopyForwarding::markStoredValueUsers(SILValue storedValue) {
auto *F = storedValue->getFunction();
if (storedValue->getType().isTrivial(*F))
return true;
// Find the RC root, peeking past things like struct_extract.
RCIdentityFunctionInfo *RCI = RCIAnalysis->get(F);
SILValue root = RCI->getRCIdentityRoot(storedValue);
SmallVector<SILInstruction *, 8> users;
RCI->getRCUsers(root, users);
for (SILInstruction *user : users) {
// Recognize any uses that have no results as normal uses. They cannot
// transitively propagate a reference.
if (user->getResults().empty()) {
StoredValueUserInsts.insert(user);
continue;
}
// Recognize full applies as normal uses. They may transitively retain, but
// the caller cannot rely on that.
if (FullApplySite::isa(user)) {
StoredValueUserInsts.insert(user);
continue;
}
// A single-valued use is nontransitive if its result is trivial.
if (auto *SVI = dyn_cast<SingleValueInstruction>(user)) {
if (SVI->getType().isTrivial(*F)) {
StoredValueUserInsts.insert(user);
continue;
}
}
// Conservatively treat everything else as potentially transitively
// retaining the stored value.
LLVM_DEBUG(llvm::dbgs() << " Cannot reduce lifetime. May retain "
<< storedValue
<< " at: " << *user << "\n");
return false;
}
return true;
}
/// Returns the associated dealloc_stack if \p ASI has a single dealloc_stack.
/// Usually this is the case, but the optimizations may generate something like:
/// %1 = alloc_stack
/// if (...) {
/// dealloc_stack %1
/// } else {
/// dealloc_stack %1
/// }
static DeallocStackInst *getSingleDealloc(AllocStackInst *ASI) {
return ASI->getSingleDeallocStack();
}
/// Perform forward copy-propagation. Find a set of uses that the given copy can
/// forward to and replace them with the copy's source.
///
/// We must only replace uses of this copy's value. To do this, we search
/// forward in the current block from the copy that initializes the value to the
/// point of deinitialization. Typically, this will be a point at which the
/// value is passed as an 'in' argument:
/// \code
/// %copy = alloc_stack $T
/// ...
/// CurrentBlock:
/// copy_addr %arg to [initialization] %copy : $*T
/// ...
/// %ret = apply %callee<T>(%copy) : $@convention(thin) <τ_0_0> (@in τ_0_0) -> ()
/// \endcode
///
/// If the last use (deinit) is a copy, replace it with a destroy+copy[init].
///
/// The caller has already guaranteed that the lifetime of the copy's source
/// ends at this copy. Either the copy is a [take] or a destroy can be hoisted
/// to the copy.
bool CopyForwarding::forwardPropagateCopy() {
SILValue CopyDest = CurrentCopy->getDest();
// Require the copy dest to be a simple alloc_stack. This ensures that all
// instructions that may read from the destination address depend on CopyDest.
if (!isa<AllocStackInst>(CopyDest))
return false;
// Record all direct dest uses. Forward propagation doesn't care if they are
// projections or propagate the address in any way--their operand only needs
// to be substituted with the copy's source.
UserVector DirectDestUsers;
for (auto *Use : CopyDest->getUses()) {
auto *UserInst = Use->getUser();
if (UserInst == CurrentCopy)
continue;
if (isa<DeallocStackInst>(UserInst))
continue;
// Bail on multiple uses in the same instruction so that AnalyzeForwardUse
// does not need to deal with it.
if (!DirectDestUsers.insert(UserInst))
return false;
}
// Looking at
//
// copy_addr %Src, [init] %Dst
//
// We can reuse %Src if it is dead after the copy and not reinitialized. To
// know that we can safely replace all uses of %Dst with source we must know
// that it is uniquely named and cannot be accessed outside of the function
// (an alloc_stack instruction qualifies for this, an inout parameter does
// not). Additionally, we must know that all accesses to %Dst further on must
// have had this copy on their path (there might be reinitialization of %Dst
// later, but there must not be a path around this copy that reads from %Dst).
if (isSourceDeadAtCopy() && doesCopyDominateDestUsers(DirectDestUsers)) {
SILValue CopySrc = CurrentCopy->getSrc();
// Replace all uses of Dest with a use of Src.
for (SILInstruction *user : DirectDestUsers) {
for (Operand &oper : user->getAllOperands()) {
if (oper.get() != CopyDest)
continue;
// Rewrite both read and writes of CopyDest as CopySrc.
oper.set(CopySrc);
}
if (isa<CopyAddrInst>(user))
HasForwardedToCopy = true;
}
// The caller will Remove the destroy_addr of %src.
assert((DestroyPoints.empty() ||
(!CurrentCopy->isTakeOfSrc() && DestroyPoints.size() == 1)) &&
"Must only have one destroy");
// The caller will remove the copy_addr.
return true;
}
SILInstruction *DefDealloc = nullptr;
if (auto *ASI = dyn_cast<AllocStackInst>(CurrentDef)) {
DefDealloc = getSingleDealloc(ASI);
if (!DefDealloc) {
LLVM_DEBUG(llvm::dbgs() << " Skipping copy" << *CurrentCopy
<< " stack address has multiple uses.\n");
return false;
}
}
// Scan forward recording all operands that use CopyDest until we see the
// next deinit of CopyDest.
