Files
swift-mirror/stdlib/public/runtime/HeapObject.cpp
Mike Ash aea9c0c65a [Runtime] Allow weak references to ErrorObjects.
When ObjC interop is not available, Error values are represented in ErrorObject boxes. These are full HeapObjects, but unowned refcounting ops asserted that the metadata was class metadata. This assert would be hit when destroying an ErrorObject that was weakly referenced. Expand the asserts to accept ErrorObject metadata as well.

rdar://150214921
2025-05-16 14:01:29 -04:00

1087 lines
38 KiB
C++

//===--- HeapObject.cpp - Swift Language ABI Allocation Support -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Allocation ABI Shims While the Language is Bootstrapped
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Once.h"
#include "swift/ABI/System.h"
#include "MetadataCache.h"
#include "Private.h"
#include "RuntimeInvocationsTracking.h"
#include "WeakReference.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/CustomRRABI.h"
#include "swift/Runtime/InstrumentsSupport.h"
#include "swift/shims/GlobalObjects.h"
#include "swift/shims/RuntimeShims.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <new>
#if SWIFT_OBJC_INTEROP
# include <objc/NSObject.h>
# include <objc/runtime.h>
# include <objc/message.h>
# include <objc/objc.h>
# include "swift/Runtime/ObjCBridge.h"
# include <dlfcn.h>
#endif
#if SWIFT_STDLIB_HAS_MALLOC_TYPE
# include <malloc_type_private.h>
#endif
#include "Leaks.h"
using namespace swift;
// Check to make sure the runtime is being built with a compiler that
// supports the Swift calling convention.
//
// If the Swift calling convention is not in use, functions such as
// swift_allocBox and swift_makeBoxUnique that rely on their return value
// being passed in a register to be compatible with Swift may miscompile on
// some platforms and silently fail.
#if !__has_attribute(swiftcall)
#error "The runtime must be built with a compiler that supports swiftcall."
#endif
/// Returns true if the pointer passed to a native retain or release is valid.
/// If false, the operation should immediately return.
SWIFT_ALWAYS_INLINE
static inline bool isValidPointerForNativeRetain(const void *p) {
#if defined(__arm64__) && (__POINTER_WIDTH__ == 32)
// arm64_32 is special since it has 32-bit pointers but __arm64__ is true.
// Catch it early since __POINTER_WIDTH__ is generally non-portable.
return p != nullptr;
#elif defined(__ANDROID__) && defined(__aarch64__)
// Check the top of the second byte instead, since Android AArch64 reserves
// the top byte for its own pointer tagging since Android 11.
return (intptr_t)((uintptr_t)p << 8) > 0;
#elif defined(__x86_64__) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) || defined(__s390x__) || (defined(__riscv) && __riscv_xlen == 64) || (defined(__powerpc64__) && defined(__LITTLE_ENDIAN__))
// On these platforms, except s390x, the upper half of address space is reserved for the
// kernel, so we can assume that pointer values in this range are invalid.
// On s390x it is theoretically possible to have high bit set but in practice
// it is unlikely.
return (intptr_t)p > 0;
#else
return p != nullptr;
#endif
}
// Call the appropriate implementation of the `name` function, passing `args`
// to the call. This checks for an override in the function pointer. If an
// override is present, it calls that override. Otherwise it directly calls
// the default implementation. This allows the compiler to inline the default
// implementation and avoid the performance penalty of indirecting through
// the function pointer in the common case.
//
// NOTE: the memcpy and asm("") naming shenanigans are to convince the compiler
// not to emit a bunch of ptrauth instructions just to perform the comparison.
// We only want to authenticate the function pointer if we actually call it.
