Files
swift-mirror/lib/IRGen/GenClass.cpp
Eli Friedman ae7c99020b Fix use of uninitialized member.
Swift SVN r2715
2012-08-22 22:50:03 +00:00

751 lines
25 KiB
C++

//===--- GenClass.cpp - Swift IR Generation For 'class' Types -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for class types.
//
//===----------------------------------------------------------------------===//
#include "GenClass.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Types.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "Explosion.h"
#include "GenFunc.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LValue.h"
#include "GenHeap.h"
#include "HeapTypeInfo.h"
#include "GenInit.h"
#include "Scope.h"
#include "Cleanup.h"
using namespace swift;
using namespace irgen;
namespace {
/// Layout information for class types.
class ClassTypeInfo : public HeapTypeInfo {
ClassDecl *TheClass;
mutable HeapLayout *Layout;
public:
ClassTypeInfo(llvm::PointerType *irType, Size size, Alignment align,
ClassDecl *D)
: HeapTypeInfo(irType, size, align), TheClass(D), Layout(nullptr) {
}
~ClassTypeInfo() {
delete Layout;
}
ClassDecl *getClass() const { return TheClass; }
const HeapLayout &getLayout(IRGenModule &IGM) const {
if (Layout)
return *Layout;
// Collect all the fields from the type.
SmallVector<const TypeInfo*, 8> fieldTypes;
for (Decl *member : getClass()->getMembers())
if (VarDecl *VD = dyn_cast<VarDecl>(member))
if (!VD->isProperty())
fieldTypes.push_back(&IGM.getFragileTypeInfo(VD->getType()));
llvm::PointerType *Ptr = cast<llvm::PointerType>(getStorageType());
llvm::StructType *STy = cast<llvm::StructType>(Ptr->getElementType());
Layout = new HeapLayout(IGM, LayoutStrategy::Optimal, fieldTypes, STy);
return *Layout;
}
Alignment getHeapAlignment(IRGenModule &IGM) const {
return getLayout(IGM).getAlignment();
}
llvm::ArrayRef<ElementLayout> getElements(IRGenModule &IGM) const {
return getLayout(IGM).getElements();
}
};
} // end anonymous namespace.
static unsigned getFieldIndex(ClassDecl *base, VarDecl *target) {
// FIXME: This is an ugly hack.
unsigned index = 0;
for (Decl *member : base->getMembers()) {
if (member == target) return index;
if (auto var = dyn_cast<VarDecl>(member))
if (!var->isProperty())
++index;
}
llvm_unreachable("didn't find field in type!");
}
static LValue emitPhysicalClassMemberLValue(IRGenFunction &IGF,
Expr *base,
ClassDecl *classDecl,
const ClassTypeInfo &classTI,
VarDecl *field) {
Explosion explosion(ExplosionKind::Maximal);
// FIXME: Can we avoid the retain/release here in some cases?
IGF.emitRValue(base, explosion);
ManagedValue baseVal = explosion.claimNext();
// FIXME: This field index computation is an ugly hack.
unsigned fieldIndex = getFieldIndex(classDecl, field);
Address baseAddr(baseVal.getValue(), classTI.getHeapAlignment(IGF.IGM));
auto &element = classTI.getElements(IGF.IGM)[fieldIndex];
Address memberAddr = element.project(IGF, baseAddr);
return IGF.emitAddressLValue(OwnedAddress(memberAddr, baseVal.getValue()));
}
LValue irgen::emitPhysicalClassMemberLValue(IRGenFunction &IGF,
MemberRefExpr *E) {
auto baseType = E->getBase()->getType()->castTo<ClassType>();
auto &baseTI = IGF.getFragileTypeInfo(baseType).as<ClassTypeInfo>();
return ::emitPhysicalClassMemberLValue(IGF, E->getBase(),
baseType->getDecl(), baseTI,
E->getDecl());
}
LValue irgen::emitPhysicalClassMemberLValue(IRGenFunction &IGF,
GenericMemberRefExpr *E) {
auto baseType = E->getBase()->getType()->castTo<BoundGenericType>();
auto &baseTI = IGF.getFragileTypeInfo(baseType).as<ClassTypeInfo>();
return ::emitPhysicalClassMemberLValue(IGF, E->getBase(),
cast<ClassDecl>(baseType->getDecl()),
baseTI, cast<VarDecl>(E->getDecl()));
}
namespace {
class ClassDestroyCleanup : public Cleanup {
ClassDecl *CD;
llvm::Value *ThisValue;
const ClassTypeInfo &info;
public:
ClassDestroyCleanup(ClassDecl *CD, llvm::Value *ThisValue,
const ClassTypeInfo &info)
: CD(CD), ThisValue(ThisValue), info(info) {}
void emit(IRGenFunction &IGF) const {
// FIXME: This implementation will be wrong once we get dynamic
// class layout.
