Files
swift-mirror/lib/SIL/IR/SILDeclRef.cpp
Augusto Noronha ae98212c1a Eagerly emit getters at Onone.
Force SILGen to also eagerly emit getters when compiling at Onone.
The reason for this is that getters (even not user-written ones,
generated by result builders) can, and are often called by users
debugging swift programs, and should be available for that reason.

rdar://133329303
2024-08-13 14:53:41 -07:00

1818 lines
61 KiB
C++

//===--- SILDeclRef.cpp - Implements SILDeclRef ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILDeclRef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/SourceFile.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Mangle.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
/// Get the method dispatch mechanism for a method.
MethodDispatch
swift::getMethodDispatch(AbstractFunctionDecl *method) {
// Some methods are forced to be statically dispatched.
if (method->hasForcedStaticDispatch())
return MethodDispatch::Static;
if (method->getAttrs().hasAttribute<DistributedActorAttr>())
return MethodDispatch::Static;
// Import-as-member declarations are always statically referenced.
if (method->isImportAsMember())
return MethodDispatch::Static;
auto dc = method->getDeclContext();
if (dc->getSelfClassDecl()) {
if (method->shouldUseObjCDispatch()) {
return MethodDispatch::Class;
}
// Final methods can be statically referenced.
if (method->isFinal())
return MethodDispatch::Static;
// Imported class methods are dynamically dispatched.
if (method->isObjC() && method->hasClangNode())
return MethodDispatch::Class;
// Members defined directly inside a class are dynamically dispatched.
if (isa<ClassDecl>(dc)) {
// Native convenience initializers are not dynamically dispatched unless
// required.
if (auto ctor = dyn_cast<ConstructorDecl>(method)) {
if (!ctor->isRequired() && !ctor->isDesignatedInit()
&& !requiresForeignEntryPoint(ctor))
return MethodDispatch::Static;
}
return MethodDispatch::Class;
}
}
// Otherwise, it can be referenced statically.
return MethodDispatch::Static;
}
bool swift::requiresForeignToNativeThunk(ValueDecl *vd) {
// Functions imported from C, Objective-C methods imported from Objective-C,
// as well as methods in @objc protocols (even protocols defined in Swift)
// require a foreign to native thunk.
auto dc = vd->getDeclContext();
if (auto proto = dyn_cast<ProtocolDecl>(dc))
if (proto->isObjC())
return true;
if (auto fd = dyn_cast<FuncDecl>(vd))
return fd->hasClangNode();
return false;
}
bool swift::requiresForeignEntryPoint(ValueDecl *vd) {
assert(!isa<AbstractStorageDecl>(vd));
if (vd->shouldUseObjCDispatch()) {
return true;
}
if (vd->isObjC() && isa<ProtocolDecl>(vd->getDeclContext()))
return true;
if (vd->isImportAsMember())
return true;
if (vd->hasClangNode())
return true;
if (auto *accessor = dyn_cast<AccessorDecl>(vd)) {
// Property accessors should be generated alongside the property.
if (accessor->isGetterOrSetter()) {
auto *asd = accessor->getStorage();
if (asd->isObjC() && asd->hasClangNode())
return true;
}
}
return false;
}
SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind, bool isForeign,
bool isDistributedThunk, bool isKnownToBeLocal,
bool isRuntimeAccessible,
SILDeclRef::BackDeploymentKind backDeploymentKind,
AutoDiffDerivativeFunctionIdentifier *derivativeId)
: loc(vd), kind(kind), isForeign(isForeign), distributedThunk(isDistributedThunk),
isKnownToBeLocal(isKnownToBeLocal),
isRuntimeAccessible(isRuntimeAccessible),
backDeploymentKind(backDeploymentKind), defaultArgIndex(0),
isAsyncLetClosure(0), pointer(derivativeId) {}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc, bool asForeign,
bool asDistributed, bool asDistributedKnownToBeLocal)
: isRuntimeAccessible(false),
backDeploymentKind(SILDeclRef::BackDeploymentKind::None),
defaultArgIndex(0), isAsyncLetClosure(0),
pointer((AutoDiffDerivativeFunctionIdentifier *)nullptr) {
if (auto *vd = baseLoc.dyn_cast<ValueDecl*>()) {
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
// Map FuncDecls directly to Func SILDeclRefs.
loc = fd;
kind = Kind::Func;
}
// Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
else if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
loc = cd;
kind = Kind::Allocator;
}
// Map EnumElementDecls to the EnumElement SILDeclRef of the element.
else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
loc = ed;
kind = Kind::EnumElement;
}
// VarDecl constants require an explicit kind.
else if (isa<VarDecl>(vd)) {
llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
}
// Map DestructorDecls to the Deallocator of the destructor.
else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
loc = dtor;
kind = Kind::Deallocator;
}
else {
llvm_unreachable("invalid loc decl for SILDeclRef!");
}
} else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
loc = ACE;
kind = Kind::Func;
if (ACE->getASTContext().LangOpts.hasFeature(
Feature::RegionBasedIsolation)) {
assert(ACE->getASTContext().LangOpts.hasFeature(
Feature::SendingArgsAndResults) &&
"Sending args and results should always be enabled");
if (auto *autoClosure = dyn_cast<AutoClosureExpr>(ACE)) {
isAsyncLetClosure =
autoClosure->getThunkKind() == AutoClosureExpr::Kind::AsyncLet;
}
}
} else {
llvm_unreachable("impossible SILDeclRef loc");
}
isForeign = asForeign;
distributedThunk = asDistributed;
isKnownToBeLocal = asDistributedKnownToBeLocal;
}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc,
GenericSignature prespecializedSig)
: SILDeclRef(baseLoc, false, false) {
pointer = prespecializedSig.getPointer();
}
std::optional<AnyFunctionRef> SILDeclRef::getAnyFunctionRef() const {
switch (getLocKind()) {
case LocKind::Decl:
if (auto *afd = getAbstractFunctionDecl())
return AnyFunctionRef(afd);
return std::nullopt;
case LocKind::Closure:
return AnyFunctionRef(getAbstractClosureExpr());
case LocKind::File:
return std::nullopt;
}
llvm_unreachable("Unhandled case in switch");
}
DeclContext *SILDeclRef::getInnermostDeclContext() const {
if (!loc)
return nullptr;
switch (getLocKind()) {
case LocKind::Decl:
return getDecl()->getInnermostDeclContext();
case LocKind::Closure:
return getAbstractClosureExpr();
case LocKind::File:
return getFileUnit();
}
llvm_unreachable("Unhandled case in switch");
}
ASTContext &SILDeclRef::getASTContext() const {
auto *DC = getInnermostDeclContext();
assert(DC && "Must have a decl context");
return DC->getASTContext();
}
std::optional<AvailabilityContext>
SILDeclRef::getAvailabilityForLinkage() const {
// Back deployment thunks and fallbacks don't have availability since they
// are non-ABI.