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask)
asm("__swift_allocObject_");
static HeapObject *_swift_retain_(HeapObject *object) asm("__swift_retain_");
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n)
asm("__swift_retain_n_");
static void _swift_release_(HeapObject *object) asm("__swift_release_");
static void _swift_release_n_(HeapObject *object, uint32_t n)
asm("__swift_release_n_");
static HeapObject *_swift_tryRetain_(HeapObject *object)
asm("__swift_tryRetain_");
#ifdef SWIFT_STDLIB_OVERRIDABLE_RETAIN_RELEASE
#define CALL_IMPL(name, args) do { \
if (SWIFT_UNLIKELY(_swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly.load(std::memory_order_relaxed))) \
return _ ## name args; \
return _ ## name ## _ args; \
} while(0)
#define CALL_IMPL_CHECK(name, args) do { \
void *fptr; \
memcpy(&fptr, (void *)&_ ## name, sizeof(fptr)); \
extern char _ ## name ## _as_char asm("__" #name "_"); \
fptr = __ptrauth_swift_runtime_function_entry_strip(fptr); \
if (SWIFT_UNLIKELY(fptr != &_ ## name ## _as_char)) { \
if (SWIFT_UNLIKELY(!_swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly.load(std::memory_order_relaxed))) { \
_swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly.store(true, std::memory_order_relaxed); \
} \
return _ ## name args; \
} \
return _ ## name ## _ args; \
} while(0)
#else
// If retain/release etc. aren't overridable, just call the real implementation.
#define CALL_IMPL(name, args) \
return _ ## name ## _ args;
#define CALL_IMPL_CHECK(name, args) \
return _ ## name ## _ args;
#endif
#if SWIFT_STDLIB_HAS_MALLOC_TYPE
static malloc_type_summary_t
computeMallocTypeSummary(const HeapMetadata *heapMetadata) {
assert(isHeapMetadataKind(heapMetadata->getKind()));
auto *classMetadata = heapMetadata->getClassObject();
// Objc
if (classMetadata && classMetadata->isPureObjC())
return {.type_kind = MALLOC_TYPE_KIND_OBJC};
return {.type_kind = MALLOC_TYPE_KIND_SWIFT};
}
static malloc_type_id_t getMallocTypeId(const HeapMetadata *heapMetadata) {
uint64_t metadataPtrBits = reinterpret_cast<uint64_t>(heapMetadata);
uint32_t hash = (metadataPtrBits >> 32) ^ (metadataPtrBits >> 0);
malloc_type_descriptor_t desc = {
.hash = hash,
.summary = computeMallocTypeSummary(heapMetadata)
};
return desc.type_id;
}
#endif // SWIFT_STDLIB_HAS_MALLOC_TYPE
#ifdef SWIFT_STDLIB_OVERRIDABLE_RETAIN_RELEASE
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_allocObject)(
HeapMetadata const *metadata, size_t requiredSize,
size_t requiredAlignmentMask) = _swift_allocObject_;
SWIFT_RUNTIME_EXPORT
std::atomic<bool> _swift_enableSwizzlingOfAllocationAndRefCountingFunctions_forInstrumentsOnly = false;
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain)(HeapObject *object) =
_swift_retain_;
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain_n)(
HeapObject *object, uint32_t n) = _swift_retain_n_;
SWIFT_RUNTIME_EXPORT
void (*SWIFT_RT_DECLARE_ENTRY _swift_release)(HeapObject *object) =
_swift_release_;
SWIFT_RUNTIME_EXPORT
void (*SWIFT_RT_DECLARE_ENTRY _swift_release_n)(HeapObject *object,
uint32_t n) = _swift_release_n_;
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_tryRetain)(HeapObject *object) =
_swift_tryRetain_;
#endif // SWIFT_STDLIB_OVERRIDABLE_RETAIN_RELEASE
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask) {
assert(isAlignmentMask(requiredAlignmentMask));
#if SWIFT_STDLIB_HAS_MALLOC_TYPE
auto object = reinterpret_cast<HeapObject *>(swift_slowAllocTyped(
requiredSize, requiredAlignmentMask, getMallocTypeId(metadata)));
#else
auto object = reinterpret_cast<HeapObject *>(
swift_slowAlloc(requiredSize, requiredAlignmentMask));
#endif
// NOTE: this relies on the C++17 guaranteed semantics of no null-pointer
// check on the placement new allocator which we have observed on Windows,
// Linux, and macOS.