auto &layout = info.getLayout(IGF.IGM);
Address baseAddr = layout.emitCastOfAlloc(IGF, ThisValue);
// Destroy all the instance variables of the class.
for (auto &field : layout.getElements()) {
if (field.Type->isPOD(ResilienceScope::Local))
continue;
field.Type->destroy(IGF, field.project(IGF, baseAddr));
}
}
};
}
static void bindDestructorArchetypes(IRGenFunction &IGF, Address thisValue,
ClassDecl *CD,
const GenericParamList &generics);
/// Emit the destructor for a class.
///
/// \param DD - the optional explicit destructor declaration
static void emitClassDestructor(IRGenModule &IGM, ClassDecl *CD,
DestructorDecl *DD) {
llvm::Function *fn = IGM.getAddrOfDestructor(CD);
IRGenFunction IGF(IGM, Type(), nullptr,
ExplosionKind::Minimal, 0, fn, Prologue::Bare);
Type thisType = CD->getDeclaredTypeInContext();
const ClassTypeInfo &info =
IGM.getFragileTypeInfo(thisType).as<ClassTypeInfo>();
llvm::Value *thisValue = fn->arg_begin();
thisValue = IGF.Builder.CreateBitCast(thisValue, info.getStorageType());
// Bind generic parameters. This is only really necessary if we
// have either (1) an explicit destructor or (2) something dependent
// to destroy implicitly.
assert((!DD || DD->getDeclContext() == CD) &&
"destructor not defined in main class decl; archetypes might be off");
if (auto generics = CD->getGenericParamsOfContext()) {
Address thisAsAddr = Address(thisValue, info.getHeapAlignment(IGF.IGM));
bindDestructorArchetypes(IGF, thisAsAddr, CD, *generics);
}
// FIXME: If the class is generic, we need some way to get at the
// witness table.
// FIXME: This extra retain call is sort of strange, but it's necessary
// for the moment to prevent re-triggering destruction.
IGF.emitRetainCall(thisValue);
Scope scope(IGF);
IGF.pushCleanup<ClassDestroyCleanup>(CD, thisValue, info);
if (DD) {
auto thisDecl = DD->getImplicitThisDecl();
Initialization I;
I.registerObject(IGF, I.getObjectForDecl(thisDecl),
thisDecl->hasFixedLifetime() ? NotOnHeap : OnHeap, info);
Address addr = I.emitVariable(IGF, thisDecl, info);
Explosion thisE(ExplosionKind::Maximal);
IGF.emitRetain(thisValue, thisE);
info.initialize(IGF, thisE, addr);
I.markInitialized(IGF, I.getObjectForDecl(thisDecl));
IGF.emitFunctionTopLevel(DD->getBody());
}
scope.pop();
if (IGF.Builder.hasValidIP()) {
llvm::Value *size = info.getLayout(IGM).emitSize(IGF);
IGF.Builder.CreateRet(size);
}
}
static llvm::Function *createSizeFn(IRGenModule &IGM,
const HeapLayout &layout) {
// FIXME: This implementation will be wrong once we get dynamic
// class layout.
llvm::Function *fn =
llvm::Function::Create(IGM.DtorTy, llvm::Function::InternalLinkage,
"objectsize", &IGM.Module);
IRGenFunction IGF(IGM, Type(), llvm::ArrayRef<Pattern*>(),
ExplosionKind::Minimal, 0, fn, Prologue::Bare);
llvm::Value *size = layout.emitSize(IGF);
IGF.Builder.CreateRet(size);
return fn;
}
namespace {
enum { NumStandardMetadataFields = 2 };
/// A CRTP class for laying out class metadata. Note that this does
/// *not* handle the metadata template stuff.
template <class Impl> class MetadataLayout {
Impl &asImpl() { return *static_cast<Impl*>(this); }
protected:
IRGenModule &IGM;
/// The most-derived class.
