Files
swift-mirror/lib/SILGen/SILGenFunction.h
John McCall 08d3460a19 Implement throw expressions. Untested.
Tests tomorrow for this and 'catch', I promise. :)

Swift SVN r26432
2015-03-23 08:10:15 +00:00

1299 lines
55 KiB
C++

//===--- SILGenFunction.h - Function Specific AST lower context -*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SILGENFUNCTION_H
#define SILGENFUNCTION_H
#include "SILGen.h"
#include "JumpDest.h"
#include "swift/AST/AnyFunctionRef.h"
#include "llvm/ADT/PointerIntPair.h"
#include "swift/SIL/SILBuilder.h"
namespace swift {
namespace Lowering {
class ArgumentSource;
class Condition;
class ConsumableManagedValue;
class Initialization;
class LogicalPathComponent;
class LValue;
class ManagedValue;
class RValue;
class TemporaryInitialization;
/// Represents a temporary allocation.
struct Materialize {
/// The address of the allocation.
SILValue address;
/// The cleanup to dispose of the value before deallocating the buffer.
/// This cleanup can be killed by calling the consume method.
CleanupHandle valueCleanup;
/// Load and claim ownership of the value in the buffer. Does not deallocate
/// the buffer.
ManagedValue claim(SILGenFunction &gen, SILLocation loc);
};
/// How a method is dispatched.
enum class MethodDispatch {
// The method implementation can be referenced statically.
Static,
// The method implementation uses class_method dispatch.
Class,
};
/// Internal context information for the SILGenFunction visitor.
///
/// In general, emission methods which take an SGFContext indicate
/// that they've initialized the emit-into buffer (if they have) by
/// returning a "isInContext()" ManagedValue of whatever type. Callers who
/// propagate down an SGFContext that might have a emit-into buffer must be
/// aware of this.
///
/// Clients of emission routines that take an SGFContext can also specify that
/// they are ok getting back an RValue at +0 instead of requiring it to be at
/// +1. The client is then responsible for checking the ManagedValue to see if
/// it got back a ManagedValue at +0 or +1.
class SGFContext {
enum DesiredTransfer {
PlusOne,
ImmediatePlusZero,
GuaranteedPlusZero,
};
llvm::PointerIntPair<Initialization *, 2, DesiredTransfer> state;
public:
SGFContext() = default;
enum AllowImmediatePlusZero_t {
/// The client is okay with getting a +0 value and plans to use it
/// immediately.
///
/// For example, in this context, it would be okay to return +0
/// even for a load from a mutable variable, because the only way
/// the value could be invalidated before it's used is a race
/// condition.
AllowImmediatePlusZero
};
enum AllowGuaranteedPlusZero_t {
/// The client is okay with getting a +0 value as long as it's
/// guaranteed to last at least as long as the current evaluation.
/// (For expression evaluation, this generally means at least
/// until the end of the current statement.)
///
/// For example, in this context, it would be okay to return +0
/// for a reference to a local 'let' because that will last until
/// the 'let' goes out of scope. However, it would not be okay to
/// return +0 for a load from a mutable 'var', because that could
/// be mutated before the end of the statement.
AllowGuaranteedPlusZero
};
/// Creates an emitInto context that will store the result of the visited expr
/// into the given Initialization.
explicit SGFContext(Initialization *emitInto) : state(emitInto, PlusOne) {
}
/*implicit*/
SGFContext(AllowImmediatePlusZero_t) : state(nullptr, ImmediatePlusZero) {
}
/*implicit*/
SGFContext(AllowGuaranteedPlusZero_t) : state(nullptr, GuaranteedPlusZero) {
}
/// Returns a pointer to the Initialization that the current expression should
/// store its result to, or null if the expression should allocate temporary
/// storage for its result.
Initialization *getEmitInto() const {
return state.getPointer();
}
/// Return true if a ManagedValue producer is allowed to return at
/// +0, given that it cannot guarantee that the value will be valid
/// until the end of the current evaluation.
bool isImmediatePlusZeroOk() const {
return state.getInt() == ImmediatePlusZero;
}
/// Return true if a ManagedValue producer is allowed to return at
/// +0 if it can guarantee that the value will be valid until the
/// end of the current evaluation.
bool isGuaranteedPlusZeroOk() const {
// Either ImmediatePlusZero or GuaranteedPlusZero is fine.
return state.getInt() >= ImmediatePlusZero;
}
/// Get a context for a sub-expression given that arbitrary side
/// effects may follow the subevaluation.
SGFContext withFollowingSideEffects() const {
SGFContext copy = *this;
if (copy.state.getInt() == ImmediatePlusZero) {
copy.state.setInt(GuaranteedPlusZero);
}
return copy;
}
/// Get a context for a sub-expression where we plan to project out
/// a value. The Initialization is not okay to propagate down, but
/// the +0/+1-ness is.
SGFContext withFollowingProjection() const {
SGFContext copy;
copy.state.setInt(copy.state.getInt());
return copy;
}
};
class PatternMatchContext;
struct LValueWriteback;
/// A thunk action that a vtable thunk needs to perform on its result.
enum class VTableResultThunk {
None, ///< No result change.
MakeOptional, ///< Wrap the result in an optional.
};
/// A thunk action that a vtable thunk needs to perform on a parameter.
enum class VTableParamThunk {
None, ///< No result change.
MakeOptional, ///< Wrap the param in an optional.
ForceIUO, ///< Force-unwrap the IUO param.