::new (object) HeapObject(metadata);
// If leak tracking is enabled, start tracking this object.
SWIFT_LEAKS_START_TRACKING_OBJECT(object);
SWIFT_RT_TRACK_INVOCATION(object, swift_allocObject);
return object;
}
HeapObject *swift::swift_allocObject(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask) {
CALL_IMPL_CHECK(swift_allocObject, (metadata, requiredSize, requiredAlignmentMask));
}
HeapObject *
swift::swift_initStackObject(HeapMetadata const *metadata,
HeapObject *object) {
object->metadata = metadata;
object->refCounts.initForNotFreeing();
SWIFT_RT_TRACK_INVOCATION(object, swift_initStackObject);
return object;
}
struct InitStaticObjectContext {
HeapObject *object;
HeapMetadata const *metadata;
};
// TODO: We could generate inline code for the fast-path, i.e. the metadata
// pointer is already set. That would be a performance/codesize tradeoff.
HeapObject *
swift::swift_initStaticObject(HeapMetadata const *metadata,
HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_initStaticObject);
// The token is located at a negative offset from the object header.
swift_once_t *token = ((swift_once_t *)object) - 1;
// We have to initialize the header atomically. Otherwise we could reset the
// refcount to 1 while another thread already incremented it - and would
// decrement it to 0 afterwards.
InitStaticObjectContext Ctx = { object, metadata };
swift::once(
*token,
[](void *OpaqueCtx) {
InitStaticObjectContext *Ctx = (InitStaticObjectContext *)OpaqueCtx;
Ctx->object->metadata = Ctx->metadata;
Ctx->object->refCounts.initImmortal();
},
&Ctx);
return object;
}
void
swift::swift_verifyEndOfLifetime(HeapObject *object) {
if (object->refCounts.getCount() != 0)
swift::fatalError(/* flags = */ 0,
"Fatal error: Stack object escaped\n");
if (object->refCounts.getUnownedCount() != 1)
swift::fatalError(/* flags = */ 0,
"Fatal error: Unowned reference to stack object\n");
if (object->refCounts.getWeakCount() != 0)
swift::fatalError(/* flags = */ 0,
"Fatal error: Weak reference to stack object\n");
}
/// Allocate a reference-counted object on the heap that
/// occupies <size> bytes of maximally-aligned storage. The object is
/// uninitialized except for its header.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
HeapObject* swift_bufferAllocate(
HeapMetadata const* bufferType, size_t size, size_t alignMask)
{
return swift::swift_allocObject(bufferType, size, alignMask);
}
namespace {
/// Heap object destructor for a generic box allocated with swift_allocBox.
static SWIFT_CC(swift) void destroyGenericBox(SWIFT_CONTEXT HeapObject *o) {
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
// Destroy the object inside.
auto *value = metadata->project(o);
metadata->BoxedType->vw_destroy(value);
// Deallocate the box.
swift_deallocObject(o, metadata->getAllocSize(),
metadata->getAllocAlignMask());
}
class BoxCacheEntry {
public:
FullMetadata<GenericBoxHeapMetadata> Data;
BoxCacheEntry(const Metadata *type)
: Data{HeapMetadataHeader{ {/*type layout*/nullptr}, {destroyGenericBox},
{/*vwtable*/ nullptr}},
GenericBoxHeapMetadata{MetadataKind::HeapGenericLocalVariable,
GenericBoxHeapMetadata::getHeaderOffset(type),
type}} {
}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Data.BoxedType);
}
bool matchesKey(const Metadata *type) const { return type == Data.BoxedType; }
friend llvm::hash_code hash_value(const BoxCacheEntry &value) {
return llvm::hash_value(value.Data.BoxedType);
}
static size_t getExtraAllocationSize(const Metadata *key) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
} // end anonymous namespace
static SimpleGlobalCache<BoxCacheEntry, BoxesTag> Boxes;
BoxPair swift::swift_makeBoxUnique(OpaqueValue *buffer, const Metadata *type,
size_t alignMask) {
auto *inlineBuffer = reinterpret_cast<ValueBuffer*>(buffer);
HeapObject *box = reinterpret_cast<HeapObject *>(inlineBuffer->PrivateData[0]);
if (!swift_isUniquelyReferenced_nonNull_native(box)) {
auto refAndObjectAddr = BoxPair(swift_allocBox(type));
// Compute the address of the old object.