ClassDecl *const TargetClass;
MetadataLayout(IRGenModule &IGM, ClassDecl *targetClass)
: IGM(IGM), TargetClass(targetClass) {}
public:
void layout() {
// Common fields.
asImpl().addDestructorFunction();
asImpl().addSizeFunction();
// Class-specific fields.
asImpl().addClassFields(TargetClass);
}
protected:
/// Add fields associated with the given class and its bases.
void addClassFields(ClassDecl *theClass) {
// TODO: base class
// TODO: virtual methods
if (auto generics = theClass->getGenericParamsOfContext()) {
addGenericClassFields(theClass, *generics);
}
}
/// Add fields related to the generics of this class declaration.
/// TODO: don't add new fields that are implied by base class
/// fields. e.g., if B<T> extends A<T>, the witness for T in A's
/// section should be enough.
void addGenericClassFields(ClassDecl *theClass,
const GenericParamList &generics) {
SmallVector<llvm::Type*, 4> signature;
expandPolymorphicSignature(IGM, generics, signature);
for (auto type : signature) {
asImpl().addGenericWitness(theClass, type);
}
}
};
template <class Impl>
class MetadataBuilderBase : public MetadataLayout<Impl> {
typedef MetadataLayout<Impl> super;
protected:
SmallVector<llvm::Constant *, 8> Fields;
const HeapLayout &Layout;
MetadataBuilderBase(IRGenModule &IGM, ClassDecl *theClass,
const HeapLayout &layout)
: super(IGM, theClass), Layout(layout) {}
unsigned getNextIndex() const { return Fields.size(); }
public:
void addDestructorFunction() {
Fields.push_back(this->IGM.getAddrOfDestructor(this->TargetClass));
}
void addSizeFunction() {
Fields.push_back(createSizeFn(this->IGM, Layout));
}
void addGenericWitness(ClassDecl *forClass, llvm::Type *witnessType) {
Fields.push_back(llvm::Constant::getNullValue(witnessType));
}
llvm::Constant *getInit() {
if (Fields.size() == NumStandardMetadataFields) {
return llvm::ConstantStruct::get(this->IGM.HeapMetadataStructTy,
Fields);
} else {
return llvm::ConstantStruct::getAnon(Fields);
}
}
};
class MetadataBuilder : public MetadataBuilderBase<MetadataBuilder> {
public:
MetadataBuilder(IRGenModule &IGM, ClassDecl *theClass,
const HeapLayout &layout)
: MetadataBuilderBase(IGM, theClass, layout) {}
llvm::Constant *getInit() {
if (Fields.size() == NumStandardMetadataFields) {
return llvm::ConstantStruct::get(IGM.HeapMetadataStructTy, Fields);
} else {
return llvm::ConstantStruct::getAnon(Fields);
}
}
};
/// A builder for metadata templates.
class MetadataTemplateBuilder :
public MetadataBuilderBase<MetadataTemplateBuilder> {
typedef MetadataBuilderBase super;
/// The generics clause for the type we're emitting.
const GenericParamList &ClassGenerics;
/// The number of generic witnesses in the type we're emitting.
/// This is not really something we need to track.
unsigned NumGenericWitnesses = 0;
struct FillOp {
unsigned FromIndex;
unsigned ToIndex;
FillOp() = default;
FillOp(unsigned from, unsigned to) : FromIndex(from), ToIndex(to) {}
};
SmallVector<FillOp, 8> FillOps;
enum { TemplateHeaderFieldCount = 5 };
public:
MetadataTemplateBuilder(IRGenModule &IGM, ClassDecl *theClass,
const HeapLayout &layout,
const GenericParamList &classGenerics)
: super(IGM, theClass, layout), ClassGenerics(classGenerics) {}
void layout() {
// Leave room for the header.
Fields.append(TemplateHeaderFieldCount, nullptr);
// Lay out the template data.
super::layout();
// Fill in the header:
// uint32_t NumArguments;
// TODO: ultimately, this should be the number of actual template
// arguments, not the number of value witness tables required.
Fields[0] = llvm::ConstantInt::get(IGM.Int32Ty, NumGenericWitnesses);
// uint32_t NumFillOps;
Fields[1] = llvm::ConstantInt::get(IGM.Int32Ty, FillOps.size());
// size_t MetadataSize;
// We compute this assuming that every entry in the metadata table
// is a pointer.