// FIXME: Generalize this check to all kinds of non-ABI functions.
if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return std::nullopt;
return getDecl()->getAvailabilityForLinkage();
}
bool SILDeclRef::isThunk() const {
return isForeignToNativeThunk() || isNativeToForeignThunk() ||
isDistributedThunk() || isBackDeploymentThunk();
}
bool SILDeclRef::isClangImported() const {
if (!hasDecl())
return false;
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext()->getModuleScopeContext();
if (isa<ClangModuleUnit>(moduleContext)) {
if (isClangGenerated())
return true;
if (isa<ConstructorDecl>(d) || isa<EnumElementDecl>(d))
return !isForeign;
if (auto *FD = dyn_cast<FuncDecl>(d))
if (isa<AccessorDecl>(FD) ||
isa<NominalTypeDecl>(d->getDeclContext()))
return !isForeign;
}
return false;
}
bool SILDeclRef::isClangGenerated() const {
if (!hasDecl())
return false;
return isClangGenerated(getDecl()->getClangNode());
}
// FIXME: this is a weird predicate.
bool SILDeclRef::isClangGenerated(ClangNode node) {
if (auto nd = dyn_cast_or_null<clang::NamedDecl>(node.getAsDecl())) {
// ie, 'static inline' functions for which we must ask Clang to emit a body
// for explicitly
if (!nd->isExternallyVisible())
return true;
}
return false;
}
bool SILDeclRef::isImplicit() const {
switch (getLocKind()) {
case LocKind::Decl:
return getDecl()->isImplicit();
case LocKind::Closure:
return getAbstractClosureExpr()->isImplicit();
case LocKind::File:
// Files are currently never considered implicit.
return false;
}
llvm_unreachable("Unhandled case in switch");
}
bool SILDeclRef::hasUserWrittenCode() const {
// Non-implicit decls generally have user-written code.
if (!isImplicit()) {
switch (kind) {
case Kind::PropertyWrapperBackingInitializer: {
// Only has user-written code if any of the property wrappers have
// arguments to apply. Otherwise, it's just a forwarding initializer for
// the wrappedValue.
auto *var = cast<VarDecl>(getDecl());
return llvm::any_of(var->getAttachedPropertyWrappers(), [&](auto *attr) {
return attr->hasArgs();
});
}
case Kind::PropertyWrapperInitFromProjectedValue:
// Never has user-written code, is just a forwarding initializer.
return false;
default:
// TODO: This checking is currently conservative, we ought to
// exhaustively handle all the cases here, and use emitOrDelayFunction
// in more cases to take advantage of it.
return true;
}
llvm_unreachable("Unhandled case in switch!");
}
// Implicit decls generally don't have user-written code, but some splice
// user code into their body.
switch (kind) {
case Kind::Func: {
if (getAbstractClosureExpr()) {
// Auto-closures have user-written code.
if (auto *ACE = getAutoClosureExpr()) {
// Currently all types of auto-closures can contain user code. Note this
// logic does not affect delayed emission, as we eagerly emit all
// closure definitions. This does however affect profiling.
switch (ACE->getThunkKind()) {
case AutoClosureExpr::Kind::None:
case AutoClosureExpr::Kind::SingleCurryThunk:
case AutoClosureExpr::Kind::DoubleCurryThunk:
case AutoClosureExpr::Kind::AsyncLet:
return true;
}
llvm_unreachable("Unhandled case in switch!");
}
// Otherwise, assume an implicit closure doesn't have user code.
return false;
}
// Lazy getters splice in the user-written initializer expr.
if (auto *accessor = dyn_cast<AccessorDecl>(getFuncDecl())) {
auto *storage = accessor->getStorage();
if (accessor->isGetter() && !storage->isImplicit() &&
storage->getAttrs().hasAttribute<LazyAttr>()) {
return true;
}
}
return false;
}
case Kind::StoredPropertyInitializer: {
// Property wrapper initializers for the implicit backing storage can splice
// in the user-written initializer on the original property.
auto *var = cast<VarDecl>(getDecl());
if (auto *originalProperty = var->getOriginalWrappedProperty()) {
if (originalProperty->isPropertyMemberwiseInitializedWithWrappedType())
return true;
}
return false;
}
case Kind::Allocator:
case Kind::Initializer:
case Kind::EnumElement:
case Kind::Destroyer:
case Kind::Deallocator:
case Kind::GlobalAccessor:
case Kind::DefaultArgGenerator:
case Kind::IVarInitializer:
case Kind::IVarDestroyer:
case Kind::PropertyWrapperBackingInitializer:
case Kind::PropertyWrapperInitFromProjectedValue:
case Kind::EntryPoint:
case Kind::AsyncEntryPoint:
// Implicit decls for these don't splice in user-written code.
return false;
}
llvm_unreachable("Unhandled case in switch!");
}
bool SILDeclRef::shouldBeEmittedForDebugger() const {
if (!isFunc())
return false;
if (getASTContext().SILOpts.OptMode != OptimizationMode::NoOptimization)
return false;;
if (!getASTContext().SILOpts.ShouldFunctionsBePreservedToDebugger)
return false;
if (getASTContext().LangOpts.hasFeature(Feature::Embedded))
return false;
ValueDecl *decl = getDecl();
DeclAttributes &attrs = decl->getAttrs();
if (attrs.hasSemanticsAttr("no.preserve.debugger"))
return false;
if (getLinkage(ForDefinition) == SILLinkage::Shared)
return false;
if (auto decl = getDecl())
if (!decl->isImplicit())
return true;
// Synthesized getters are still callable in the debugger.
if (auto *accessor = dyn_cast_or_null<AccessorDecl>(getFuncDecl())) {
return accessor->isSynthesized() && accessor->isGetterOrSetter();
};
return false;
}
namespace {
enum class LinkageLimit {
/// No limit.
None,
/// The linkage should behave as if the decl is private.
Private,
/// The declaration is emitted on-demand; it should end up with internal
/// or shared linkage.
OnDemand,
/// The declaration should never be made public.
NeverPublic,
/// The declaration should always be emitted into the client,
AlwaysEmitIntoClient,
};
} // end anonymous namespace
/// Compute the linkage limit for a given SILDeclRef. This augments the
/// mapping of access level to linkage to provide a maximum or minimum linkage.
static LinkageLimit getLinkageLimit(SILDeclRef constant) {
using Limit = LinkageLimit;
using Kind = SILDeclRef::Kind;
auto *d = constant.getDecl();
// Back deployment thunks and fallbacks are emitted into the client.
if (constant.backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return Limit::AlwaysEmitIntoClient;
if (auto *fn = dyn_cast<AbstractFunctionDecl>(d)) {
// Native-to-foreign thunks for top-level decls are created on-demand,
// unless they are marked @_cdecl, in which case they expose a dedicated
// entry-point with the visibility of the function.