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
auto *oldObjectAddr = reinterpret_cast<OpaqueValue *>(
reinterpret_cast<char *>(box) + headerOffset);
// Copy the data.
type->vw_initializeWithCopy(refAndObjectAddr.buffer, oldObjectAddr);
inlineBuffer->PrivateData[0] = refAndObjectAddr.object;
// Release ownership of the old box.
swift_release(box);
return refAndObjectAddr;
} else {
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
auto *objectAddr = reinterpret_cast<OpaqueValue *>(
reinterpret_cast<char *>(box) + headerOffset);
return BoxPair{box, objectAddr};
}
}
BoxPair swift::swift_allocBox(const Metadata *type) {
// Get the heap metadata for the box.
auto metadata = &Boxes.getOrInsert(type).first->Data;
// Allocate and project the box.
auto allocation = swift_allocObject(metadata, metadata->getAllocSize(),
metadata->getAllocAlignMask());
auto projection = metadata->project(allocation);
return BoxPair{allocation, projection};
}
void swift::swift_deallocBox(HeapObject *o) {
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
// Move the object to the deallocating state (+1 -> +0).
o->refCounts.decrementFromOneNonAtomic();
swift_deallocObject(o, metadata->getAllocSize(),
metadata->getAllocAlignMask());
}
OpaqueValue *swift::swift_projectBox(HeapObject *o) {
// The compiler will use a nil reference as a way to avoid allocating memory
// for boxes of empty type. The address of an empty value is always undefined,
// so we can just return nil back in this case.
if (!o)
return nullptr;
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
return metadata->project(o);
}
namespace { // Begin anonymous namespace.
struct _SwiftEmptyBoxStorage {
HeapObject header;
};
swift::HeapLocalVariableMetadata _emptyBoxStorageMetadata;
/// The singleton empty box storage object.
_SwiftEmptyBoxStorage _EmptyBoxStorage = {
// HeapObject header;
{
&_emptyBoxStorageMetadata,
}
};
} // End anonymous namespace.
HeapObject *swift::swift_allocEmptyBox() {
auto heapObject = reinterpret_cast<HeapObject*>(&_EmptyBoxStorage);
swift_retain(heapObject);
return heapObject;
}
// Forward-declare this, but define it after swift_release.
extern "C" SWIFT_LIBRARY_VISIBILITY SWIFT_NOINLINE SWIFT_USED void
_swift_release_dealloc(HeapObject *object);
SWIFT_ALWAYS_INLINE
static HeapObject *_swift_retain_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_retain);
if (isValidPointerForNativeRetain(object)) {
// Return the result of increment() to make the eventual call to
// incrementSlow a tail call, which avoids pushing a stack frame on the fast
// path on ARM64.
return object->refCounts.increment(1);
}
return object;
}
HeapObject *swift::swift_retain(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_retain(object);
#else
CALL_IMPL(swift_retain, (object));
#endif
}
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_retain)
HeapObject *swift::swift_nonatomic_retain(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain);
if (isValidPointerForNativeRetain(object))
object->refCounts.incrementNonAtomic(1);
return object;
}
SWIFT_ALWAYS_INLINE
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_retain_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.increment(n);
return object;
}
HeapObject *swift::swift_retain_n(HeapObject *object, uint32_t n) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_retain_n(object, n);
#else
CALL_IMPL(swift_retain_n, (object, n));
#endif
}
HeapObject *swift::swift_nonatomic_retain_n(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.incrementNonAtomic(n);
return object;
}
SWIFT_ALWAYS_INLINE
static void _swift_release_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_release);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinit(1);
}
void swift::swift_release(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_release(object);
#else
CALL_IMPL(swift_release, (object));
#endif
}
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_release)
void swift::swift_nonatomic_release(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinitNonAtomic(1);
}
SWIFT_ALWAYS_INLINE
static void _swift_release_n_(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_release_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinit(n);
}
void swift::swift_release_n(HeapObject *object, uint32_t n) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_release_n(object, n);
#else
CALL_IMPL(swift_release_n, (object, n));
#endif
}
void swift::swift_nonatomic_release_n(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinitNonAtomic(n);
}
size_t swift::swift_retainCount(HeapObject *object) {
if (isValidPointerForNativeRetain(object))
return object->refCounts.getCount();
return 0;
}
size_t swift::swift_unownedRetainCount(HeapObject *object) {
return object->refCounts.getUnownedCount();
}
size_t swift::swift_weakRetainCount(HeapObject *object) {
return object->refCounts.getWeakCount();
}
HeapObject *swift::swift_unownedRetain(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
return static_cast<HeapObject *>(swift_nonatomic_unownedRetain(object));
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnowned(1);
return object;
#endif
}
// Assert that the metadata is a class or ErrorObject, for unowned operations.