Size size = getNextIndex() * IGM.getPointerSize();
Fields[2] = llvm::ConstantInt::get(IGM.SizeTy, size.getValue());
// void *PrivateData[8];
Fields[3] = getPrivateDataInit();
// struct SwiftGenericHeapMetadataFillOp FillOps[NumArguments];
Fields[4] = getFillOpsInit();
assert(TemplateHeaderFieldCount == 5);
}
/// Ignore the preallocated header.
unsigned getNextIndex() const {
return super::getNextIndex() - TemplateHeaderFieldCount;
}
/// The algorithm we use here is really wrong: we're treating all
/// the witness tables as if they were arguments, then just
/// copying them in-place.
void addGenericWitness(ClassDecl *forClass, llvm::Type *witnessTy) {
assert(witnessTy->isPointerTy());
FillOps.push_back(FillOp(NumGenericWitnesses++, getNextIndex()));
super::addGenericWitness(forClass, witnessTy);
}
private:
static llvm::Constant *makeArray(llvm::Type *eltTy,
ArrayRef<llvm::Constant*> elts) {
auto arrayTy = llvm::ArrayType::get(eltTy, elts.size());
return llvm::ConstantArray::get(arrayTy, elts);
}
/// Produce the initializer for the private-data field of the
/// template header.
llvm::Constant *getPrivateDataInit() {
// Spec'ed to be 8 pointers wide. An arbitrary choice; should
// work out an ideal size with the runtime folks.
auto null = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
llvm::Constant *privateData[8] = {
null, null, null, null, null, null, null, null
};
return makeArray(IGM.Int8PtrTy, privateData);
}
llvm::Constant *getFillOpsInit() {
// Construct the type of individual operations.
llvm::Type *opMemberTys[] = { IGM.Int32Ty, IGM.Int32Ty };
auto fillOpTy =
llvm::StructType::get(IGM.getLLVMContext(), opMemberTys, false);
// Build the array of fill-ops.
SmallVector<llvm::Constant*, 4> fillOps(FillOps.size());
for (size_t i = 0, e = FillOps.size(); i != e; ++i) {
fillOps[i] = getFillOpInit(FillOps[i], fillOpTy);
}
return makeArray(fillOpTy, fillOps);
}
llvm::Constant *getFillOpInit(const FillOp &op, llvm::StructType *opTy) {
llvm::Constant *members[] = {
llvm::ConstantInt::get(IGM.Int32Ty, op.FromIndex),
llvm::ConstantInt::get(IGM.Int32Ty, op.ToIndex)
};
return llvm::ConstantStruct::get(opTy, members);
}
};
}
/// Emit the heap metadata or metadata template for a class.
void IRGenModule::emitClassMetadata(ClassDecl *classDecl) {
// Construct the layout for the type.
auto &classTI = Types.getFragileTypeInfo(classDecl).as<ClassTypeInfo>();
auto &layout = classTI.getLayout(*this);
// TODO: classes nested within generic types
llvm::Constant *init;
if (auto *generics = classDecl->getGenericParamsOfContext()) {
MetadataTemplateBuilder builder(*this, classDecl, layout, *generics);
builder.layout();
init = builder.getInit();
} else {
MetadataBuilder builder(*this, classDecl, layout);
builder.layout();
init = builder.getInit();
}
auto var = cast<llvm::GlobalVariable>(
getAddrOfClassMetadata(classDecl, init->getType()));
var->setConstant(true);
var->setInitializer(init);
}
/// Returns a metadata reference for a constructor.
static llvm::Value *getClassMetadataForConstructor(IRGenFunction &IGF,
ConstructorDecl *ctor,
ClassDecl *theClass) {
// Grab a reference to the metadata or metadata template.
auto metadata = IGF.IGM.getAddrOfClassMetadata(theClass);
assert(metadata->getType() == IGF.IGM.HeapMetadataPtrTy);
// If we don't have generic parameters, that's all we need.
// TODO: fragility might force us to indirect this, and startup
// performance might force us to do a lazy check.
auto classGenerics = theClass->getGenericParamsOfContext();
if (!classGenerics) {
return metadata;
}
// Okay, we need to call swift_getGenericMetadata.
// Grab the substitutions.