SmallVector<Operand*, 16> ValueUses;
auto SI = CurrentCopy->getIterator(), SE = CurrentCopy->getParent()->end();
for (++SI; SI != SE; ++SI) {
SILInstruction *UserInst = &*SI;
// If we see another use of Src, then the source location is reinitialized
// before the Dest location is deinitialized. So we really need the copy.
if (SrcUserInsts.count(UserInst)) {
LLVM_DEBUG(llvm::dbgs() << " Skipping copy" << *CurrentCopy
<< " source used by" << *UserInst);
return false;
}
if (UserInst == DefDealloc) {
LLVM_DEBUG(llvm::dbgs() << " Skipping copy" << *CurrentCopy
<< " dealloc_stack before dest use.\n");
return false;
}
// Early check to avoid scanning unrelated instructions.
if (!DirectDestUsers.count(UserInst))
continue;
AnalyzeForwardUse AnalyzeUse(CopyDest);
bool seenDeinit = AnalyzeUse.visit(UserInst);
// If this use cannot be analyzed, then abort.
if (!AnalyzeUse.Oper)
return false;
// Otherwise record the operand.
ValueUses.push_back(AnalyzeUse.Oper);
// If this is a deinit, we're done searching.
if (seenDeinit)
break;
}
if (SI == SE)
return false;
// Convert a reinitialization of this address into a destroy, followed by an
// initialization. Replacing a copy with a destroy+init is not by itself
// profitable. However, it does allow eliminating the earlier copy, and we may
// later be able to eliminate this initialization copy.
if (auto Copy = dyn_cast<CopyAddrInst>(&*SI)) {
if (Copy->getDest() == CopyDest) {
assert(!Copy->isInitializationOfDest() && "expected a deinit");
DestroyAddrInst *Destroy =
SILBuilderWithScope(Copy).createDestroyAddr(Copy->getLoc(), CopyDest);
Copy->setIsInitializationOfDest(IsInitialization);
assert(ValueUses.back()->getUser() == Copy && "bad value use");
ValueUses.back() = &Destroy->getOperandRef();
}
}
// Now that a deinit was found, it is safe to substitute all recorded uses
// with the copy's source.
for (auto *Oper : ValueUses) {
Oper->set(CurrentCopy->getSrc());
if (isa<CopyAddrInst>(Oper->getUser()))
HasForwardedToCopy = true;
}
return true;
}
/// Given an address defined by 'Def', find the object root and all direct uses,
/// not including:
/// - 'Def' itself
/// - Transitive uses of 'Def' (listed elsewhere in DestUserInsts)
///
/// i.e. If Def is returned directly, RootUserInsts will be empty.
///
/// Return nullptr when the root != Def, and root has unrecognized uses.
///
/// If the returned root is not 'Def' itself, then 'Def' must be an address
/// projection that can be trivially rematerialized with the root as its
/// operand.
static ValueBase *
findAddressRootAndUsers(ValueBase *Def,
SmallPtrSetImpl<SILInstruction*> &RootUserInsts) {
switch (Def->getKind()) {
default:
return Def;
case ValueKind::InitEnumDataAddrInst:
case ValueKind::InitExistentialAddrInst:
auto InitInst = cast<SingleValueInstruction>(Def);
SILValue InitRoot = InitInst->getOperand(0);
CopyDestUserVisitor visitor(RootUserInsts);
if (!visitAddressUsers(InitRoot, InitInst, visitor))
return nullptr;
return InitRoot;
}
}
/// Perform backward copy-propagation. Find the initialization point of the
/// copy's source and replace the initializer's address with the copy's dest.
bool CopyForwarding::backwardPropagateCopy() {
SILValue CopySrc = CurrentCopy->getSrc();
ValueBase *CopyDestDef = CurrentCopy->getDest();
SmallPtrSet<SILInstruction *, 16> DestUserInsts;
CopyDestUserVisitor visitor(DestUserInsts);
if (!visitAddressUsers(CopyDestDef, CurrentCopy, visitor))
return false;
// RootUserInsts will contain any users of the same object not covered by
// DestUserInsts.
SmallPtrSet<SILInstruction*, 8> RootUserInsts;
ValueBase *CopyDestRoot = findAddressRootAndUsers(CopyDestDef, RootUserInsts);
if (!CopyDestRoot)
return false;
// Require the copy dest value to be identified by this address. This ensures
// that all instructions that may write to destination address depend on
// CopyDestRoot.
if (!isIdentifiedDestValue(CopyDestRoot))
return false;
// Scan backward recording all operands that use CopySrc until we see the
// most recent init of CopySrc.
bool seenInit = false;
bool seenCopyDestDef = false;
// ValueUses records the uses of CopySrc in reverse order.