};
/// A formal section of the function. This is a SILGen-only concept,
/// meant to improve locality. It's only reflected in the generated
/// SIL implicitly.
enum class FunctionSection : bool {
/// The section of the function dedicated to ordinary control flow.
Ordinary,
/// The section of the function dedicated to error-handling and
/// similar things.
Postmatter,
};
/// SILGenFunction - an ASTVisitor for producing SIL from function bodies.
class LLVM_LIBRARY_VISIBILITY SILGenFunction
: public ASTVisitor<SILGenFunction>
{ // style violation because Xcode <rdar://problem/13065676>
public:
/// The SILGenModule this function belongs to.
SILGenModule &SGM;
/// The SILFunction being constructed.
SILFunction &F;
/// The name of the function currently being emitted, as presented to user
/// code by __FUNCTION__.
DeclName MagicFunctionName;
std::string MagicFunctionString;
ASTContext &getASTContext() const { return SGM.M.getASTContext(); }
/// This is used to keep track of all SILInstructions inserted by \c B.
SmallVector<SILInstruction*, 32> InsertedInstrs;
size_t LastInsnWithoutScope = 0;
/// The first block in the postmatter section of the function, if
/// anything has been built there.
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
SILBasicBlock *StartOfPostmatter = nullptr;
/// The current section of the function that we're emitting code in.
///
/// The postmatter section is a part of the function intended for
/// things like error-handling that don't need to be mixed into the
/// normal code sequence.
///
/// If the current function section is Ordinary, and
/// StartOfPostmatter is non-null, the current insertion block
/// should be ordered before that.
///
/// If the current function section is Postmatter, StartOfPostmatter
/// is non-null and the current insertion block is ordered after
/// that (inclusive).
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
FunctionSection CurFunctionSection = FunctionSection::Ordinary;
/// \brief Does this function require a non-void direct return?
bool NeedsReturn = false;
/// \brief Is emission currently within a formal modification?
bool InWritebackScope = false;
/// \brief Is emission currently within an inout conversion?
bool InInOutConversionScope = false;
/// B - The SILBuilder used to construct the SILFunction. It is
/// what maintains the notion of the current block being emitted
/// into.
SILBuilder B;
/// IndirectReturnAddress - For a function with an indirect return, holds a
/// value representing the address to initialize with the return value. Null
/// for a function that returns by value.
SILValue IndirectReturnAddress;
struct BreakContinueDest {
LabeledStmt *Target;
JumpDest BreakDest;
JumpDest ContinueDest;
};
std::vector<BreakContinueDest> BreakContinueDestStack;
std::vector<PatternMatchContext*> SwitchStack;
/// Keep track of our current nested scope.
std::vector<SILDebugScope*> DebugScopeStack;
SILDebugScope *MainScope = nullptr;
/// The cleanup depth and BB for when the operand of a
/// BindOptionalExpr is a missing value.
SmallVector<JumpDest, 2> BindOptionalFailureDests;
/// The cleanup depth and epilog BB for "return" statements.
JumpDest ReturnDest = JumpDest::invalid();
/// The cleanup depth and epilog BB for "fail" statements.
JumpDest FailDest = JumpDest::invalid();
/// The 'self' variable that needs to be cleaned up on failure.
VarDecl *FailSelfDecl = nullptr;
/// The destination for throws. The block will always be in the
/// postmatter and takes a BB argument of the exception type.
JumpDest ThrowDest = JumpDest::invalid();
/// \brief The SIL location corresponding to the AST node being processed.
SILLocation CurrentSILLoc;
/// Cleanups - This records information about the currently active cleanups.
CleanupManager Cleanups;
/// The stack of pending writebacks.
std::vector<LValueWriteback> *WritebackStack = 0;
std::vector<LValueWriteback> &getWritebackStack();
/// freeWritebackStack - Just deletes WritebackStack. Out of line to avoid
/// having to put the definition of LValueWriteback in this header.
void freeWritebackStack();
/// VarLoc - representation of an emitted local variable or constant. There
/// are three scenarios here:
///
/// 1) This could be a simple "var" or "let" emitted into an alloc_box. In
/// this case, 'value' contains a pointer (it is always an address) to the
/// value, and 'box' contains a pointer to the retain count for the box.
/// 2) This could be a simple non-address-only "let" represented directly. In
/// this case, 'value' is the value of the let and is never of address
/// type. 'box' is always nil.
/// 3) This could be an address-only "let" emitted into an alloc_stack, or
/// passed in from somewhere else that has guaranteed lifetime (e.g. an
/// incoming argument of 'in_guaranteed' convention). In this case,
/// 'value' is a pointer to the memory (and thus, its type is always an
/// address) and the 'box' is nil.
///
/// Generally, code shouldn't be written to enumerate these three cases, it
/// should just handle the case of "box or not" or "address or not", depending
/// on what the code cares about.
struct VarLoc {
/// value - the value of the variable, or the address the variable is
/// stored at (if "value.getType().isAddress()" is true).
SILValue value;
/// box - This is the retainable box for something emitted to an alloc_box.
/// It may be invalid if no box was made for the value (e.g., because it was
/// an inout value, or constant emitted to an alloc_stack).