// Other types of metadata are not supposed to be used with unowned.
static void checkMetadataForUnownedRR(HeapObject *object) {
assert(object->metadata->isClassObject() ||
object->metadata->getKind() == MetadataKind::ErrorObject);
if (object->metadata->isClassObject())
assert(
static_cast<const ClassMetadata *>(object->metadata)->isTypeMetadata());
}
void swift::swift_unownedRelease(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_unownedRelease(object);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease);
if (!isValidPointerForNativeRetain(object))
return;
checkMetadataForUnownedRR(object);
if (object->refCounts.decrementUnownedShouldFree(1)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
#endif
}
void *swift::swift_nonatomic_unownedRetain(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnownedNonAtomic(1);
return object;
}
void swift::swift_nonatomic_unownedRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRelease);
if (!isValidPointerForNativeRetain(object))
return;
checkMetadataForUnownedRR(object);
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(1)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
HeapObject *swift::swift_unownedRetain_n(HeapObject *object, int n) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_unownedRetain_n(object, n);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain_n);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnowned(n);
return object;
#endif
}
void swift::swift_unownedRelease_n(HeapObject *object, int n) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_unownedRelease_n(object, n);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
if (!isValidPointerForNativeRetain(object))
return;
checkMetadataForUnownedRR(object);
if (object->refCounts.decrementUnownedShouldFree(n)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
#endif
}
HeapObject *swift::swift_nonatomic_unownedRetain_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain_n);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnownedNonAtomic(n);
return object;
}
void swift::swift_nonatomic_unownedRelease_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
if (!isValidPointerForNativeRetain(object))
return;
checkMetadataForUnownedRR(object);
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(n)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
SWIFT_ALWAYS_INLINE
static HeapObject *_swift_tryRetain_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_tryRetain);
if (!isValidPointerForNativeRetain(object))
return nullptr;
#ifdef SWIFT_THREADING_NONE
if (object->refCounts.tryIncrementNonAtomic()) return object;
else return nullptr;
#else
if (object->refCounts.tryIncrement()) return object;
else return nullptr;
#endif
}
HeapObject *swift::swift_tryRetain(HeapObject *object) {
CALL_IMPL(swift_tryRetain, (object));
}
bool swift::swift_isDeallocating(HeapObject *object) {
if (!isValidPointerForNativeRetain(object))
return false;
return object->refCounts.isDeiniting();
}
void swift::swift_setDeallocating(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_setDeallocating);
object->refCounts.decrementFromOneNonAtomic();
}
HeapObject *swift::swift_unownedRetainStrong(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
return swift_nonatomic_unownedRetainStrong(object);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrong);
if (!isValidPointerForNativeRetain(object))
return object;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrement())
swift::swift_abortRetainUnowned(object);
return object;
#endif
}
HeapObject *swift::swift_nonatomic_unownedRetainStrong(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrong);
if (!isValidPointerForNativeRetain(object))
return object;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrementNonAtomic())
swift::swift_abortRetainUnowned(object);
return object;
}
void swift::swift_unownedRetainStrongAndRelease(HeapObject *object) {
#ifdef SWIFT_THREADING_NONE
swift_nonatomic_unownedRetainStrongAndRelease(object);
#else
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrongAndRelease);
if (!isValidPointerForNativeRetain(object))
return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrement())
swift::swift_abortRetainUnowned(object);
// This should never cause a deallocation.