SmallVector<Operand*, 16> ValueUses;
SmallVector<DebugValueAddrInst*, 4> DebugValueInstsToDelete;
auto SI = CurrentCopy->getIterator(), SE = CurrentCopy->getParent()->begin();
while (SI != SE) {
--SI;
SILInstruction *UserInst = &*SI;
if (UserInst == CopyDestDef->getDefiningInstruction())
seenCopyDestDef = true;
// If we see another use of Dest, then Dest is live after the Src location
// is initialized, so we really need the copy.
if (UserInst == CopyDestRoot->getDefiningInstruction()
|| DestUserInsts.count(UserInst)
|| RootUserInsts.count(UserInst)) {
if (auto *DVAI = dyn_cast<DebugValueAddrInst>(UserInst)) {
DebugValueInstsToDelete.push_back(DVAI);
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Skipping copy" << *CurrentCopy
<< " dest used by " << *UserInst);
return false;
}
// Early check to avoid scanning unrelated instructions.
if (!SrcUserInsts.count(UserInst)
&& !(isa<DebugValueAddrInst>(UserInst)
&& SrcDebugValueInsts.count(cast<DebugValueAddrInst>(UserInst))))
continue;
AnalyzeBackwardUse AnalyzeUse(CopySrc);
seenInit = AnalyzeUse.visit(UserInst);
// If this use cannot be analyzed, then abort.
if (!AnalyzeUse.Oper)
return false;
// Otherwise record the operand with the earliest use last in the list.
ValueUses.push_back(AnalyzeUse.Oper);
// If this is an init, we're done searching.
if (seenInit)
break;
}
if (!seenInit)
return false;
for (auto *DVAI : DebugValueInstsToDelete)
DVAI->eraseFromParent();
// Convert a reinitialization of this address into a destroy, followed by an
// initialization. Replacing a copy with a destroy+init is not by itself
// profitable. However, it does allow us to eliminate the later copy, and the
// init copy may be eliminated later.
if (auto Copy = dyn_cast<CopyAddrInst>(&*SI)) {
if (Copy->getDest() == CopySrc && !Copy->isInitializationOfDest()) {
SILBuilderWithScope(Copy).createDestroyAddr(Copy->getLoc(), CopySrc);
Copy->setIsInitializationOfDest(IsInitialization);
}
}
// Rematerialize the projection if needed by simply moving it.
if (seenCopyDestDef) {
CopyDestDef->getDefiningInstruction()->moveBefore(&*SI);
}
// Now that an init was found, it is safe to substitute all recorded uses
// with the copy's dest.
for (auto *Oper : ValueUses) {
Oper->set(CurrentCopy->getDest());
if (isa<CopyAddrInst>(Oper->getUser()))
HasForwardedToCopy = true;
}
return true;
}
/// Attempt to hoist a destroy point up to the last use. If the last use is a
/// copy, eliminate both the copy and the destroy.
///
/// The copy will be eliminated if the original is not accessed between the
/// point of copy and the original's destruction.
///
/// CurrentDef = <uniquely identified> // no aliases
/// ...
/// Copy = copy_addr [init] Def
/// ... // no access to CurrentDef
/// destroy_addr Def
///
/// Return true if a destroy was inserted, forwarded from a copy, or the
/// block was marked dead-in.
bool CopyForwarding::hoistDestroy(SILInstruction *DestroyPoint,
SILLocation DestroyLoc) {
if (!EnableDestroyHoisting)
return false;
assert(!SrcUserInsts.count(DestroyPoint) && "caller should check terminator");
SILBasicBlock *BB = DestroyPoint->getParent();
// If DestroyPoint is a block terminator, we must hoist.
bool MustHoist = (DestroyPoint == BB->getTerminator());
// If we haven't seen anything significant, avoid useless hoisting.
bool ShouldHoist = MustHoist;
auto tryToInsertHoistedDestroyAfter = [&](SILInstruction *afterInst) {
if (!ShouldHoist)
return false;
LLVM_DEBUG(llvm::dbgs() << " Hoisting to Use:" << *afterInst);
SILBuilderWithScope(std::next(afterInst->getIterator()), afterInst)
.createDestroyAddr(DestroyLoc, CurrentDef);
HasChanged = true;
return true;
};
auto SI = DestroyPoint->getIterator(), SE = BB->begin();
while (SI != SE) {
--SI;
SILInstruction *Inst = &*SI;
if (!SrcUserInsts.count(Inst)) {
if (StoredValueUserInsts.count(Inst)) {
// The current definition may take ownership of a value stored into its
// address. Its lifetime cannot end before the last use of that stored
// value.
// CurrentDef = ...
// Copy = copy_addr CurrentDef to ...