SILValue box;
static VarLoc get(SILValue value, SILValue box = SILValue()) {
VarLoc Result;
Result.value = value;
Result.box = box;
return Result;
}
};
/// VarLocs - Entries in this map are generated when a PatternBindingDecl is
/// emitted. The map is queried to produce the lvalue for a DeclRefExpr to
/// a local variable.
llvm::DenseMap<ValueDecl*, VarLoc> VarLocs;
/// OpenedArchetypes - Mappings of opened archetypes back to the
/// instruction which opened them.
llvm::DenseMap<CanType, SILValue> ArchetypeOpenings;
SILValue getArchetypeOpeningSite(CanArchetypeType archetype) const {
auto it = ArchetypeOpenings.find(archetype);
assert(it != ArchetypeOpenings.end() &&
"opened archetype was not registered with SILGenFunction");
return it->second;
}
void setArchetypeOpeningSite(CanArchetypeType archetype, SILValue site) {
ArchetypeOpenings.insert({archetype, site});
}
/// When rebinding 'self' during an initializer delegation, we have to be
/// careful to preserve the object at 1 retain count during the delegation
/// because of assumptions in framework code. This enum tracks the state of
/// 'self' during the delegation.
enum SelfInitDelegationStates {
// 'self' is a normal variable.
NormalSelf,
// 'self' needs to be consumed next time it is referenced.
WillConsumeSelf,
// 'self' has been consumed.
DidConsumeSelf,
};
SelfInitDelegationStates SelfInitDelegationState = NormalSelf;
/// LocalFunctions - Entries in this map are generated when a local function
/// declaration that requires local context, such as a func closure, is
/// emitted. This map is then queried to produce the value for a DeclRefExpr
/// to a local constant.
llvm::DenseMap<SILDeclRef, SILValue> LocalFunctions;
struct OpaqueValueState {
SILValue value;
bool isUniquelyReferenced;
bool hasBeenConsumed;
};
/// Mapping from active opaque value expressions to their values,
/// along with a bit for each indicating whether it has been consumed yet.
llvm::DenseMap<OpaqueValueExpr *, OpaqueValueState> OpaqueValues;
/// RAII object that introduces a temporary binding for an opaque value.
///
/// Each time the opaque value expression is referenced, it will be
/// retained/released separately. When this RAII object goes out of
/// scope, the value will be destroyed if requested.
class OpaqueValueRAII {
SILGenFunction &Self;
OpaqueValueExpr *OpaqueValue;
bool Destroy;
OpaqueValueRAII(const OpaqueValueRAII &) = delete;
OpaqueValueRAII &operator=(const OpaqueValueRAII &) = delete;
public:
OpaqueValueRAII(SILGenFunction &self, OpaqueValueExpr *opaqueValue,
SILValue value, bool destroy,
bool isUniquelyReferenced)
: Self(self), OpaqueValue(opaqueValue), Destroy(destroy)
{
assert(Self.OpaqueValues.count(OpaqueValue) == 0 &&
"Opaque value already has a binding");
Self.OpaqueValues[OpaqueValue] = OpaqueValueState{
value,
isUniquelyReferenced,
/*destroy*/ false
};
}
~OpaqueValueRAII();
};
/// True if 'return' without an operand or falling off the end of the current
/// function is valid.
bool allowsVoidReturn() const {
return ReturnDest.getBlock()->bbarg_empty();
}
/// This location, when set, is used as an override location for magic
/// identifier expansion (e.g. __FILE__). This allows default argument
/// expansion to report the location of the call, instead of the location
/// of the original expr.
Optional<SourceLoc> overrideLocationForMagicIdentifiers;
/// Emit code to increment a counter for profiling.
void emitProfilerIncrement(ASTNode N) {
if (SGM.Profiler)
SGM.Profiler->emitCounterIncrement(B, N);
}
SILGenFunction(SILGenModule &SGM, SILFunction &F);
~SILGenFunction();
/// Return a stable reference to the current cleanup.
CleanupsDepth getCleanupsDepth() const {
return Cleanups.getCleanupsDepth();
}
CleanupHandle getTopCleanup() const {
return Cleanups.getTopCleanup();
}
SILFunction &getFunction() { return F; }
SILBuilder &getBuilder() { return B; }
const TypeLowering &getTypeLowering(AbstractionPattern orig, Type subst,
unsigned uncurryLevel = 0) {
return SGM.Types.getTypeLowering(orig, subst, uncurryLevel);
}
const TypeLowering &getTypeLowering(Type t, unsigned uncurryLevel = 0) {
return SGM.Types.getTypeLowering(t, uncurryLevel);
}
SILType getLoweredType(AbstractionPattern orig, Type subst,
unsigned uncurryLevel = 0) {
return SGM.Types.getLoweredType(orig, subst, uncurryLevel);
}
SILType getLoweredType(Type t, unsigned uncurryLevel = 0) {
return SGM.Types.getLoweredType(t, uncurryLevel);
}
SILType getLoweredLoadableType(Type t, unsigned uncurryLevel = 0) {
return SGM.Types.getLoweredLoadableType(t, uncurryLevel);
}
const TypeLowering &getTypeLowering(SILType type) {
return SGM.Types.getTypeLowering(type);
}
SILConstantInfo getConstantInfo(SILDeclRef constant) {
return SGM.Types.getConstantInfo(constant);
}
SourceManager &getSourceManager() { return SGM.M.getASTContext().SourceMgr; }
/// enterDebugScope - Push a new debug scope and set its parent pointer.
void enterDebugScope(SILDebugScope *DS) {
if (DebugScopeStack.size())
DS->setParent(DebugScopeStack.back());
else {
DS->setParent(F.getDebugScope());
MainScope = DS;
}
DebugScopeStack.push_back(DS);
setDebugScopeForInsertedInstrs(DS->Parent);
}
/// enterDebugScope - return to the previous debug scope.