#if 0
CanType thisTy = ctor->getImplicitThisDecl()->getType()->getCanonicalType();
auto boundGeneric = cast<BoundGenericType>(thisTy);
assert(boundGeneric->getDecl() == theClass);
auto subs = boundGeneric->getSubstitutions();
// HAHA, there are no substitutions here, you fool.
#else
// Just assume that the archetypes are identical on the
// current context.
auto &ctorGenerics =
ctor->getType()->castTo<PolymorphicFunctionType>()->getGenericParams();
unsigned numArchetypes = ctorGenerics.getAllArchetypes().size();
assert(numArchetypes == classGenerics->getAllArchetypes().size());
SmallVector<Substitution, 4> subs;
for (unsigned i = 0; i != numArchetypes; ++i) {
Substitution sub;
sub.Archetype = classGenerics->getAllArchetypes()[i];
sub.Replacement = ctorGenerics.getAllArchetypes()[i];
// conformances not required
subs.push_back(sub);
}
#endif
// Compile all the generic arguments we need.
Explosion genericArgs(ExplosionKind::Maximal);
emitPolymorphicArguments(IGF, *classGenerics, subs, genericArgs);
// Slam that information directly into the generic arguments buffer.
// TODO: sort actual arguments to the front.
auto wtableArrayTy = llvm::ArrayType::get(IGF.IGM.WitnessTablePtrTy,
genericArgs.size());
Address argumentsBuffer = IGF.createAlloca(wtableArrayTy,
IGF.IGM.getPointerAlignment(),
"generic.arguments");
for (unsigned i = 0, e = genericArgs.size(); i != e; ++i) {
Address elt = IGF.Builder.CreateStructGEP(argumentsBuffer, i,
IGF.IGM.getPointerSize() * i);
IGF.Builder.CreateStore(genericArgs.claimUnmanagedNext(), elt);
}
// Cast to void*.
llvm::Value *arguments =
IGF.Builder.CreateBitCast(argumentsBuffer.getAddress(),
IGF.IGM.Int8PtrTy);
// Make the call.
auto result = IGF.Builder.CreateCall2(IGF.IGM.getGetGenericMetadataFn(),
metadata, arguments);
result->setDoesNotThrow();
return result;
}
static void emitClassConstructor(IRGenModule &IGM, ConstructorDecl *CD) {
llvm::Function *fn = IGM.getAddrOfConstructor(CD, ExplosionKind::Minimal);
auto thisDecl = CD->getImplicitThisDecl();
const ClassTypeInfo &classTI =
IGM.getFragileTypeInfo(thisDecl->getType()).as<ClassTypeInfo>();
auto &layout = classTI.getLayout(IGM);
ClassDecl *curClass = classTI.getClass();
Pattern* pats[] = {
new (IGM.Context) AnyPattern(SourceLoc()),
CD->getArguments()
};
pats[0]->setType(MetaTypeType::get(thisDecl->getType(), IGM.Context));
IRGenFunction IGF(IGM, CD->getType(), pats,
ExplosionKind::Minimal, 1, fn, Prologue::Standard);
// Emit the "this" variable
Initialization I;
I.registerObject(IGF, I.getObjectForDecl(thisDecl),
thisDecl->hasFixedLifetime() ? NotOnHeap : OnHeap, classTI);
Address addr = I.emitVariable(IGF, thisDecl, classTI);
FullExpr scope(IGF);
// Allocate the class.
// FIXME: Long-term, we clearly need a specialized runtime entry point.
llvm::Value *metadata = getClassMetadataForConstructor(IGF, CD, curClass);
llvm::Value *size = layout.emitSize(IGF);
llvm::Value *align = layout.emitAlign(IGF);
llvm::Value *val = IGF.emitAllocObjectCall(metadata, size, align,
"reference.new");
llvm::Type *destType = layout.getType()->getPointerTo();
llvm::Value *castVal = IGF.Builder.CreateBitCast(val, destType);
IGF.Builder.CreateStore(castVal, addr);
scope.pop();
I.markInitialized(IGF, I.getObjectForDecl(thisDecl));
IGF.emitConstructorBody(CD);
}
/// emitStructType - Emit all the declarations associated with this oneof type.
void IRGenModule::emitClassDecl(ClassDecl *D) {
// Emit the class metadata.
emitClassMetadata(D);
bool emittedDtor = false;
// FIXME: This is mostly copy-paste from emitExtension;
// figure out how to refactor!