// store StoredValue to CurrentDef
// ... // no access to CurrentDef
// retain StoredValue
// destroy_addr CurrentDef
LLVM_DEBUG(llvm::dbgs() << " Cannot hoist above stored value use:"
<< *Inst);
return tryToInsertHoistedDestroyAfter(Inst);
}
if (!ShouldHoist && isa<ApplyInst>(Inst))
ShouldHoist = true;
continue;
}
if (auto *CopyInst = dyn_cast<CopyAddrInst>(Inst)) {
if (!CopyInst->isTakeOfSrc() && CopyInst->getSrc() == CurrentDef) {
// This use is a copy of CurrentDef. Attempt to forward CurrentDef to
// all uses of the copy's value.
if (propagateCopy(CopyInst, /*hoistingDestroy=*/true))
return true;
}
}
return tryToInsertHoistedDestroyAfter(Inst);
}
if (!DoGlobalHoisting) {
// If DoGlobalHoisting is set, then we should never mark a DeadInBlock, so
// MustHoist should be false.
assert(!MustHoist &&
"Cannot hoist above a terminator with global hoisting disabled.");
return false;
}
DeadInBlocks.insert(BB);
return true;
}
/// Perform CopyForwarding on the current Def.
void CopyForwarding::forwardCopiesOf(SILValue Def, SILFunction *F) {
reset(F);
CurrentDef = Def;
LLVM_DEBUG(llvm::dbgs() << "Analyzing copies of Def: " << Def);
CopySrcUserVisitor visitor(*this);
if (!visitAddressUsers(Def, nullptr, visitor))
return;
// First forward any copies that implicitly destroy CurrentDef. There is no
// need to hoist Destroy for these.
for (auto *CopyInst : TakePoints) {
propagateCopy(CopyInst, /*hoistingDestroy=*/false);
}
// If the copied address is also loaded from, then destroy hoisting is unsafe.
//
// TODO: Record all loads during collectUsers. Implement findRetainPoints to
// peek though projections of the load, like unchecked_enum_data to find the
// true extent of the lifetime including transitively referenced objects.
if (IsSrcLoadedFrom || HasUnknownStoredValue)
return;
bool HoistedDestroyFound = false;
SILLocation HoistedDestroyLoc = F->getLocation();
const SILDebugScope *HoistedDebugScope = nullptr;
for (auto *Destroy : DestroyPoints) {
// If hoistDestroy returns false, it was not worth hoisting.
if (hoistDestroy(Destroy, Destroy->getLoc())) {
// Propagate DestroyLoc for any destroy hoisted above a block.
if (DeadInBlocks.count(Destroy->getParent())) {
HoistedDestroyLoc = Destroy->getLoc();
HoistedDebugScope = Destroy->getDebugScope();
HoistedDestroyFound = true;
}
// We either just created a new destroy, forwarded a copy, or will
// continue propagating from this dead-in block. In any case, erase the
// original Destroy.
Destroy->eraseFromParent();
assert(HasChanged || !DeadInBlocks.empty() && "HasChanged should be set");
}
}
// Any blocks containing a DestroyPoints where hoistDestroy did not find a use
// are now marked in DeadInBlocks.
if (DeadInBlocks.empty())
return;
assert(HoistedDestroyFound && "Hoisted destroy should have been found");
DestroyPoints.clear();
// Propagate dead-in blocks upward via PostOrder traversal.
// TODO: We could easily handle hoisting above loops if LoopInfo is available.
//
for (auto *BB : PostOrder->get(F)->getPostOrder()) {
SmallVector<unsigned, 4> DeadInSuccs;
ArrayRef<SILSuccessor> Succs = BB->getSuccessors();
if (Succs.empty())
continue;
for (unsigned EdgeIdx = 0, End = Succs.size(); EdgeIdx != End; ++EdgeIdx) {
if (DeadInBlocks.count(Succs[EdgeIdx].getBB()))
DeadInSuccs.push_back(EdgeIdx);
}
if (DeadInSuccs.size() == Succs.size() &&
!SrcUserInsts.count(BB->getTerminator())) {
// All successors are dead, so continue hoisting.
bool WasHoisted = hoistDestroy(BB->getTerminator(), HoistedDestroyLoc);
(void)WasHoisted;
assert(WasHoisted && "should always hoist above a terminator");
continue;
}
// Emit a destroy on each CFG edge leading to a dead-in block. This requires
// splitting critical edges and will naturally handle redundant branch
// targets.
for (unsigned EdgeIdx : DeadInSuccs) {
SILBasicBlock *SuccBB = splitCriticalEdge(BB->getTerminator(), EdgeIdx);
if (SuccBB)
HasChangedCFG = true;
else
SuccBB = BB->getSuccessors()[EdgeIdx];
// We make no attempt to use the best DebugLoc, because in all known
// cases, we only have one.
SILBuilder B(SuccBB->begin());
B.setCurrentDebugScope(HoistedDebugScope);
B.createDestroyAddr(HoistedDestroyLoc, CurrentDef);
HasChanged = true;
}
}
}
//===----------------------------------------------------------------------===//
// Named Return Value Optimization
//===----------------------------------------------------------------------===//
/// Return true if this copy can be eliminated through Named Return Value
/// Optimization (NRVO).
///
/// Simple NRVO cases are handled naturally via backwardPropagateCopy. However,
/// general NRVO is not handled via local propagation without global data
/// flow. Nonetheless, NRVO is a simple pattern that can be detected using a
/// different technique from propagation.