void leaveDebugScope() {
assert(DebugScopeStack.size());
setDebugScopeForInsertedInstrs(DebugScopeStack.back());
DebugScopeStack.pop_back();
}
/// Set the debug scope for all SILInstructions that where emitted
/// from when we entered the last scope up to the current one.
void setDebugScopeForInsertedInstrs(SILDebugScope *DS) {
while (LastInsnWithoutScope < InsertedInstrs.size()) {
InsertedInstrs[LastInsnWithoutScope++]->setDebugScope(DS);
}
}
//===--------------------------------------------------------------------===//
// Entry points for codegen
//===--------------------------------------------------------------------===//
/// \brief Generates code for a FuncDecl.
void emitFunction(FuncDecl *fd);
/// \brief Emits code for a ClosureExpr.
void emitClosure(AbstractClosureExpr *ce);
/// Generates code for a class destroying destructor. This
/// emits the body code from the DestructorDecl, calls the base class
/// destructor, then implicitly releases the elements of the class.
void emitDestroyingDestructor(DestructorDecl *dd);
/// Generates code for an artificial top-level function that starts an
/// application based on a main class.
void emitArtificialTopLevel(ClassDecl *mainClass);
/// Generates code for a class deallocating destructor. This
/// calls the destroying destructor and then deallocates 'self'.
void emitDeallocatingDestructor(DestructorDecl *dd);
/// Generates code for a struct constructor.
/// This allocates the new 'self' value, emits the
/// body code, then returns the final initialized 'self'.
void emitValueConstructor(ConstructorDecl *ctor);
/// Generates code for an enum case constructor.
/// This allocates the new 'self' value, injects the enum case,
/// then returns the final initialized 'self'.
void emitEnumConstructor(EnumElementDecl *element);
/// Generates code for a class constructor's
/// allocating entry point. This allocates the new 'self' value, passes it to
/// the initializer entry point, then returns the initialized 'self'.
void emitClassConstructorAllocator(ConstructorDecl *ctor);
/// Generates code for a class constructor's
/// initializing entry point. This takes 'self' and the constructor arguments
/// as parameters and executes the constructor body to initialize 'self'.
void emitClassConstructorInitializer(ConstructorDecl *ctor);
/// Generates code to initialize instance variables from their
/// initializers.
///
/// \param selfDecl The 'self' declaration within the current function.
/// \param nominal The type whose members are being initialized.
void emitMemberInitializers(VarDecl *selfDecl, NominalTypeDecl *nominal);
/// Emit a method that initializes the ivars of a class.
void emitIVarInitializer(SILDeclRef ivarInitializer);
/// Emit a method that destroys the ivars of a class.
void emitIVarDestroyer(SILDeclRef ivarDestroyer);
/// Generates code to destroy the instance variables of a class.
///
/// \param selfValue The 'self' value.
/// \param cd The class declaration whose members are being destroyed.
void emitClassMemberDestruction(SILValue selfValue, ClassDecl *cd,
CleanupLocation cleanupLoc);
/// Generates code for a curry thunk from one uncurry level
/// of a function to another.
void emitCurryThunk(FuncDecl *fd, SILDeclRef fromLevel, SILDeclRef toLevel);
/// Generates a thunk from a foreign function to the native Swift convention.
void emitForeignToNativeThunk(SILDeclRef thunk);
/// Generates a thunk from a native function to the conventions.
void emitNativeToForeignThunk(SILDeclRef thunk);
// Generate a nullary function that returns the given value.
void emitGeneratorFunction(SILDeclRef function, Expr *value);
/// Generate an ObjC-compatible destructor (-dealloc).
void emitObjCDestructor(SILDeclRef dtor);
/// Generate a lazy global initializer.
void emitLazyGlobalInitializer(PatternBindingDecl *binding);
/// Generate a global accessor, using the given initializer token and
/// function
void emitGlobalAccessor(VarDecl *global,
SILGlobalVariable *onceToken,
SILFunction *onceFunc);
void emitGlobalGetter(VarDecl *global,
SILGlobalVariable *onceToken,
SILFunction *onceFunc);
/// Generate a protocol witness entry point, invoking 'witness' at the
/// abstraction level of 'requirement'.
void emitProtocolWitness(ProtocolConformance *conformance,
SILDeclRef requirement,
SILDeclRef witness,
ArrayRef<Substitution> witnessSubs,
IsFreeFunctionWitness_t isFree);
/// Convert a block to a native function with a thunk.
ManagedValue emitBlockToFunc(SILLocation loc,
ManagedValue block,
CanSILFunctionType funcTy);
/// Thunk between a derived and base class.
void emitVTableThunk(SILDeclRef derived, SILDeclRef base,
ArrayRef<VTableParamThunk> paramThunks,
VTableResultThunk resultThunk);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// emitCondition - Emit a boolean expression as a control-flow condition.
///
/// \param E - The expression to be evaluated as a condition.
/// \param hasFalseCode - true if the false branch doesn't just lead
/// to the fallthrough.
/// \param invertValue - true if this routine should invert the value before
/// testing true/false.
/// \param contArgs - the types of the arguments to the continuation BB.
/// Matching argument values must be passed to exitTrue and exitFalse
/// of the resulting Condition object.