//
// Native-to-foreign thunks for methods are always just private, since
// they're anchored by Objective-C metadata.
auto &attrs = fn->getAttrs();
if (constant.isNativeToForeignThunk() && !attrs.hasAttribute<CDeclAttr>()) {
auto isTopLevel = fn->getDeclContext()->isModuleScopeContext();
return isTopLevel ? Limit::OnDemand : Limit::Private;
}
}
if (auto fn = constant.getFuncDecl()) {
// Forced-static-dispatch functions are created on-demand and have
// at best shared linkage.
if (fn->hasForcedStaticDispatch())
return Limit::OnDemand;
}
if (auto dd = dyn_cast<DestructorDecl>(d)) {
// The destructor of a class implemented with @_objcImplementation is only
// ever called by its ObjC thunk, so it should not be public.
if (d->getDeclContext()->getSelfNominalTypeDecl()->hasClangNode())
return Limit::OnDemand;
}
switch (constant.kind) {
case Kind::Func:
case Kind::Allocator:
case Kind::Initializer:
case Kind::Deallocator:
case Kind::Destroyer: {
// @_alwaysEmitIntoClient declarations are like the default arguments of
// public functions; they are roots for dead code elimination and have
// serialized bodies, but no public symbol in the generated binary.
if (d->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
return Limit::AlwaysEmitIntoClient;
if (auto accessor = dyn_cast<AccessorDecl>(d)) {
auto *storage = accessor->getStorage();
if (storage->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
return Limit::AlwaysEmitIntoClient;
}
break;
}
case Kind::EnumElement:
return Limit::OnDemand;
case Kind::GlobalAccessor:
// global unsafeMutableAddressor should be kept hidden if its decl
// is resilient.
return cast<VarDecl>(d)->isResilient() ? Limit::NeverPublic : Limit::None;
case Kind::DefaultArgGenerator:
// If the default argument is to be serialized, only use non-ABI public
// linkage. If the argument is not to be serialized, don't use a limit.
// This actually means that default arguments *can be ABI public* if
// `isSerialized()` returns false and the effective access level is public,
// which happens under `-enable-testing` with an internal decl.
return constant.isSerialized() ? Limit::AlwaysEmitIntoClient : Limit::None;
case Kind::PropertyWrapperBackingInitializer:
case Kind::PropertyWrapperInitFromProjectedValue: {
if (!d->getDeclContext()->isTypeContext()) {
// If the backing initializer is to be serialized, only use non-ABI public
// linkage. If the initializer is not to be serialized, don't use a limit.
// This actually means that it *can be ABI public* if `isSerialized()`
// returns false and the effective access level is public, which happens
// under `-enable-testing` with an internal decl.
return constant.isSerialized() ? Limit::AlwaysEmitIntoClient
: Limit::None;
}
// Otherwise, regular property wrapper backing initializers (for properties)
// are treated just like stored property initializers.
LLVM_FALLTHROUGH;
}
case Kind::StoredPropertyInitializer: {
// Stored property initializers get the linkage of their containing type.
// There are three cases:
//
// 1) Type is formally @_fixed_layout/@frozen. Root initializers can be
// declared @inlinable. The property initializer must only reference
// public symbols, and is serialized, so we give it PublicNonABI linkage.
//
// 2) Type is not formally @_fixed_layout/@frozen and the module is not
// resilient. Root initializers can be declared @inlinable. This is the
// annoying case. We give the initializer public linkage if the type is
// public.
//
// 3) Type is resilient. The property initializer is never public because
// root initializers cannot be @inlinable.
//
// FIXME: Get rid of case 2 somehow.
if (constant.isSerialized())
return Limit::AlwaysEmitIntoClient;
// FIXME: This should always be true.
if (d->getModuleContext()->isStrictlyResilient())
return Limit::NeverPublic;
break;
}
case Kind::IVarInitializer:
case Kind::IVarDestroyer:
// ivar initializers and destroyers are completely contained within the
// class from which they come, and never get seen externally.
return Limit::NeverPublic;
case Kind::EntryPoint:
case Kind::AsyncEntryPoint:
llvm_unreachable("Already handled");
}
return Limit::None;
}
SILLinkage SILDeclRef::getDefinitionLinkage() const {
using Limit = LinkageLimit;
auto privateLinkage = [&]() {
// Private decls may still be serialized if they are e.g in an inlinable
// function. In such a case, they receive shared linkage.
return isNotSerialized() ? SILLinkage::Private : SILLinkage::Shared;
};
// Prespecializations are public.
if (getSpecializedSignature())
return SILLinkage::Public;
// Closures can only be referenced from the same file.
if (getAbstractClosureExpr())
return privateLinkage();
// The main entry-point is public.
if (kind == Kind::EntryPoint)
return SILLinkage::Public;
if (kind == Kind::AsyncEntryPoint) {
// async main entrypoint is referenced only from @main and
// they are in the same SIL module. Hiding this entrypoint
// from other object file makes it possible to link multiple
// executable targets for SwiftPM testing with -entry-point-function-name
return SILLinkage::Private;
}
// Calling convention thunks have shared linkage.
if (isForeignToNativeThunk())
return SILLinkage::Shared;
// Declarations imported from Clang modules have shared linkage.
if (isClangImported())
return SILLinkage::Shared;
const auto limit = getLinkageLimit(*this);
if (limit == Limit::Private)
return privateLinkage();
auto *decl = getDecl();
if (isPropertyWrapperBackingInitializer()) {
auto *dc = decl->getDeclContext();
// External property wrapper backing initializers have linkage based
// on the access level of their function.
if (isa<ParamDecl>(decl)) {
if (isa<AbstractClosureExpr>(dc))
return privateLinkage();
decl = cast<ValueDecl>(dc->getAsDecl());
}
// Property wrappers in types have linkage based on the access level of
// their nominal.
if (dc->isTypeContext())
decl = cast<NominalTypeDecl>(dc);
}
// Stored property initializers have linkage based on the access level of
// their nominal.
if (isStoredPropertyInitializer())
decl = cast<NominalTypeDecl>(
decl->getDeclContext()->getImplementedObjCContext());
// Compute the effective access level, taking e.g testable into consideration.
auto effectiveAccess = decl->getEffectiveAccess();
// Private setter implementations for an internal storage declaration should
// be at least internal as well, so that a dynamically-writable
// keypath can be formed from other files in the same module.
if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
auto storageAccess = accessor->getStorage()->getEffectiveAccess();
if (accessor->isSetter() && storageAccess >= AccessLevel::Internal)
effectiveAccess = std::max(effectiveAccess, AccessLevel::Internal);
}
switch (effectiveAccess) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return privateLinkage();
case AccessLevel::Internal:
assert(!isSerialized() &&
"Serialized decls should either be private (for decls in inlinable "
"code), or they should be public");
if (limit == Limit::OnDemand)
return SILLinkage::Shared;
return SILLinkage::Hidden;
case AccessLevel::Package:
switch (limit) {
case Limit::None:
return SILLinkage::Package;
case Limit::AlwaysEmitIntoClient:
// Drop the AEIC if the enclosing decl is not effectively public.