///
/// Example:
/// func nrvo<T : P>(z : Bool) -> T {
/// var rvo : T
/// if (z) {
/// rvo = T(10)
/// }
/// else {
/// rvo = T(1)
/// }
/// return rvo
/// }
///
/// Because of the control flow, backward propagation with a block will fail to
/// find the initializer for the copy at "return rvo". Instead, we directly
/// check for an NRVO pattern by observing a copy in a return block that is the
/// only use of the copy's dest, which must be an @out arg. If there are no
/// instructions between the copy and the return that may write to the copy's
/// source, we simply replace the source's local stack address with the @out
/// address.
///
/// The following SIL pattern will be detected:
///
/// sil @foo : $@convention(thin) <T> (@out T) -> () {
/// bb0(%0 : $*T):
/// %2 = alloc_stack $T
/// ... // arbitrary control flow, but no other uses of %0
/// bbN:
/// copy_addr [take] %2 to [initialization] %0 : $*T
/// ... // no writes
/// return
static bool canNRVO(CopyAddrInst *CopyInst) {
// Don't perform NRVO unless the copy is a [take]. This is the easiest way
// to determine that the local variable has ownership of its value and ensures
// that removing a copy is a reference count neutral operation. For example,
// this copy can't be trivially eliminated without adding a retain.
// sil @f : $@convention(thin) (@guaranteed T) -> @out T
// bb0(%in : $*T, %out : $T):
// %local = alloc_stack $T
// store %in to %local : $*T
// copy_addr %local to [initialization] %out : $*T
if (!CopyInst->isTakeOfSrc())
return false;
if (!isa<AllocStackInst>(CopyInst->getSrc()))
return false;
// The copy's dest must be an indirect SIL argument. Otherwise, it may not
// dominate all uses of the source. Worse, it may be aliased. This
// optimization will early-initialize the copy dest, so we can't allow aliases
// to be accessed between the initialization and the return.
auto OutArg = dyn_cast<SILFunctionArgument>(CopyInst->getDest());
if (!OutArg)
return false;
if (!OutArg->isIndirectResult())
return false;
SILBasicBlock *BB = CopyInst->getParent();
if (!isa<ReturnInst>(BB->getTerminator()))
return false;
SILValue CopyDest = CopyInst->getDest();
if (!hasOneNonDebugUse(CopyDest))
return false;
auto SI = CopyInst->getIterator(), SE = BB->end();
for (++SI; SI != SE; ++SI) {
if (SI->mayWriteToMemory() && !isa<DeallocationInst>(SI))
return false;
}
return true;
}
/// Replace all uses of \p ASI by \p RHS, except the dealloc_stack.
static void replaceAllUsesExceptDealloc(AllocStackInst *ASI, ValueBase *RHS) {
llvm::SmallVector<Operand *, 8> Uses;
for (Operand *Use : ASI->getUses()) {
if (!isa<DeallocStackInst>(Use->getUser()))
Uses.push_back(Use);
}
for (Operand *Use : Uses) {
Use->set(RHS);
}
}
/// Remove a copy for which canNRVO returned true.
static void performNRVO(CopyAddrInst *CopyInst) {
LLVM_DEBUG(llvm::dbgs() << "NRVO eliminates copy" << *CopyInst);
++NumCopyNRVO;
replaceAllUsesExceptDealloc(cast<AllocStackInst>(CopyInst->getSrc()),
CopyInst->getDest());
assert(CopyInst->getSrc() == CopyInst->getDest() && "bad NRVO");
CopyInst->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// CopyForwardingPass
//===----------------------------------------------------------------------===//
namespace {
#ifndef NDEBUG
static llvm::cl::opt<int> ForwardStart("copy-forward-start",
llvm::cl::init(0), llvm::cl::Hidden);
static llvm::cl::opt<int> ForwardStop("copy-forward-stop",
llvm::cl::init(-1), llvm::cl::Hidden);
#endif
class CopyForwardingPass : public SILFunctionTransform
{
void run() override {
if (!EnableCopyForwarding && !EnableDestroyHoisting)
return;
// FIXME: We should be able to support [ossa].
if (getFunction()->hasOwnership())
return;
LLVM_DEBUG(llvm::dbgs() << "Copy Forwarding in Func "
<< getFunction()->getName() << "\n");
// Collect a set of identified objects (@in arg or alloc_stack) that are
// copied in this function.
// Collect a separate set of copies that can be removed via NRVO.
llvm::SmallSetVector<SILValue, 16> CopiedDefs;
llvm::SmallVector<CopyAddrInst*, 4> NRVOCopies;
for (auto &BB : *getFunction())
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
if (auto *CopyInst = dyn_cast<CopyAddrInst>(&*II)) {
if (EnableDestroyHoisting && canNRVO(CopyInst)) {
NRVOCopies.push_back(CopyInst);
continue;
}
SILValue Def = CopyInst->getSrc();
if (isIdentifiedSourceValue(Def))
CopiedDefs.insert(Def);
else {
LLVM_DEBUG(llvm::dbgs() << " Skipping Def: " << Def
<< " not an argument or local var!\n");
}
}
}
// Perform NRVO
for (auto Copy : NRVOCopies) {
performNRVO(Copy);
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
// Perform Copy Forwarding.