Condition emitCondition(Expr *E,
bool hasFalseCode = true, bool invertValue = false,
ArrayRef<SILType> contArgs = {});
Condition emitCondition(SILValue V, SILLocation Loc,
bool hasFalseCode = true, bool invertValue = false,
ArrayRef<SILType> contArgs = {});
/// Create a new basic block.
///
/// The block can be explicitly placed after a particular block.
/// Otherwise, if the current insertion point is valid, it will be
/// placed immediately after it. Otherwise, it will be placed at the
/// end of the current function section.
///
/// Because basic blocks are generally constructed with an insertion
/// point active, users should be aware that this behavior leads to
/// an emergent LIFO ordering: if code generation requires multiple
/// blocks, the second block created will be positioned before the
/// first block. (This is clearly desirable behavior when blocks
/// are created by different emissions; it's just a little
/// counter-intuitive within a single emission.)
SILBasicBlock *createBasicBlock(SILBasicBlock *afterBB = nullptr);
/// Create a new basic block at the end of the given function
/// section.
SILBasicBlock *createBasicBlock(FunctionSection section);
/// Erase a basic block that was speculatively created and turned
/// out to be unneeded.
///
/// This should be called instead of eraseFromParent() in order to
/// keep SILGen's internal bookkeeping consistent.
///
/// The block should be empty and have no predecessors.
void eraseBasicBlock(SILBasicBlock *block);
//===--------------------------------------------------------------------===//
// Memory management
//===--------------------------------------------------------------------===//
/// emitProlog - Generates prolog code to allocate and clean up mutable
/// storage for closure captures and local arguments.
void emitProlog(AnyFunctionRef TheClosure, ArrayRef<Pattern*> paramPatterns,
Type resultType);
void emitProlog(ArrayRef<Pattern*> paramPatterns,
Type resultType, DeclContext *DeclCtx);
/// \brief Create (but do not emit) the epilog branch, and save the
/// current cleanups depth as the destination for return statement branches.
///
/// \param returnType If non-null, the epilog block will be created with an
/// argument of this type to receive the return value for
/// the function.
/// \param L The SILLocation which should be accosocated with
/// cleanup instructions.
void prepareEpilog(Type returnType, CleanupLocation L);
/// \brief Branch to and emit the epilog basic block. This will fuse
/// the epilog to the current basic block if the epilog bb has no predecessor.
/// The insertion point will be moved into the epilog block if it is
/// reachable.
///
/// \param TopLevelLoc The location of the top level AST node for which we are
/// constructing the epilog, such as a AbstractClosureExpr.
/// \returns None if the epilog block is unreachable. Otherwise, returns
/// the epilog block's return value argument, or a null SILValue if
/// the epilog doesn't take a return value. Also returns the location
/// of the return instrcution if the epilog block is supposed to host
/// the ReturnLocation (This happens in case the predecessor block is
/// merged with the epilog block.)
std::pair<Optional<SILValue>, SILLocation>
emitEpilogBB(SILLocation TopLevelLoc);
/// \brief Emits a standard epilog which runs top-level cleanups then returns
/// the function return value, if any.
///
/// \param TopLevelLoc The location of the top-level expression during whose
/// evaluation the epilog is being produced, for example, the
/// AbstractClosureExpr.
/// \param IsAutoGen Flags if the prolog is auto-generated.
void emitEpilog(SILLocation TopLevelLoc, bool IsAutoGen = false);
/// emitSelfDecl - Emit a SILArgument for 'self', register it in varlocs, set
/// up debug info, etc. This returns the 'self' value.
SILValue emitSelfDecl(VarDecl *selfDecl);
/// Emits a temporary allocation that will be deallocated automatically at the
/// end of the current scope. Returns the address of the allocation.
SILValue emitTemporaryAllocation(SILLocation loc, SILType ty);
/// Prepares a buffer to receive the result of an expression, either using the
/// 'emit into' initialization buffer if available, or allocating a temporary
/// allocation if not.
///
/// The caller should call manageBufferForExprResult at the instant
/// that the buffer has been initialized.
SILValue getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C);
/// Flag that the buffer for an expression result has been properly
/// initialized.
///
/// Returns an empty value if the buffer was taken from the context.
ManagedValue manageBufferForExprResult(SILValue buffer,
const TypeLowering &bufferTL,
SGFContext C);
//===--------------------------------------------------------------------===//
// Recursive entry points
//===--------------------------------------------------------------------===//
using ASTVisitorType::visit;
//===--------------------------------------------------------------------===//
// Statements
//===--------------------------------------------------------------------===//
void visit(Stmt *S) = delete;
void emitStmt(Stmt *S);
void emitBreakOutOf(SILLocation loc, Stmt *S);
void emitCatchDispatch(Stmt *S, ManagedValue exn,
ArrayRef<CatchStmt*> clauses,
JumpDest catchFallthroughDest);
void emitThrow(SILLocation loc, ManagedValue exn);
//===--------------------------------------------------------------------===//
// Patterns
//===--------------------------------------------------------------------===//
void emitStmtConditionWithBody(Stmt *S, SILBasicBlock *SuccessBB,
SILBasicBlock *FailBB);
void emitSwitchStmt(SwitchStmt *S);
void emitSwitchFallthrough(FallthroughStmt *S);
//===--------------------------------------------------------------------===//
// Expressions
//===--------------------------------------------------------------------===//
RValue visit(Expr *E) = delete;
/// Generate SIL for the given expression, storing the final result into the
/// specified Initialization buffer(s). This avoids an allocation and copy if
/// the result would be allocated into temporary memory normally.
void emitExprInto(Expr *E, Initialization *I);
/// Emit the given expression as an r-value.