// This matches what we do in the `internal` case.
if (isSerialized())
return SILLinkage::PackageNonABI;
else return SILLinkage::Package;
case Limit::OnDemand:
return SILLinkage::Shared;
case Limit::NeverPublic:
return SILLinkage::Hidden;
case Limit::Private:
llvm_unreachable("Already handled");
}
case AccessLevel::Public:
case AccessLevel::Open:
switch (limit) {
case Limit::None:
return SILLinkage::Public;
case Limit::AlwaysEmitIntoClient:
return SILLinkage::PublicNonABI;
case Limit::OnDemand:
return SILLinkage::Shared;
case Limit::NeverPublic:
return SILLinkage::Hidden;
case Limit::Private:
llvm_unreachable("Already handled");
}
}
llvm_unreachable("unhandled access");
}
SILLinkage SILDeclRef::getLinkage(ForDefinition_t forDefinition) const {
// Add external to the linkage of the definition
// (e.g. Public -> PublicExternal) if this is a declaration.
auto linkage = getDefinitionLinkage();
return forDefinition ? linkage : addExternalToLinkage(linkage);
}
SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
unsigned defaultArgIndex) {
SILDeclRef result;
result.loc = loc;
result.kind = Kind::DefaultArgGenerator;
result.defaultArgIndex = defaultArgIndex;
return result;
}
SILDeclRef SILDeclRef::getMainDeclEntryPoint(ValueDecl *decl) {
auto *file = cast<FileUnit>(decl->getDeclContext()->getModuleScopeContext());
assert(file->getMainDecl() == decl);
SILDeclRef result;
result.loc = decl;
result.kind = Kind::EntryPoint;
return result;
}
SILDeclRef SILDeclRef::getAsyncMainDeclEntryPoint(ValueDecl *decl) {
auto *file = cast<FileUnit>(decl->getDeclContext()->getModuleScopeContext());
assert(file->getMainDecl() == decl);
SILDeclRef result;
result.loc = decl;
result.kind = Kind::AsyncEntryPoint;
return result;
}
SILDeclRef SILDeclRef::getAsyncMainFileEntryPoint(FileUnit *file) {
assert(file->hasEntryPoint() && !file->getMainDecl());
SILDeclRef result;
result.loc = file;
result.kind = Kind::AsyncEntryPoint;
return result;
}
SILDeclRef SILDeclRef::getMainFileEntryPoint(FileUnit *file) {
assert(file->hasEntryPoint() && !file->getMainDecl());
SILDeclRef result;
result.loc = file;
result.kind = Kind::EntryPoint;
return result;
}
bool SILDeclRef::hasClosureExpr() const {
return loc.is<AbstractClosureExpr *>()
&& isa<ClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasAutoClosureExpr() const {
return loc.is<AbstractClosureExpr *>()
&& isa<AutoClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasFuncDecl() const {
return loc.is<ValueDecl *>() && isa<FuncDecl>(getDecl());
}
ClosureExpr *SILDeclRef::getClosureExpr() const {
return dyn_cast_or_null<ClosureExpr>(getAbstractClosureExpr());
}
AutoClosureExpr *SILDeclRef::getAutoClosureExpr() const {
return dyn_cast_or_null<AutoClosureExpr>(getAbstractClosureExpr());
}
FuncDecl *SILDeclRef::getFuncDecl() const {
return dyn_cast_or_null<FuncDecl>(getDecl());
}
ModuleDecl *SILDeclRef::getModuleContext() const {
if (hasDecl()) {
return getDecl()->getModuleContext();
} else if (hasFileUnit()) {
return getFileUnit()->getParentModule();
} else if (hasClosureExpr()) {
return getClosureExpr()->getParentModule();
} else if (hasAutoClosureExpr()) {
return getAutoClosureExpr()->getParentModule();
}
llvm_unreachable("Unknown declaration reference");
}
bool SILDeclRef::isSetter() const {
if (!hasDecl())
return false;
if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
return accessor->isSetter();
return false;
}
AbstractFunctionDecl *SILDeclRef::getAbstractFunctionDecl() const {
return dyn_cast_or_null<AbstractFunctionDecl>(getDecl());
}
bool SILDeclRef::isInitAccessor() const {
if (kind != Kind::Func || !hasDecl())
return false;
if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
return accessor->getAccessorKind() == AccessorKind::Init;
return false;
}
/// True if the function should be treated as transparent.
bool SILDeclRef::isTransparent() const {
if (isEnumElement())
return true;
if (isStoredPropertyInitializer())
return true;
if (hasAutoClosureExpr()) {
auto *ace = getAutoClosureExpr();
switch (ace->getThunkKind()) {
case AutoClosureExpr::Kind::None:
return true;
case AutoClosureExpr::Kind::AsyncLet:
case AutoClosureExpr::Kind::DoubleCurryThunk:
case AutoClosureExpr::Kind::SingleCurryThunk:
break;
}
}
if (hasDecl()) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDecl()))
return AFD->isTransparent();
if (auto *ASD = dyn_cast<AbstractStorageDecl>(getDecl()))
return ASD->isTransparent();
}
return false;
}
bool SILDeclRef::isSerialized() const {
return getSerializedKind() == IsSerialized;
}
bool SILDeclRef::isNotSerialized() const {
return getSerializedKind() == IsNotSerialized;
}
/// True if the function should have its body serialized.
SerializedKind_t SILDeclRef::getSerializedKind() const {
if (auto closure = getAbstractClosureExpr()) {
// Ask the AST if we're inside an @inlinable context.
if (closure->getResilienceExpansion() == ResilienceExpansion::Minimal) {
return IsSerialized;
}
return IsNotSerialized;
}
if (kind == Kind::EntryPoint || kind == Kind::AsyncEntryPoint)
return IsNotSerialized;
if (isIVarInitializerOrDestroyer())
return IsNotSerialized;
auto *d = getDecl();
// Default and property wrapper argument generators are serialized if the
// containing declaration is public.
if (isDefaultArgGenerator() || (isPropertyWrapperBackingInitializer() &&
isa<ParamDecl>(d))) {
if (isPropertyWrapperBackingInitializer()) {
if (auto *func = dyn_cast_or_null<ValueDecl>(d->getDeclContext()->getAsDecl())) {
d = func;
}
}
// Ask the AST if we're inside an @inlinable context.
if (d->getDeclContext()->getResilienceExpansion()
== ResilienceExpansion::Minimal) {
return IsSerialized;
}
// Otherwise, check if the owning declaration is public.
auto scope =
d->getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (scope.isPublic())
return IsSerialized;
return IsNotSerialized;
}
// Stored property initializers are inlinable if the type is explicitly
// marked as @frozen.
if (isStoredPropertyInitializer() || (isPropertyWrapperBackingInitializer() &&
d->getDeclContext()->isTypeContext())) {
auto *nominal = dyn_cast<NominalTypeDecl>(d->getDeclContext());
// If this isn't in a nominal, it must be in an @objc @implementation
// extension. We don't serialize those since clients outside the module
// don't think of these as Swift classes.
if (!nominal) {
ASSERT(isa<ExtensionDecl>(d->getDeclContext()) &&
cast<ExtensionDecl>(d->getDeclContext())->isObjCImplementation());
return IsNotSerialized;
}
auto scope =
nominal->getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (!scope.isPublic())
return IsNotSerialized;
if (nominal->isFormallyResilient())
return IsNotSerialized;
return IsSerialized;
}
// Note: if 'd' is a function, then 'dc' is the function itself, not
// its parent context.
auto *dc = d->getInnermostDeclContext();
// Local functions are serializable if their parent function is
// serializable.
if (d->getDeclContext()->isLocalContext()) {
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
return IsSerialized;
return IsNotSerialized;
}
// Anything else that is not public is not serializable.
if (d->getEffectiveAccess() < AccessLevel::Public)
return IsNotSerialized;
// Enum element constructors are serializable if the enum is
// @usableFromInline or public.
if (isEnumElement())
return IsSerialized;
// 'read' and 'modify' accessors synthesized on-demand are serialized if
// visible outside the module.