for (Decl *member : D->getMembers()) {
switch (member->getKind()) {
case DeclKind::Import:
case DeclKind::TopLevelCode:
case DeclKind::Protocol:
case DeclKind::OneOfElement:
case DeclKind::Extension:
llvm_unreachable("decl not allowed in class!");
// We can have meaningful initializers for variables, but
// we can't handle them yet. For the moment, just ignore them.
case DeclKind::PatternBinding:
continue;
case DeclKind::Subscript:
// Getter/setter will be handled separately.
continue;
case DeclKind::TypeAlias:
continue;
case DeclKind::OneOf:
emitOneOfDecl(cast<OneOfDecl>(member));
continue;
case DeclKind::Struct:
emitStructDecl(cast<StructDecl>(member));
continue;
case DeclKind::Class:
emitClassDecl(cast<ClassDecl>(member));
continue;
case DeclKind::Var:
if (cast<VarDecl>(member)->isProperty())
// Getter/setter will be handled separately.
continue;
// FIXME: Will need an implementation here for resilience
continue;
case DeclKind::Func: {
FuncDecl *func = cast<FuncDecl>(member);
if (func->isStatic()) {
// Eventually this won't always be the right thing.
emitStaticMethod(func);
} else {
emitInstanceMethod(func);
}
continue;
}
case DeclKind::Constructor: {
emitClassConstructor(*this, cast<ConstructorDecl>(member));
continue;
}
case DeclKind::Destructor: {
assert(!emittedDtor && "two destructors in class?");
emittedDtor = true;
emitClassDestructor(*this, D, cast<DestructorDecl>(member));
continue;
}
}
llvm_unreachable("bad extension member kind");
}
// Emit a defaulted class destructor if we didn't see one explicitly.
if (!emittedDtor)
emitClassDestructor(*this, D, nullptr);
}
const TypeInfo *TypeConverter::convertClassType(ClassDecl *D) {
llvm::StructType *ST = IGM.createNominalType(D);
llvm::PointerType *irType = ST->getPointerTo();
return new ClassTypeInfo(irType, IGM.getPointerSize(),
IGM.getPointerAlignment(), D);
}
namespace {
/// Really lame way of computing the offset of the metadata for a
/// destructor.
class DestructorMetadataDiscovery
: public MetadataLayout<DestructorMetadataDiscovery> {
typedef MetadataLayout<DestructorMetadataDiscovery> super;
IRGenFunction &IGF;
Address Metadata;
unsigned NextIndex = 0;
Explosion &Out;
public:
DestructorMetadataDiscovery(IRGenFunction &IGF, ClassDecl *theClass,
Address metadata, Explosion &out)
: super(IGF.IGM, theClass), IGF(IGF), Metadata(metadata), Out(out) {}
public:
void addDestructorFunction() {
NextIndex++;
}
void addSizeFunction() {
NextIndex++;
}
void addGenericWitness(ClassDecl *forClass, llvm::Type *witnessType) {
// Ignore witnesses for base classes.
if (forClass != TargetClass) {
NextIndex++;
return;
}
// Otherwise, load this index.
Address elt = IGF.Builder.CreateConstArrayGEP(Metadata, NextIndex++,
IGM.getPointerSize());
llvm::Value *wtable = IGF.Builder.CreateLoad(elt);
Out.addUnmanaged(wtable);
}
};
}
/// Bind the archetypes for this destructor declaration.
static void bindDestructorArchetypes(IRGenFunction &IGF, Address thisValue,
ClassDecl *CD,
const GenericParamList &generics) {
// Reinterpret 'this' as a pointer to a table of witness tables.
llvm::Type *wtablePtrPtrPtrTy =
IGF.IGM.WitnessTablePtrTy->getPointerTo()->getPointerTo();
// Pull out that table of witness tables.
thisValue = IGF.Builder.CreateBitCast(thisValue, wtablePtrPtrPtrTy);
auto metadataPtr = IGF.Builder.CreateLoad(thisValue, "metadata");
Address metadata(metadataPtr, IGF.IGM.getPointerAlignment());
// Find the witnesses in the metadata.
Explosion witnesses(ExplosionKind::Maximal);
DestructorMetadataDiscovery(IGF, CD, metadata, witnesses).layout();
// Bind the archetypes.
emitPolymorphicParameters(IGF, generics, witnesses);
}