if (CopiedDefs.empty())
return;
auto *PO = getAnalysis<PostOrderAnalysis>();
auto *DA = getAnalysis<DominanceAnalysis>();
auto *RCIA = getAnalysis<RCIdentityAnalysis>();
auto Forwarding = CopyForwarding(PO, DA, RCIA);
for (SILValue Def : CopiedDefs) {
#ifndef NDEBUG
static unsigned NumDefs = 0;
++NumDefs;
if ((int)NumDefs < ForwardStart || NumDefs >= (unsigned)ForwardStop)
continue;
#endif
// Iterate to forward through chains of copies.
do {
Forwarding.forwardCopiesOf(Def, getFunction());
} while (Forwarding.hasForwardedToCopy());
}
if (Forwarding.hasChangedCFG()) {
// We've split critical edges so we can't preserve CFG.
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
} else {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
};
/// Temporary RValue Optimization
///
/// Peephole optimization to eliminate short-lived immutable temporary copies.
/// This handles a common pattern generated by SILGen where temporary RValues
/// are emitted as copies...
///
/// %temp = alloc_stack $T
/// copy_addr %src to [initialization] %temp : $*T
/// // no writes to %src and %temp
/// destroy_addr %temp : $*T
/// dealloc_stack %temp : $*T
///
/// This differs from the copy forwarding algorithm because it handles
/// copy source and dest lifetimes that are unavoidably overlappying. Instead,
/// it finds cases in which it is easy to determine that the source is
/// unmodified during the copy destination's lifetime. Thus, the destination can
/// be viewed as a short-lived "rvalue".
class TempRValueOptPass : public SILFunctionTransform {
AliasAnalysis *AA = nullptr;
bool collectLoads(Operand *UserOp, SILInstruction *UserInst,
SingleValueInstruction *Addr,
SILValue srcObject,
llvm::SmallPtrSetImpl<SILInstruction *> &LoadInsts);
bool checkNoSourceModification(CopyAddrInst *copyInst,
const llvm::SmallPtrSetImpl<SILInstruction *> &useInsts);
bool checkTempObjectDestroy(AllocStackInst *tempObj, CopyAddrInst *copyInst);
bool tryOptimizeCopyIntoTemp(CopyAddrInst *copyInst);
void run() override;
};
/// The main entry point of the pass.
void TempRValueOptPass::run() {
if (getFunction()->hasOwnership())
return;
LLVM_DEBUG(llvm::dbgs() << "Copy Peephole in Func "
<< getFunction()->getName() << "\n");
AA = PM->getAnalysis<AliasAnalysis>();
bool Changed = false;
// Find all copy_addr instructions.
for (auto &BB : *getFunction()) {
auto II = BB.begin();
while (II != BB.end()) {
auto *CopyInst = dyn_cast<CopyAddrInst>(&*II);
if (CopyInst) {
// In case of success, this may delete instructions, but not the
// CopyInst itself.
Changed |= tryOptimizeCopyIntoTemp(CopyInst);
}
// Increment the instruction iterator here. We can't do it at the begin of
// the loop because the instruction after CopyInst might be deleted in
// in tryOptimizeCopyIntoTemp. We can't do it at the end of the loop
// because the CopyInst might be deleted in the following code.
++II;
// Remove identity copies which are a result of this optimization.
if (CopyInst && CopyInst->getSrc() == CopyInst->getDest()) {
// This is either the CopyInst which just got optimized or it is a
// follow-up from an earlier iteration, where another copy_addr copied
// the temporary back to the source location.
CopyInst->eraseFromParent();
}
}
}
if (Changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
/// Transitively explore all data flow uses of the given \p address until
/// reaching a load or returning false.
///
/// Any user opcode recognized by collectLoads must be replaced correctly later
/// during tryOptimizeCopyIntoTemp. If it is possible for any use to destroy the
/// value in \p address, then that use must be removed or made non-destructive
/// after the copy is removed and its operand is replaced.
///
/// Warning: To preserve the original object lifetime, tryOptimizeCopyIntoTemp
/// must assume that there are no holes in lifetime of the temporary stack
/// location at \address. The temporary must be initialized by the original copy
/// and never written to again. Therefore, collectLoads disallows any operation
/// that may write to memory at \p address.
bool TempRValueOptPass::collectLoads(
Operand *userOp, SILInstruction *user, SingleValueInstruction *address,
SILValue srcObject,
llvm::SmallPtrSetImpl<SILInstruction *> &loadInsts) {
// All normal uses (loads) must be in the initialization block.
// (The destroy and dealloc are commonly in a different block though.)
if (user->getParent() != address->getParent())
return false;
// Only allow uses that cannot destroy their operand. We need to be sure
// that replacing all this temporary's uses with the copy source doesn't
// destroy the source. This way, we know that the destroy_addr instructions
// that we recorded cover all the temporary's lifetime termination points.
//
// Currently this includes address projections, loads, and in_guaranteed uses
// by an apply.