if (auto fn = dyn_cast<FuncDecl>(d))
if (!isClangImported() &&
fn->hasForcedStaticDispatch())
return IsSerialized;
if (isForeignToNativeThunk())
return IsSerialized;
// The allocating entry point for designated initializers are serialized
// if the class is @usableFromInline or public. Actors are excluded because
// whether the init is designated is not clearly reflected in the source code.
if (kind == SILDeclRef::Kind::Allocator) {
auto *ctor = cast<ConstructorDecl>(d);
if (auto classDecl = ctor->getDeclContext()->getSelfClassDecl()) {
if (!classDecl->isAnyActor() && ctor->isDesignatedInit())
if (!ctor->hasClangNode())
return IsSerialized;
}
}
if (isForeign) {
// @objc thunks for methods are not serializable since they're only
// referenced from the method table.
if (d->getDeclContext()->isTypeContext())
return IsNotSerialized;
// @objc thunks for top-level functions are serializable since they're
// referenced from @convention(c) conversions inside inlinable
// functions.
return IsSerialized;
}
// Declarations imported from Clang modules are serialized if
// referenced from an inlinable context.
if (isClangImported())
return IsSerialized;
// Handle back deployed functions. The original back deployed function
// should not be serialized, but the thunk and fallback should be since they
// need to be emitted into the client.
if (isBackDeployed()) {
switch (backDeploymentKind) {
case BackDeploymentKind::None:
return IsNotSerialized;
case BackDeploymentKind::Fallback:
case BackDeploymentKind::Thunk:
return IsSerialized;
}
}
// Otherwise, ask the AST if we're inside an @inlinable context.
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
return IsSerialized;
return IsNotSerialized;
}
/// True if the function has an @inline(never) attribute.
bool SILDeclRef::isNoinline() const {
if (!hasDecl())
return false;
auto *decl = getDecl();
if (auto *attr = decl->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Never)
return true;
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessorDecl->getStorage();
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Never)
return true;
}
return false;
}
/// True if the function has the @inline(__always) attribute.
bool SILDeclRef::isAlwaysInline() const {
swift::Decl *decl = nullptr;
if (hasDecl()) {
decl = getDecl();
} else if (auto *ce = getAbstractClosureExpr()) {
// Closures within @inline(__always) functions should be always inlined, too.
// Note that this is different from @inline(never), because closures inside
// @inline(never) _can_ be inlined within the inline-never function.
decl = ce->getParent()->getInnermostDeclarationDeclContext();
if (!decl)
return false;
} else {
return false;
}
if (auto attr = decl->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Always)
return true;
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessorDecl->getStorage();
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Always)
return true;
}
return false;
}
bool SILDeclRef::isBackDeployed() const {
if (!hasDecl())
return false;
auto *decl = getDecl();
if (auto afd = dyn_cast<AbstractFunctionDecl>(decl))
return afd->isBackDeployed(getASTContext());
return false;
}
bool SILDeclRef::isForeignToNativeThunk() const {
// If this isn't a native entry-point, it's not a foreign-to-native thunk.
if (isForeign)
return false;
// Non-decl entry points are never natively foreign, so they would never
// have a foreign-to-native thunk.
if (!hasDecl())
return false;
// A default argument generator for a C++ function is a Swift function, so no
// thunk needed.
if (isDefaultArgGenerator())
return false;
if (requiresForeignToNativeThunk(getDecl()))
return true;
// ObjC initializing constructors and factories are foreign.
// We emit a special native allocating constructor though.
if (isa<ConstructorDecl>(getDecl())
&& (kind == Kind::Initializer
|| cast<ConstructorDecl>(getDecl())->isFactoryInit())
&& getDecl()->hasClangNode())
return true;
return false;
}
bool SILDeclRef::isNativeToForeignThunk() const {
// If this isn't a foreign entry-point, it's not a native-to-foreign thunk.
if (!isForeign)
return false;
switch (getLocKind()) {
case LocKind::Decl:
// A decl with a clang node doesn't have a native entry-point to forward
// onto.
if (getDecl()->hasClangNode())
return false;
// No thunk is required if the decl directly references an external decl.
if (getDecl()->getAttrs().hasAttribute<ExternAttr>())
return false;
// Only certain kinds of SILDeclRef can expose native-to-foreign thunks.
return kind == Kind::Func || kind == Kind::Initializer ||
kind == Kind::Deallocator;
case LocKind::Closure:
// We can have native-to-foreign thunks over closures.
return true;
case LocKind::File:
return false;
}
llvm_unreachable("Unhandled case in switch");
}
bool SILDeclRef::isDistributedThunk() const {
if (!distributedThunk)
return false;
return kind == Kind::Func;
}
bool SILDeclRef::isDistributed() const {
if (!hasFuncDecl())
return false;
if (auto decl = getFuncDecl()) {
return decl->isDistributed();
}
return false;
}
bool SILDeclRef::isBackDeploymentFallback() const {
if (backDeploymentKind != BackDeploymentKind::Fallback)
return false;
return kind == Kind::Func || kind == Kind::Initializer ||
kind == Kind::Allocator;
}
bool SILDeclRef::isBackDeploymentThunk() const {
if (backDeploymentKind != BackDeploymentKind::Thunk)
return false;
return kind == Kind::Func || kind == Kind::Initializer ||
kind == Kind::Allocator;
}
/// Use the Clang importer to mangle a Clang declaration.
static void mangleClangDeclViaImporter(raw_ostream &buffer,
const clang::NamedDecl *clangDecl,
ASTContext &ctx) {
auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
importer->getMangledName(buffer, clangDecl);
}
static std::string mangleClangDecl(Decl *decl, bool isForeign) {
auto clangDecl = decl->getClangDecl();
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
std::string s(1, '\01');
s += asmLabel->getLabel();
return s;
} else if (namedClangDecl->hasAttr<clang::OverloadableAttr>() ||
decl->getASTContext().LangOpts.EnableCXXInterop) {
std::string storage;
llvm::raw_string_ostream SS(storage);
mangleClangDeclViaImporter(SS, namedClangDecl, decl->getASTContext());
return SS.str();
}
return namedClangDecl->getName().str();
} else if (auto objcDecl = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
if (objcDecl->isDirectMethod() && isForeign) {
std::string storage;
llvm::raw_string_ostream SS(storage);
clang::ASTContext &ctx = clangDecl->getASTContext();
std::unique_ptr<clang::MangleContext> mangler(ctx.createMangleContext());
mangler->mangleObjCMethodName(objcDecl, SS, /*includePrefixByte=*/true,
/*includeCategoryNamespace=*/false);
return SS.str();
}
}
return "";
}
std::string SILDeclRef::mangle(ManglingKind MKind) const {
using namespace Mangle;
ASTMangler mangler;
if (auto *derivativeFunctionIdentifier = getDerivativeFunctionIdentifier()) {
std::string originalMangled = asAutoDiffOriginalFunction().mangle(MKind);
auto *silParameterIndices = autodiff::getLoweredParameterIndices(
derivativeFunctionIdentifier->getParameterIndices(),
getDecl()->getInterfaceType()->castTo<AnyFunctionType>());
// FIXME: is this correct in the presence of curried types?