RValue emitRValue(Expr *E, SGFContext C = SGFContext());
/// Emit the given expression as an r-value that follows the
/// abstraction patterns of the original type.
ManagedValue emitRValueAsOrig(Expr *E, AbstractionPattern origPattern,
const TypeLowering &origTL,
SGFContext C = SGFContext());
/// Emit the given expression, ignoring its result.
void emitIgnoredExpr(Expr *E);
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue emitRValueAsSingleValue(Expr *E, SGFContext C = SGFContext());
/// Emit 'undef' in a particular formal type.
ManagedValue emitUndef(SILLocation loc, Type type);
ManagedValue emitUndef(SILLocation loc, SILType type);
std::pair<ManagedValue, SILValue>
emitUninitializedArrayAllocation(Type ArrayTy,
SILValue Length,
SILLocation Loc);
SILValue emitConversionToSemanticRValue(SILLocation loc, SILValue value,
const TypeLowering &valueTL);
/// Emit the empty tuple value by emitting
SILValue emitEmptyTuple(SILLocation loc);
/// "Emit" an RValue representing an empty tuple.
RValue emitEmptyTupleRValue(SILLocation loc, SGFContext C);
/// Returns a reference to a constant in global context. For local func decls
/// this returns the function constant with unapplied closure context.
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant) {
return emitGlobalFunctionRef(loc, constant, getConstantInfo(constant));
}
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo);
/// Returns a reference to a function value that dynamically dispatches
/// the function in a runtime-modifiable way.
SILValue emitDynamicMethodRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo);
/// Returns a reference to a function value that dynamically invokes the
/// Returns a reference to a constant in local context. This will return a
/// closure object reference if the constant refers to a local func decl.
/// In rvalue contexts, emitFunctionRef should be used instead, which retains
/// a local constant and returns a ManagedValue with a cleanup.
SILValue emitUnmanagedFunctionRef(SILLocation loc, SILDeclRef constant);
/// Returns a reference to a constant in local context. This will return a
/// retained closure object reference if the constant refers to a local func
/// decl.
ManagedValue emitFunctionRef(SILLocation loc, SILDeclRef constant);
ManagedValue emitFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo);
/// Emit the specified VarDecl as an LValue if possible, otherwise return
/// null.
ManagedValue emitLValueForDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
AccessKind accessKind,
AccessSemantics semantics
= AccessSemantics::Ordinary);
/// Produce a singular RValue for a reference to the specified declaration,
/// with the given type and in response to the specified epxression. Try to
/// emit into the specified SGFContext to avoid copies (when provided).
ManagedValue emitRValueForDecl(SILLocation loc, ConcreteDeclRef decl, Type ty,
AccessSemantics semantics,
SGFContext C = SGFContext());
/// Produce a singular RValue for a load from the specified property.
ManagedValue emitRValueForPropertyLoad(SILLocation loc, ManagedValue base,
bool isSuper, VarDecl *property,
ArrayRef<Substitution> substitutions,
AccessSemantics semantics,
Type propTy, SGFContext C);
ManagedValue emitClosureValue(SILLocation loc,
SILDeclRef function,
ArrayRef<Substitution> forwardSubs,
AnyFunctionRef TheClosure);
Materialize emitMaterialize(SILLocation loc, ManagedValue v);
ArgumentSource prepareAccessorBaseArg(SILLocation loc, ManagedValue base,
SILDeclRef accessor);
SILDeclRef getGetterDeclRef(AbstractStorageDecl *decl,
bool isDirectAccessorUse);
ManagedValue emitGetAccessor(SILLocation loc, SILDeclRef getter,
ArrayRef<Substitution> substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts, SGFContext C);
SILDeclRef getSetterDeclRef(AbstractStorageDecl *decl,
bool isDirectAccessorUse);
void emitSetAccessor(SILLocation loc, SILDeclRef setter,
ArrayRef<Substitution> substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts, RValue &&value);
SILDeclRef getMaterializeForSetDeclRef(AbstractStorageDecl *decl,
bool isDirectAccessorUse);
std::pair<SILValue, SILValue>
emitMaterializeForSetAccessor(SILLocation loc, SILDeclRef materializeForSet,
ArrayRef<Substitution> substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts,
SILValue buffer, SILValue callbackStorage);
SILDeclRef getAddressorDeclRef(AbstractStorageDecl *decl,
AccessKind accessKind,
bool isDirectAccessorUse);
std::pair<ManagedValue,ManagedValue>
emitAddressorAccessor(SILLocation loc, SILDeclRef addressor,
ArrayRef<Substitution> substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts,
SILType addressType);
ManagedValue emitApplyConversionFunction(SILLocation loc,
Expr *funcExpr,
Type resultType,
RValue &&operand);
ManagedValue emitManagedRetain(SILLocation loc, SILValue v);
ManagedValue emitManagedRetain(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedRValueWithCleanup(SILValue v);
ManagedValue emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBufferWithCleanup(SILValue addr);
ManagedValue emitManagedBufferWithCleanup(SILValue addr,
const TypeLowering &lowering);
void emitSemanticLoadInto(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
SILValue dest,
const TypeLowering &destLowering,
IsTake_t isTake, IsInitialization_t isInit);
SILValue emitSemanticLoad(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
const TypeLowering &rvalueLowering,
IsTake_t isTake);
void emitSemanticStore(SILLocation loc, SILValue value,
SILValue dest, const TypeLowering &destTL,
IsInitialization_t isInit);
SILValue emitConversionFromSemanticValue(SILLocation loc,
SILValue semanticValue,
SILType storageType);
ManagedValue emitLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL,
SGFContext C, IsTake_t isTake,
bool isGuaranteedValid = false);
void emitAssignToLValue(SILLocation loc, RValue &&src,
LValue &&dest);
void emitAssignLValueToLValue(SILLocation loc,
LValue &&src, LValue &&dest);
void emitCopyLValueInto(SILLocation loc, LValue &&src,
Initialization *dest);
ManagedValue emitAddressOfLValue(SILLocation loc, LValue &&src,
AccessKind accessKind);
ManagedValue emitLoadOfLValue(SILLocation loc, LValue &&src,
SGFContext C);
/// Emit a reference to a method from within another method of the type, and
/// gather all the substitutions necessary to invoke it, without
/// dynamic dispatch.