//
// TODO: handle non-destructive projections of enums
// (unchecked_take_enum_data_addr of Optional is nondestructive.)
switch (user->getKind()) {
default:
LLVM_DEBUG(llvm::dbgs() << " Temp use may write/destroy its source"
<< *user);
return false;
case SILInstructionKind::ApplyInst:
case SILInstructionKind::TryApplyInst: {
ApplySite apply(user);
// Check if the function can just read from userOp.
auto Convention = apply.getArgumentConvention(*userOp);
if (!Convention.isGuaranteedConvention()) {
LLVM_DEBUG(llvm::dbgs() << " Temp consuming use may write/destroy "
"its source" << *user);
return false;
}
// Check if there is another function argument, which is inout which might
// modify the source of the copy_addr.
//
// When a use of the temporary is an apply, then we need to prove that the
// function called by the apply cannot modify the temporary's source
// value. By design, this should be handled by
// `checkNoSourceModification`. However, this would be too conservative
// since it's common for the apply to have an @out argument, and alias
// analysis cannot prove that the @out does not alias with `src`. Instead,
// `checkNoSourceModification` always avoids analyzing the current use, so
// applies need to be handled here. We already know that an @out cannot
// alias with `src` because the `src` value must be initialized at the point
// of the call. Hence, it is sufficient to check specifically for another
// @inout that might alias with `src`.
auto calleeConv = apply.getSubstCalleeConv();
unsigned calleeArgIdx = apply.getCalleeArgIndexOfFirstAppliedArg();
for (Operand &operand : apply.getArgumentOperands()) {
auto argConv = calleeConv.getSILArgumentConvention(calleeArgIdx);
if (argConv.isInoutConvention()) {
if (!AA->isNoAlias(operand.get(), srcObject)) {
return false;
}
}
++calleeArgIdx;
}
// Everything is okay with the function call. Register it as a "load".
loadInsts.insert(user);
return true;
}
case SILInstructionKind::OpenExistentialAddrInst: {
// We only support open existential addr if the access is immutable.
auto *oeai = cast<OpenExistentialAddrInst>(user);
if (oeai->getAccessKind() != OpenedExistentialAccess::Immutable) {
LLVM_DEBUG(llvm::dbgs() << " Temp consuming use may write/destroy "
"its source" << *user);
return false;
}
LLVM_FALLTHROUGH;
}
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::TupleElementAddrInst: {
// Transitively look through projections on stack addresses.
auto proj = cast<SingleValueInstruction>(user);
for (auto *projUseOper : proj->getUses()) {
auto *user = projUseOper->getUser();
if (user->isTypeDependentOperand(*projUseOper))
continue;
if (!collectLoads(projUseOper, user, proj, srcObject,
loadInsts))
return false;
}
return true;
}
case SILInstructionKind::LoadInst:
case SILInstructionKind::LoadBorrowInst:
// Loads are the end of the data flow chain. The users of the load can't
// access the temporary storage.
loadInsts.insert(user);
return true;
case SILInstructionKind::CopyAddrInst: {
// copy_addr which read from the temporary are like loads.
auto *copyFromTmp = cast<CopyAddrInst>(user);
if (copyFromTmp->getDest() == address) {
LLVM_DEBUG(llvm::dbgs() << " Temp written or taken" << *user);
return false;
}
loadInsts.insert(copyFromTmp);
return true;
}
}
}
/// Checks if the copy's source can be modified within the temporary's lifetime.
///
/// Unfortunately, we cannot simply use the destroy points as the lifetime end,
/// because they can be in a different basic block (that's what SILGen
/// generates). Instead we guarantee that all normal uses are within the block
/// of the temporary and look for the last use, which effectively ends the
/// lifetime.
bool TempRValueOptPass::checkNoSourceModification(CopyAddrInst *copyInst,
const llvm::SmallPtrSetImpl<SILInstruction *> &useInsts) {
unsigned NumLoadsFound = 0;
auto iter = std::next(copyInst->getIterator());
// We already checked that the useful lifetime of the temporary ends in
// the initialization block.
auto iterEnd = copyInst->getParent()->end();
for (; iter != iterEnd; ++iter) {
SILInstruction *I = &*iter;
if (useInsts.count(I))
NumLoadsFound++;
// If this is the last use of the temp we are ok. After this point,
// modifications to the source don't matter anymore.
if (NumLoadsFound == useInsts.size())
return true;
if (AA->mayWriteToMemory(I, copyInst->getSrc())) {
LLVM_DEBUG(llvm::dbgs() << " Source modified by" << *iter);
return false;
}
}
// For some reason, not all normal uses have been seen between the copy and
// the end of the initialization block. We should never reach here.
return false;
}
/// Return true if the \p tempObj, which is initialized by \p copyInst, is
/// destroyed in an orthodox way.