auto *resultIndices = autodiff::getFunctionSemanticResultIndices(
asAutoDiffOriginalFunction().getAbstractFunctionDecl(),
derivativeFunctionIdentifier->getParameterIndices());
AutoDiffConfig silConfig(
silParameterIndices, resultIndices,
derivativeFunctionIdentifier->getDerivativeGenericSignature());
return mangler.mangleAutoDiffDerivativeFunction(
asAutoDiffOriginalFunction().getAbstractFunctionDecl(),
derivativeFunctionIdentifier->getKind(),
silConfig);
}
// As a special case, Clang functions and globals don't get mangled at all
// - except \c objc_direct decls.
if (hasDecl() && !isDefaultArgGenerator()) {
if (getDecl()->getClangDecl()) {
if (!isForeignToNativeThunk() && !isNativeToForeignThunk()) {
auto clangMangling = mangleClangDecl(getDecl(), isForeign);
if (!clangMangling.empty())
return clangMangling;
}
}
}
// Mangle prespecializations.
if (getSpecializedSignature()) {
SILDeclRef nonSpecializedDeclRef = *this;
nonSpecializedDeclRef.pointer =
(AutoDiffDerivativeFunctionIdentifier *)nullptr;
auto mangledNonSpecializedString = nonSpecializedDeclRef.mangle();
auto *funcDecl = cast<AbstractFunctionDecl>(getDecl());
auto genericSig = funcDecl->getGenericSignature();
return GenericSpecializationMangler::manglePrespecialization(
mangledNonSpecializedString, genericSig, getSpecializedSignature());
}
ASTMangler::SymbolKind SKind = ASTMangler::SymbolKind::Default;
switch (MKind) {
case SILDeclRef::ManglingKind::Default:
if (isForeign) {
SKind = ASTMangler::SymbolKind::SwiftAsObjCThunk;
} else if (isForeignToNativeThunk()) {
SKind = ASTMangler::SymbolKind::ObjCAsSwiftThunk;
} else if (isDistributedThunk()) {
SKind = ASTMangler::SymbolKind::DistributedThunk;
} else if (isBackDeploymentThunk()) {
SKind = ASTMangler::SymbolKind::BackDeploymentThunk;
} else if (isBackDeploymentFallback()) {
SKind = ASTMangler::SymbolKind::BackDeploymentFallback;
}
break;
case SILDeclRef::ManglingKind::DynamicThunk:
SKind = ASTMangler::SymbolKind::DynamicThunk;
break;
}
switch (kind) {
case SILDeclRef::Kind::Func:
if (auto *ACE = getAbstractClosureExpr())
return mangler.mangleClosureEntity(ACE, SKind);
// As a special case, functions can have manually mangled names.
// Use the SILGen name only for the original non-thunked, non-curried entry
// point.
if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>())
if (!NameA->Name.empty() && !isThunk()) {
return NameA->Name.str();
}
if (auto *ExternA = ExternAttr::find(getDecl()->getAttrs(), ExternKind::C)) {
assert(isa<FuncDecl>(getDecl()) && "non-FuncDecl with @_extern should be rejected by typechecker");
return ExternA->getCName(cast<FuncDecl>(getDecl())).str();
}
// Use a given cdecl name for native-to-foreign thunks.
if (auto CDeclA = getDecl()->getAttrs().getAttribute<CDeclAttr>())
if (isNativeToForeignThunk()) {
// If this is an @implementation @_cdecl, mangle it like the clang
// function it implements.
if (auto objcInterface = getDecl()->getImplementedObjCDecl()) {
auto clangMangling = mangleClangDecl(objcInterface, isForeign);
if (!clangMangling.empty())
return clangMangling;
}
return CDeclA->Name.str();
}
if (SKind == ASTMangler::SymbolKind::DistributedThunk) {
return mangler.mangleDistributedThunk(cast<FuncDecl>(getDecl()));
}
// Otherwise, fall through into the 'other decl' case.
LLVM_FALLTHROUGH;
case SILDeclRef::Kind::EnumElement:
return mangler.mangleEntity(getDecl(), SKind);
case SILDeclRef::Kind::Deallocator:
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
/*isDeallocating*/ true,
SKind);
case SILDeclRef::Kind::Destroyer:
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
/*isDeallocating*/ false,
SKind);
case SILDeclRef::Kind::Allocator:
// As a special case, initializers can have manually mangled names.
// Use the SILGen name only for the original non-thunked, non-curried entry
// point.
if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>()) {
if (!NameA->Name.empty() && !isThunk()) {
return NameA->Name.str();
}
}
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ true,
SKind);
case SILDeclRef::Kind::Initializer:
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ false,
SKind);
case SILDeclRef::Kind::IVarInitializer:
case SILDeclRef::Kind::IVarDestroyer:
return mangler.mangleIVarInitDestroyEntity(cast<ClassDecl>(getDecl()),
kind == SILDeclRef::Kind::IVarDestroyer,
SKind);
case SILDeclRef::Kind::GlobalAccessor:
return mangler.mangleAccessorEntity(AccessorKind::MutableAddress,
cast<AbstractStorageDecl>(getDecl()),
/*isStatic*/ false,
SKind);
case SILDeclRef::Kind::DefaultArgGenerator:
return mangler.mangleDefaultArgumentEntity(
cast<DeclContext>(getDecl()),
defaultArgIndex,
SKind);
case SILDeclRef::Kind::StoredPropertyInitializer:
return mangler.mangleInitializerEntity(cast<VarDecl>(getDecl()), SKind);
case SILDeclRef::Kind::PropertyWrapperBackingInitializer:
return mangler.mangleBackingInitializerEntity(cast<VarDecl>(getDecl()),
SKind);
case SILDeclRef::Kind::PropertyWrapperInitFromProjectedValue:
return mangler.mangleInitFromProjectedValueEntity(cast<VarDecl>(getDecl()),
SKind);
case SILDeclRef::Kind::AsyncEntryPoint: {
return "async_Main";
}
case SILDeclRef::Kind::EntryPoint: {
return getASTContext().getEntryPointFunctionName();
}
}
llvm_unreachable("bad entity kind!");
}
// Returns true if the given JVP/VJP SILDeclRef requires a new vtable entry.
// FIXME(https://github.com/apple/swift/issues/54833): Also consider derived declaration `@derivative` attributes.
static bool derivativeFunctionRequiresNewVTableEntry(SILDeclRef declRef) {
assert(declRef.getDerivativeFunctionIdentifier() &&
"Expected a derivative function SILDeclRef");
auto overridden = declRef.getOverridden();
if (!overridden)
return false;
// Get the derived `@differentiable` attribute.
auto *derivedDiffAttr = *llvm::find_if(
declRef.getDecl()->getAttrs().getAttributes<DifferentiableAttr>(),
[&](const DifferentiableAttr *derivedDiffAttr) {
return derivedDiffAttr->getParameterIndices() ==
declRef.getDerivativeFunctionIdentifier()->getParameterIndices();
});
assert(derivedDiffAttr && "Expected `@differentiable` attribute");
// Otherwise, if the base `@differentiable` attribute specifies a derivative
// function, then the derivative is inherited and no new vtable entry is
// needed. Return false.