std::tuple<ManagedValue, SILType, ArrayRef<Substitution>>
emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
ArrayRef<Substitution> innerSubstitutions);
SILValue emitMetatypeOfValue(SILLocation loc, Expr *baseExpr);
void emitReturnExpr(SILLocation loc, Expr *ret);
/// Turn a consumable managed value into a +1 managed value.
ManagedValue getManagedValue(SILLocation loc,
ConsumableManagedValue value);
/// Convert a value with the abstraction patterns of the original type
/// to a value with the abstraction patterns of the substituted type.
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
/// Convert a value with the abstraction patterns of the substituted
/// type to a value with the abstraction patterns of the original type.
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
/// Convert a value with a specialized representation (such as a thin function
/// reference, or a function reference with a foreign calling convention) to
/// the generalized representation of its Swift type, which can then be stored
/// to a variable or passed as an argument or return value.
ManagedValue emitGeneralizedValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctxt = SGFContext());
ManagedValue emitGeneralizedFunctionValue(SILLocation loc,
ManagedValue input,
AbstractionPattern origType,
CanAnyFunctionType resultType);
/// Convert a native Swift value to a value that can be passed as an argument
/// to or returned as the result of a function with the given calling
/// convention.
ManagedValue emitNativeToBridgedValue(SILLocation loc, ManagedValue v,
AbstractCC destCC,
CanType origNativeTy,
CanType substNativeTy,
CanType bridgedTy);
/// Convert a value received as the result or argument of a function with
/// the given calling convention to a native Swift value of the given type.
ManagedValue emitBridgedToNativeValue(SILLocation loc, ManagedValue v,
AbstractCC srcCC,
CanType nativeTy);
/// Emit the control flow for an optional 'bind' operation, branching to the
/// active failure destination if the optional value addressed by optionalAddr
/// is nil, and leaving the insertion point on the success branch.
void emitBindOptional(SILLocation loc, SILValue optionalAddr,
unsigned depth);
//
// Helpers for emitting ApplyExpr chains.
//
RValue emitApplyExpr(Expr *e, SGFContext c);
/// Emit a function application, assuming that the arguments have been
/// lowered appropriately for the abstraction level but that the
/// result does need to be turned back into something matching a
/// formal type.
ManagedValue emitApply(SILLocation loc,
ManagedValue fn,
ArrayRef<Substitution> subs,
ArrayRef<ManagedValue> args,
CanSILFunctionType substFnType,
AbstractionPattern origResultType,
CanType substResultType,
bool transparent,
Optional<AbstractCC> overrideCC,
SGFContext evalContext);
ManagedValue emitApplyOfDefaultArgGenerator(SILLocation loc,
ConcreteDeclRef defaultArgsOwner,
unsigned destIndex,
CanType resultType,
SGFContext C = SGFContext());
/// A convenience method for emitApply that just handles monomorphic
/// applications.
ManagedValue emitMonomorphicApply(SILLocation loc,
ManagedValue fn,
ArrayRef<ManagedValue> args,
CanType resultType,
bool transparent = false,
Optional<AbstractCC> overrideCC = None);
ManagedValue emitApplyOfLibraryIntrinsic(SILLocation loc,
FuncDecl *fn,
ArrayRef<Substitution> subs,
ArrayRef<ManagedValue> args,
SGFContext ctx);
/// Emit a dynamic member reference.
RValue emitDynamicMemberRefExpr(DynamicMemberRefExpr *e, SGFContext c);
/// Emit a dynamic subscript.
RValue emitDynamicSubscriptExpr(DynamicSubscriptExpr *e, SGFContext c);
/// \brief Emit a conditional checked cast branch. Does not
/// re-abstract the argument to the success branch. Terminates the
/// current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src The abstract value to cast.
/// \param sourceType The formal source type.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(SILLocation loc, ConsumableManagedValue src,
CanType sourceType, CanType targetType,
SGFContext C,
std::function<void(ManagedValue)> handleTrue,
std::function<void()> handleFalse);
/// \brief Emit a conditional checked cast branch, starting from an
/// expression. Terminates the current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src An expression which will generate the value to cast.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(SILLocation loc, Expr *src,
Type targetType, SGFContext C,
std::function<void(ManagedValue)> handleTrue,
std::function<void()> handleFalse);
/// Initialize a memory location with an optional value.
///
/// \param loc The location to use for the resulting optional.