///
/// When tryOptimizeCopyIntoTemp replaces all of tempObj's uses, it assumes that
/// the object is initialized by the original copy and directly destroyed on all
/// paths by one of the recognized 'destroy_addr' or 'copy_addr [take]'
/// operations. This assumption must be checked. For example, in non-OSSA,
/// it is legal to destroy an in-memory object by loading the value and
/// releasing it. Rather than detecting unbalanced load releases, simply check
/// that tempObj is destroyed directly on all paths.
bool TempRValueOptPass::checkTempObjectDestroy(AllocStackInst *tempObj,
CopyAddrInst *copyInst) {
// If the original copy was a take, then replacing all uses cannot affect
// the lifetime.
if (copyInst->isTakeOfSrc())
return true;
// ValueLifetimeAnalysis is not normally used for address types. It does not
// reason about the lifetime of the in-memory object. However the utility can
// be abused here to check that the address is directly destroyed on all
// paths. collectLoads has already guaranteed that tempObj's lifetime has no
// holes/reinitializations.
SmallVector<SILInstruction *, 8> users;
for (auto result : tempObj->getResults()) {
for (Operand *operand : result->getUses()) {
SILInstruction *user = operand->getUser();
if (user == copyInst)
continue;
if (isa<DeallocStackInst>(user))
continue;
users.push_back(user);
}
}
// Find the boundary of tempObj's address lifetime, starting at copyInst.
ValueLifetimeAnalysis vla(copyInst, users);
ValueLifetimeAnalysis::Frontier tempAddressFrontier;
if (!vla.computeFrontier(tempAddressFrontier,
ValueLifetimeAnalysis::DontModifyCFG)) {
return false;
}
// Check that the lifetime boundary ends at direct destroy points.
for (SILInstruction *frontierInst : tempAddressFrontier) {
auto pos = frontierInst->getIterator();
// If the frontier is at the head of a block, then either it is an
// unexpected lifetime exit, or the lifetime ended at a
// terminator. TempRValueOptPass does not handle either case.
if (pos == frontierInst->getParent()->begin())
return false;
// Look for a known destroy point as described in the funciton level
// comment. This whitelist can be expanded as more cases are handled in
// tryOptimizeCopyIntoTemp during copy replacement.
SILInstruction *lastUser = &*std::prev(pos);
if (isa<DestroyAddrInst>(lastUser))
continue;
if (auto *cai = dyn_cast<CopyAddrInst>(lastUser)) {
assert(cai->getSrc() == tempObj && "collectLoads checks for writes");
assert(!copyInst->isTakeOfSrc() && "checked above");
if (cai->isTakeOfSrc())
continue;
}
return false;
}
return true;
}
/// Tries to perform the temporary rvalue copy elimination for \p copyInst
bool TempRValueOptPass::tryOptimizeCopyIntoTemp(CopyAddrInst *copyInst) {
if (!copyInst->isInitializationOfDest())
return false;
auto *tempObj = dyn_cast<AllocStackInst>(copyInst->getDest());
if (!tempObj)
return false;
assert(tempObj != copyInst->getSrc() &&
"can't initialize temporary with itself");
// Scan all uses of the temporary storage (tempObj) to verify they all refer
// to the value initialized by this copy. It is sufficient to check that the
// only users that modify memory are the copy_addr [initialization] and
// destroy_addr.
llvm::SmallPtrSet<SILInstruction *, 8> loadInsts;
for (auto *useOper : tempObj->getUses()) {
SILInstruction *user = useOper->getUser();
if (user == copyInst)
continue;
// Destroys and deallocations are allowed to be in a different block.
if (isa<DestroyAddrInst>(user) || isa<DeallocStackInst>(user))
continue;
if (!collectLoads(useOper, user, tempObj, copyInst->getSrc(), loadInsts))
return false;
}
// Check if the source is modified within the lifetime of the temporary.
if (!checkNoSourceModification(copyInst, loadInsts))
return false;
if (!checkTempObjectDestroy(tempObj, copyInst))
return false;
LLVM_DEBUG(llvm::dbgs() << " Success: replace temp" << *tempObj);
// Do a "replaceAllUses" by either deleting the users or replacing them with
// the source address. Note: we must not delete the original copyInst because
// it would crash the instruction iteration in run(). Instead the copyInst
// gets identical Src and Dest operands.
while (!tempObj->use_empty()) {
Operand *use = *tempObj->use_begin();
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::DestroyAddrInst:
if (copyInst->isTakeOfSrc()) {
use->set(copyInst->getSrc());
} else {
user->eraseFromParent();
}
break;
case SILInstructionKind::DeallocStackInst:
user->eraseFromParent();
break;
case SILInstructionKind::CopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(user);
if (CAI != copyInst) {
assert(CAI->getSrc() == tempObj);
if (CAI->isTakeOfSrc() && !copyInst->isTakeOfSrc())
CAI->setIsTakeOfSrc(IsNotTake);
}
use->set(copyInst->getSrc());
break;
}
// ASSUMPTION: no operations that may be handled by this default clause can
// destroy tempObj. This includes operations that load the value from memory
// and release it.
default:
use->set(copyInst->getSrc());
break;
}
}
tempObj->eraseFromParent();
return true;
}
} // end anonymous namespace
SILTransform *swift::createCopyForwarding() {
return new CopyForwardingPass();
}
SILTransform *swift::createTempRValueOpt() {
return new TempRValueOptPass();
}