bool dealloc = object->refCounts.decrementUnownedShouldFree(1);
assert(!dealloc && "retain-strong-and-release caused dealloc?");
(void) dealloc;
#endif
}
void swift::swift_nonatomic_unownedRetainStrongAndRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrongAndRelease);
if (!isValidPointerForNativeRetain(object))
return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrementNonAtomic())
swift::swift_abortRetainUnowned(object);
// This should never cause a deallocation.
bool dealloc = object->refCounts.decrementUnownedShouldFreeNonAtomic(1);
assert(!dealloc && "retain-strong-and-release caused dealloc?");
(void) dealloc;
}
void swift::swift_unownedCheck(HeapObject *object) {
if (!isValidPointerForNativeRetain(object)) return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (object->refCounts.isDeiniting())
swift::swift_abortRetainUnowned(object);
}
void _swift_release_dealloc(HeapObject *object) {
asFullMetadata(object->metadata)->destroy(object);
}
#if SWIFT_OBJC_INTEROP
/// Perform the root -dealloc operation for a class instance.
void swift::swift_rootObjCDealloc(HeapObject *self) {
auto metadata = self->metadata;
assert(metadata->isClassObject());
auto classMetadata = static_cast<const ClassMetadata*>(metadata);
assert(classMetadata->isTypeMetadata());
swift_deallocClassInstance(self, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
#endif
void swift::swift_deallocClassInstance(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask) {
size_t retainCount = swift_retainCount(object);
if (SWIFT_UNLIKELY(retainCount > 1)) {
auto descriptor = object->metadata->getTypeContextDescriptor();
swift::fatalError(0,
"Object %p of class %s deallocated with non-zero retain "
"count %zd. This object's deinit, or something called "
"from it, may have created a strong reference to self "
"which outlived deinit, resulting in a dangling "
"reference.\n",
object,
descriptor ? descriptor->Name.get() : "<unknown>",
retainCount);
}
#if SWIFT_OBJC_INTEROP
// We need to let the ObjC runtime clean up any associated objects or weak
// references associated with this object.
#if TARGET_OS_SIMULATOR && (__x86_64__ || __i386__)
const bool fastDeallocSupported = false;
#else
const bool fastDeallocSupported = true;
#endif
if (!fastDeallocSupported || !object->refCounts.getPureSwiftDeallocation()) {
objc_destructInstance((id)object);
}
#endif
swift_deallocObject(object, allocatedSize, allocatedAlignMask);
}
/// Variant of the above used in constructor failure paths.
void swift::swift_deallocPartialClassInstance(HeapObject *object,
HeapMetadata const *metadata,
size_t allocatedSize,
size_t allocatedAlignMask) {
if (!object)
return;
// Destroy ivars
auto *classMetadata = _swift_getClassOfAllocated(object)->getClassObject();
assert(classMetadata && "Not a class?");
#if SWIFT_OBJC_INTEROP
// If the object's class is already pure ObjC class, just release it and move
// on. There are no ivar destroyers. This avoids attempting to mutate
// placeholder objects statically created in read-only memory.
if (classMetadata->isPureObjC()) {
objc_release((id)object);
return;
}
#endif
while (classMetadata != metadata) {
#if SWIFT_OBJC_INTEROP
// If we have hit a pure Objective-C class, we won't see another ivar
// destroyer.
if (classMetadata->isPureObjC()) {
// Set the class to the pure Objective-C superclass, so that when dealloc
// runs, it starts at that superclass.
object_setClass((id)object, class_const_cast(classMetadata));
// Release the object.