auto baseDiffAttrs =
overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
for (auto *baseDiffAttr : baseDiffAttrs) {
if (baseDiffAttr->getParameterIndices() ==
declRef.getDerivativeFunctionIdentifier()->getParameterIndices())
return false;
}
// Otherwise, if there is no base `@differentiable` attribute exists, then a
// new vtable entry is needed. Return true.
return true;
}
bool SILDeclRef::requiresNewVTableEntry() const {
if (getDerivativeFunctionIdentifier())
if (derivativeFunctionRequiresNewVTableEntry(*this))
return true;
if (!hasDecl())
return false;
if (isBackDeploymentThunk())
return false;
auto fnDecl = dyn_cast<AbstractFunctionDecl>(getDecl());
if (!fnDecl)
return false;
if (fnDecl->needsNewVTableEntry())
return true;
return false;
}
bool SILDeclRef::requiresNewWitnessTableEntry() const {
return cast<AbstractFunctionDecl>(getDecl())->requiresNewWitnessTableEntry();
}
SILDeclRef SILDeclRef::getOverridden() const {
if (!hasDecl())
return SILDeclRef();
auto overridden = getDecl()->getOverriddenDecl();
if (!overridden)
return SILDeclRef();
return withDecl(overridden);
}
SILDeclRef SILDeclRef::getNextOverriddenVTableEntry() const {
if (auto overridden = getOverridden()) {
// Back deployed methods should not be overridden.
assert(backDeploymentKind == SILDeclRef::BackDeploymentKind::None);
// If we overrode a foreign decl or dynamic method, if this is an
// accessor for a property that overrides an ObjC decl, or if it is an
// @NSManaged property, then it won't be in the vtable.
if (overridden.getDecl()->hasClangNode())
return SILDeclRef();
// Distributed thunks are not in the vtable.
if (isDistributedThunk())
return SILDeclRef();
// An @objc convenience initializer can be "overridden" in the sense that
// its selector is reclaimed by a subclass's convenience init with the
// same name. The AST models this as an override for the purposes of
// ObjC selector validation, but it isn't for Swift method dispatch
// purposes.
if (overridden.kind == SILDeclRef::Kind::Allocator) {
auto overriddenCtor = cast<ConstructorDecl>(overridden.getDecl());
if (!overriddenCtor->isDesignatedInit()
&& !overriddenCtor->isRequired())
return SILDeclRef();
}
// Initializing entry points for initializers won't be in the vtable.
// For Swift designated initializers, they're only used in super.init
// chains, which can always be statically resolved. Other native Swift
// initializers only have allocating entry points. ObjC initializers always
// have the initializing entry point (corresponding to the -init method)
// but those are never in the vtable.
if (overridden.kind == SILDeclRef::Kind::Initializer) {
return SILDeclRef();
}
// Overrides of @objc dynamic declarations are not in the vtable.
if (overridden.getDecl()->shouldUseObjCDispatch()) {
return SILDeclRef();
}
if (auto *accessor = dyn_cast<AccessorDecl>(overridden.getDecl())) {
auto *asd = accessor->getStorage();
if (asd->hasClangNode())
return SILDeclRef();
if (asd->shouldUseObjCDispatch()) {
return SILDeclRef();
}
}
// If we overrode a decl from an extension, it won't be in a vtable
// either. This can occur for extensions to ObjC classes.
if (isa<ExtensionDecl>(overridden.getDecl()->getDeclContext()))
return SILDeclRef();
// JVPs/VJPs are overridden only if the base declaration has a
// `@differentiable` attribute with the same parameter indices.
if (getDerivativeFunctionIdentifier()) {
auto overriddenAttrs =
overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
for (const auto *attr : overriddenAttrs) {
if (attr->getParameterIndices() !=
getDerivativeFunctionIdentifier()->getParameterIndices())
continue;
auto *overriddenDerivativeId =
overridden.getDerivativeFunctionIdentifier();
overridden.pointer =
AutoDiffDerivativeFunctionIdentifier::get(
overriddenDerivativeId->getKind(),
overriddenDerivativeId->getParameterIndices(),
attr->getDerivativeGenericSignature(),
getDecl()->getASTContext());
return overridden;
}
return SILDeclRef();
}
return overridden;
}
return SILDeclRef();
}
SILDeclRef SILDeclRef::getOverriddenWitnessTableEntry() const {
auto bestOverridden =
getOverriddenWitnessTableEntry(cast<AbstractFunctionDecl>(getDecl()));
return withDecl(bestOverridden);
}
AbstractFunctionDecl *SILDeclRef::getOverriddenWitnessTableEntry(
AbstractFunctionDecl *func) {
if (!isa<ProtocolDecl>(func->getDeclContext()))
return func;
AbstractFunctionDecl *bestOverridden = nullptr;
SmallVector<AbstractFunctionDecl *, 4> stack;
SmallPtrSet<AbstractFunctionDecl *, 4> visited;
stack.push_back(func);
visited.insert(func);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
auto overriddenDecls = current->getOverriddenDecls();
if (overriddenDecls.empty()) {
// This entry introduced a witness table entry. Determine whether it is
// better than the best entry we've seen thus far.
if (!bestOverridden ||
ProtocolDecl::compare(
cast<ProtocolDecl>(current->getDeclContext()),
cast<ProtocolDecl>(bestOverridden->getDeclContext()))
< 0) {
bestOverridden = cast<AbstractFunctionDecl>(current);
}
continue;
}
// Add overridden declarations to the stack.
for (auto overridden : overriddenDecls) {
auto overriddenFunc = cast<AbstractFunctionDecl>(overridden);
if (visited.insert(overriddenFunc).second)
stack.push_back(overriddenFunc);
}
}
return bestOverridden;
}
SILDeclRef SILDeclRef::getOverriddenVTableEntry() const {
SILDeclRef cur = *this, next = *this;
do {
cur = next;
if (cur.requiresNewVTableEntry())
return cur;
next = cur.getNextOverriddenVTableEntry();
} while (next);
return cur;
}
SILLocation SILDeclRef::getAsRegularLocation() const {
switch (getLocKind()) {
case LocKind::Decl:
return RegularLocation(getDecl());
case LocKind::Closure:
return RegularLocation(getAbstractClosureExpr());
case LocKind::File:
return RegularLocation::getModuleLocation();
}
llvm_unreachable("Unhandled case in switch");
}
SubclassScope SILDeclRef::getSubclassScope() const {
if (!hasDecl())
return SubclassScope::NotApplicable;
auto *decl = getDecl();
if (!isa<AbstractFunctionDecl>(decl))
return SubclassScope::NotApplicable;
DeclContext *context = decl->getDeclContext();
// Only methods in non-final classes go in the vtable.
auto *classType = dyn_cast<ClassDecl>(context);
if (!classType || classType->isFinal())
return SubclassScope::NotApplicable;
// If a method appears in the vtable of a class, we must give it's symbol
// special consideration when computing visibility because the SIL-level
// linkage does not map to the symbol's visibility in a straightforward
// way.
//
// In particular, the rules are:
// - If the class metadata is not resilient, then all method symbols must
// be visible from any translation unit where a subclass might be defined,
// because the subclass metadata will re-emit all vtable entries.
//
// - For resilient classes, we do the opposite: generally, a method's symbol
// can be hidden from other translation units, because we want to enforce
// that resilient access patterns are used for method calls and overrides.
//
// Constructors and final methods are the exception here, because they can
// be called directly.