objc_release((id)object);
return;
}
#endif
if (classMetadata->IVarDestroyer)
classMetadata->IVarDestroyer(object);
classMetadata = classMetadata->Superclass->getClassObject();
assert(classMetadata && "Given metatype not a superclass of object type?");
}
#if SWIFT_OBJC_INTEROP
// If this class doesn't use Swift-native reference counting, use
// objc_release instead.
if (!usesNativeSwiftReferenceCounting(classMetadata)) {
// Find the pure Objective-C superclass.
while (!classMetadata->isPureObjC())
classMetadata = classMetadata->Superclass->getClassObject();
// Set the class to the pure Objective-C superclass, so that when dealloc
// runs, it starts at that superclass.
object_setClass((id)object, class_const_cast(classMetadata));
// Release the object.
objc_release((id)object);
return;
}
#endif
// The strong reference count should be +1 -- tear down the object
bool shouldDeallocate = object->refCounts.decrementShouldDeinit(1);
assert(shouldDeallocate);
(void) shouldDeallocate;
swift_deallocClassInstance(object, allocatedSize, allocatedAlignMask);
}
#if !defined(__APPLE__) && SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS
static inline void memset_pattern8(void *b, const void *pattern8, size_t len) {
char *ptr = static_cast<char *>(b);
while (len >= 8) {
memcpy(ptr, pattern8, 8);
ptr += 8;
len -= 8;
}
memcpy(ptr, pattern8, len);
}
#endif
static inline void swift_deallocObjectImpl(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask,
bool isDeiniting) {
assert(isAlignmentMask(allocatedAlignMask));
if (!isDeiniting) {
assert(object->refCounts.isUniquelyReferenced());
object->refCounts.decrementFromOneNonAtomic();
}
assert(object->refCounts.isDeiniting());
SWIFT_RT_TRACK_INVOCATION(object, swift_deallocObject);
#if SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS
memset_pattern8((uint8_t *)object + sizeof(HeapObject),
"\xF0\xEF\xBE\xAD\xDE\xED\xFE\x0F", // 0x0ffeeddeadbeeff0
allocatedSize - sizeof(HeapObject));
#endif
// If we are tracking leaks, stop tracking this object.
SWIFT_LEAKS_STOP_TRACKING_OBJECT(object);
// Drop the initial weak retain of the object.
//
// If the outstanding weak retain count is 1 (i.e. only the initial
// weak retain), we can immediately call swift_slowDealloc. This is
// useful both as a way to eliminate an unnecessary atomic
// operation, and as a way to avoid calling swift_unownedRelease on an
// object that might be a class object, which simplifies the logic
// required in swift_unownedRelease for determining the size of the
// object.
//
// If we see that there is an outstanding weak retain of the object,
// we need to fall back on swift_release, because it's possible for
// us to race against a weak retain or a weak release. But if the
// outstanding weak retain count is 1, then anyone attempting to
// increase the weak reference count is inherently racing against
// deallocation and thus in undefined-behavior territory. And
// we can even do this with a normal load! Here's why:
//
// 1. There is an invariant that, if the strong reference count
// is > 0, then the weak reference count is > 1.
//
// 2. The above lets us say simply that, in the absence of
// races, once a reference count reaches 0, there are no points
// which happen-after where the reference count is > 0.
//
// 3. To not race, a strong retain must happen-before a point
// where the strong reference count is > 0, and a weak retain
// must happen-before a point where the weak reference count
// is > 0.
//
// 4. Changes to either the strong and weak reference counts occur
// in a total order with respect to each other. This can
// potentially be done with a weaker memory ordering than
// sequentially consistent if the architecture provides stronger
// ordering for memory guaranteed to be co-allocated on a cache
// line (which the reference count fields are).
//
// 5. This function happens-after a point where the strong
// reference count was 0.
//
// 6. Therefore, if a normal load in this function sees a weak
// reference count of 1, it cannot be racing with a weak retain
// that is not racing with deallocation:
//
// - A weak retain must happen-before a point where the weak
// reference count is > 0.
//
// - This function logically decrements the weak reference
// count. If it is possible for it to see a weak reference
// count of 1, then at the end of this function, the
// weak reference count will logically be 0.
//
// - There can be no points after that point where the
// weak reference count will be > 0.