// FIXME: This is too narrow. Any class with resilient metadata should
// probably have this, at least for method overrides that don't add new
// vtable entries.
bool isStrictResilientClass = classType->isStrictlyResilient();
if (auto *CD = dyn_cast<ConstructorDecl>(decl)) {
if (isStrictResilientClass)
return SubclassScope::NotApplicable;
// Initializing entry points do not appear in the vtable.
if (kind == SILDeclRef::Kind::Initializer)
return SubclassScope::NotApplicable;
// Non-required convenience inits do not appear in the vtable.
if (!CD->isRequired() && !CD->isDesignatedInit())
return SubclassScope::NotApplicable;
} else if (isa<DestructorDecl>(decl)) {
// Destructors do not appear in the vtable.
return SubclassScope::NotApplicable;
} else {
assert(isa<FuncDecl>(decl));
}
// Various forms of thunks don't go in the vtable.
if (isThunk() || isForeign)
return SubclassScope::NotApplicable;
// Default arg generators don't go in the vtable.
if (isDefaultArgGenerator())
return SubclassScope::NotApplicable;
if (decl->isFinal()) {
// Final methods only go in the vtable if they override something.
if (!decl->getOverriddenDecl())
return SubclassScope::NotApplicable;
// In the resilient case, we're going to be making symbols _less_
// visible, so make sure we stop now; final methods can always be
// called directly.
if (isStrictResilientClass)
return SubclassScope::Internal;
}
assert(decl->getEffectiveAccess() <= classType->getEffectiveAccess() &&
"class must be as visible as its members");
if (isStrictResilientClass) {
// The symbol should _only_ be reached via the vtable, so we're
// going to make it hidden.
return SubclassScope::Resilient;
}
switch (classType->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
// If the class is private, it can only be subclassed from the same
// SILModule, so we don't need to do anything.
return SubclassScope::NotApplicable;
case AccessLevel::Internal:
case AccessLevel::Package:
case AccessLevel::Public:
// If the class is internal or public, it can only be subclassed from
// the same AST Module, but possibly a different SILModule.
return SubclassScope::Internal;
case AccessLevel::Open:
// If the class is open, it can be subclassed from a different
// AST Module. All method symbols are public.
return SubclassScope::External;
}
llvm_unreachable("Unhandled access level in switch.");
}
Expr *SILDeclRef::getInitializationExpr() const {
switch (kind) {
case Kind::StoredPropertyInitializer: {
auto *var = cast<VarDecl>(getDecl());
auto *pbd = var->getParentPatternBinding();
unsigned idx = pbd->getPatternEntryIndexForVarDecl(var);
auto *init = pbd->getInit(idx);
assert(!pbd->isInitializerSubsumed(idx));
// If this is the backing storage for a property with an attached wrapper
// that was initialized with `=`, use that expression as the initializer.
if (auto originalProperty = var->getOriginalWrappedProperty()) {
if (originalProperty->isPropertyMemberwiseInitializedWithWrappedType()) {
auto wrapperInfo =
originalProperty->getPropertyWrapperInitializerInfo();
auto *placeholder = wrapperInfo.getWrappedValuePlaceholder();
init = placeholder->getOriginalWrappedValue();
assert(init);
}
}
return init;
}
case Kind::PropertyWrapperBackingInitializer: {
auto *var = cast<VarDecl>(getDecl());
auto wrapperInfo = var->getPropertyWrapperInitializerInfo();
assert(wrapperInfo.hasInitFromWrappedValue());
return wrapperInfo.getInitFromWrappedValue();
}
case Kind::PropertyWrapperInitFromProjectedValue: {
auto *var = cast<VarDecl>(getDecl());
auto wrapperInfo = var->getPropertyWrapperInitializerInfo();
assert(wrapperInfo.hasInitFromProjectedValue());
return wrapperInfo.getInitFromProjectedValue();
}
default:
return nullptr;
}
}
unsigned SILDeclRef::getParameterListCount() const {
// Only decls can introduce currying.
if (!hasDecl())
return 1;
// Always uncurried even if the underlying function is curried.
if (kind == Kind::DefaultArgGenerator || kind == Kind::EntryPoint ||
kind == Kind::AsyncEntryPoint)
return 1;
auto *vd = getDecl();
if (isa<AbstractFunctionDecl>(vd) || isa<EnumElementDecl>(vd)) {
// For functions and enum elements, the number of parameter lists is the
// same as in their interface type.
return vd->getNumCurryLevels();
} else if (isa<ClassDecl>(vd)) {
return 2;
} else if (isa<VarDecl>(vd)) {
return 1;
} else {
llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
}
}
static bool isDesignatedConstructorForClass(ValueDecl *decl) {
if (auto *ctor = dyn_cast_or_null<ConstructorDecl>(decl))
if (ctor->getDeclContext()->getSelfClassDecl())
return ctor->isDesignatedInit();
return false;
}
bool SILDeclRef::canBeDynamicReplacement() const {
// The foreign entry of a @dynamicReplacement(for:) of @objc method in a
// generic class can't be a dynamic replacement.
if (isForeign && hasDecl() && getDecl()->isNativeMethodReplacement())
return false;
if (isDistributedThunk())
return false;
if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return false;
if (kind == SILDeclRef::Kind::Destroyer ||
kind == SILDeclRef::Kind::DefaultArgGenerator)
return false;
if (kind == SILDeclRef::Kind::Initializer)
return isDesignatedConstructorForClass(getDecl());
if (kind == SILDeclRef::Kind::Allocator)
return !isDesignatedConstructorForClass(getDecl());
return true;
}
bool SILDeclRef::isDynamicallyReplaceable() const {
// The non-foreign entry of a @dynamicReplacement(for:) of @objc method in a
// generic class can't be a dynamically replaced.
if (!isForeign && hasDecl() && getDecl()->isNativeMethodReplacement())
return false;
if (isDistributedThunk())
return false;
if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return false;
if (kind == SILDeclRef::Kind::DefaultArgGenerator)
return false;
if (isStoredPropertyInitializer() || isPropertyWrapperBackingInitializer())
return false;
// Class allocators are not dynamic replaceable.
if (kind == SILDeclRef::Kind::Allocator &&
isDesignatedConstructorForClass(getDecl()))
return false;
if (kind == SILDeclRef::Kind::Destroyer ||
(kind == SILDeclRef::Kind::Initializer &&
!isDesignatedConstructorForClass(getDecl())) ||
kind == SILDeclRef::Kind::GlobalAccessor) {
return false;
}
if (!hasDecl())
return false;
auto decl = getDecl();
if (isForeign)
return false;
// We can't generate categories for generic classes. So the standard mechanism
// for replacing @objc dynamic methods in generic classes does not work.
// Instead we mark the non @objc entry dynamically replaceable and replace
// that.
// For now, we only support this behavior if -enable-implicit-dynamic is
// enabled.
return decl->shouldUseNativeMethodReplacement();
}
bool SILDeclRef::hasAsync() const {
if (isDistributedThunk())
return true;
if (hasDecl()) {
if (auto afd = dyn_cast<AbstractFunctionDecl>(getDecl())) {
return afd->hasAsync();
}
return false;
}
return getAbstractClosureExpr()->isBodyAsync();
}