//
// - Therefore either the weak retain must happen-before this
// function, or this function cannot see a weak reference
// count of 1, or there is a race.
//
// Note that it is okay for there to be a race involving a weak
// *release* which happens after the strong reference count drops to
// 0. However, this is harmless: if our load fails to see the
// release, we will fall back on swift_unownedRelease, which does an
// atomic decrement (and has the ability to reconstruct
// allocatedSize and allocatedAlignMask).
//
// Note: This shortcut is NOT an optimization.
// Some allocations passed to swift_deallocObject() are not compatible
// with swift_unownedRelease() because they do not have ClassMetadata.
if (object->refCounts.canBeFreedNow()) {
// object state DEINITING -> DEAD
swift_slowDealloc(object, allocatedSize, allocatedAlignMask);
} else {
// object state DEINITING -> DEINITED
swift_unownedRelease(object);
}
}
void swift::swift_deallocObject(HeapObject *object, size_t allocatedSize,
size_t allocatedAlignMask) {
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, true);
}
void swift::swift_deallocUninitializedObject(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask) {
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, false);
}
WeakReference *swift::swift_weakInit(WeakReference *ref, HeapObject *value) {
ref->nativeInit(value);
return ref;
}
WeakReference *swift::swift_weakAssign(WeakReference *ref, HeapObject *value) {
ref->nativeAssign(value);
return ref;
}
HeapObject *swift::swift_weakLoadStrong(WeakReference *ref) {
return ref->nativeLoadStrong();
}
HeapObject *swift::swift_weakTakeStrong(WeakReference *ref) {
return ref->nativeTakeStrong();
}
void swift::swift_weakDestroy(WeakReference *ref) {
ref->nativeDestroy();
}
WeakReference *swift::swift_weakCopyInit(WeakReference *dest,
WeakReference *src) {
dest->nativeCopyInit(src);
return dest;
}
WeakReference *swift::swift_weakTakeInit(WeakReference *dest,
WeakReference *src) {
dest->nativeTakeInit(src);
return dest;
}
WeakReference *swift::swift_weakCopyAssign(WeakReference *dest,
WeakReference *src) {
dest->nativeCopyAssign(src);
return dest;
}
WeakReference *swift::swift_weakTakeAssign(WeakReference *dest,
WeakReference *src) {
dest->nativeTakeAssign(src);
return dest;
}
#ifndef NDEBUG // "not not debug", or "debug-able configurations"
/// Returns true if the "immutable" flag is set on \p object.
///
/// Used for runtime consistency checking of COW buffers.
SWIFT_RUNTIME_EXPORT
bool _swift_isImmutableCOWBuffer(HeapObject *object) {
return object->refCounts.isImmutableCOWBuffer();
}
/// Sets the "immutable" flag on \p object to \p immutable and returns the old
/// value of the flag.
///
/// Used for runtime consistency checking of COW buffers.
SWIFT_RUNTIME_EXPORT
bool _swift_setImmutableCOWBuffer(HeapObject *object, bool immutable) {
return object->refCounts.setIsImmutableCOWBuffer(immutable);
}
void HeapObject::dump() const {
auto *Self = const_cast<HeapObject *>(this);
printf("HeapObject: %p\n", Self);
printf("HeapMetadata Pointer: %p.\n", Self->metadata);
printf("Strong Ref Count: %d.\n", Self->refCounts.getCount());
printf("Unowned Ref Count: %d.\n", Self->refCounts.getUnownedCount());
printf("Weak Ref Count: %d.\n", Self->refCounts.getWeakCount());
if (Self->metadata->getKind() == MetadataKind::Class) {
printf("Uses Native Retain: %s.\n",
(objectUsesNativeSwiftReferenceCounting(Self) ? "true" : "false"));
} else {
printf("Uses Native Retain: Not a class. N/A.\n");
}
printf("RefCount Side Table: %p.\n", Self->refCounts.getSideTable());
printf("Is Deiniting: %s.\n",
(Self->refCounts.isDeiniting() ? "true" : "false"));
}
#endif