/// \param value The value to inject into an optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalValueInto(SILLocation loc,
ArgumentSource &&value,
SILValue dest,
const TypeLowering &optTL);
/// Initialize a memory location with an optional "nothing"
/// value.
///
/// \param loc The location to use for the resulting optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalNothingInto(SILLocation loc,
SILValue dest,
const TypeLowering &optTL);
/// \brief Emit a call to the library intrinsic _preconditionOptionalHasValue.
void emitPreconditionOptionalHasValue(SILLocation loc, SILValue addr);
/// \brief Emit a call to the library intrinsic _doesOptionalHaveValue.
///
/// The result is a Builtin.Int1.
SILValue emitDoesOptionalHaveValue(SILLocation loc, SILValue addr);
/// \brief Emit a call to the library intrinsic _getOptionalValue
/// given the address of the optional, which checks that an optional contains
/// some value and either returns the value or traps if there is none.
ManagedValue emitCheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addr,
const TypeLowering &optTL,
SGFContext C);
/// \brief Extract the value from an optional, which must be known to contain
/// a value.
ManagedValue emitUncheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addr,
const TypeLowering &optTL,
SGFContext C);
typedef std::function<ManagedValue(SILGenFunction &gen,
SILLocation loc,
ManagedValue input,
SILType loweredResultTy)> ValueTransform;
/// Emit a transformation on the value of an optional type.
ManagedValue emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType loweredResultTy,
const ValueTransform &transform);
/// Build the type of a function transformation thunk.
CanSILFunctionType buildThunkType(ManagedValue fn,
CanSILFunctionType expectedType,
CanSILFunctionType &substFnType,
SmallVectorImpl<Substitution> &subs);
//===--------------------------------------------------------------------===//
// Declarations
//===--------------------------------------------------------------------===//
void visitDecl(Decl *D) {
llvm_unreachable("Not yet implemented");
}
void visitNominalTypeDecl(NominalTypeDecl *D);
void visitFuncDecl(FuncDecl *D);
void visitPatternBindingDecl(PatternBindingDecl *D);
std::unique_ptr<Initialization> emitPatternBindingInitialization(Pattern *P);
void visitTypeAliasDecl(TypeAliasDecl *D) {
// No lowering support needed.
}
void visitGenericTypeParamDecl(GenericTypeParamDecl *D) {
// No lowering support needed.
}
void visitAssociatedTypeDecl(AssociatedTypeDecl *D) {
// No lowering support needed.
}
void visitVarDecl(VarDecl *D) {
// We handle these in pattern binding.
}
/// Emit an Initialization for a 'var' or 'let' decl in a pattern.
std::unique_ptr<Initialization>
emitInitializationForVarDecl(VarDecl *vd, Type patternType);
/// Emit the allocation for a local variable. Returns the address of the
/// value. Does not register a cleanup.
void emitLocalVariable(VarDecl *D,
Optional<MarkUninitializedInst::Kind> MUIKind);
/// Emit the allocation for a local variable, provides an Initialization
/// that can be used to initialize it, and registers cleanups in the active
/// scope.
std::unique_ptr<Initialization>
emitLocalVariableWithCleanup(VarDecl *D, bool NeedsMarkUninit);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Provides an Initialization that can be used to initialize an already-
/// allocated temporary, and registers cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
useBufferAsTemporary(SILLocation loc, SILValue addr,
const TypeLowering &tempTL);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle enterDormantTemporaryCleanup(SILValue temp,
const TypeLowering &tempTL);
/// Destroy and deallocate an initialized local variable.
void destroyLocalVariable(SILLocation L, VarDecl *D);
/// Deallocate an uninitialized local variable.
void deallocateUninitializedLocalVariable(SILLocation L, VarDecl *D);
/// Enter a cleanup to deallocate a stack variable.
CleanupHandle enterDeallocStackCleanup(SILValue address);
/// Enter a cleanup to emit a ReleaseValue/destroyAddr of the specified value.
CleanupHandle enterDestroyCleanup(SILValue valueOrAddr);
/// Evaluate an Expr as an lvalue.
LValue emitLValue(Expr *E, AccessKind accessKind);
/// Emit a reference to a variable as an lvalue.
LValue emitLValueForAddressedNonMemberVarDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
AccessKind accessKind,
AccessSemantics semantics);
/// Emit an lvalue that directly refers to the given instance variable
/// (without going through getters or setters).
LValue emitDirectIVarLValue(SILLocation loc, ManagedValue base, VarDecl *var,
AccessKind accessKind);
/// Return forwarding substitutions for the archetypes in the current
/// function.
ArrayRef<Substitution> getForwardingSubstitutions();
/// Get the _Pointer protocol used for pointer argument operations.
ProtocolDecl *getPointerProtocol();
/// Produce a substitution for invoking a pointer argument conversion
/// intrinsic.
Substitution getPointerSubstitution(Type pointerType,
ArchetypeType *archetype);
/// Get the method dispatch mechanism for a method.
MethodDispatch getMethodDispatch(AbstractFunctionDecl *method);
};
/// A utility class for saving and restoring the insertion point.
class SavedInsertionPoint {
SILGenFunction &SGF;
SILBasicBlock *SavedIP;
FunctionSection SavedSection;
public:
SavedInsertionPoint(SILGenFunction &SGF, SILBasicBlock *newIP,
Optional<FunctionSection> optSection = None)
: SGF(SGF), SavedIP(SGF.B.getInsertionBB()),
SavedSection(SGF.CurFunctionSection) {
FunctionSection section = (optSection ? *optSection : SavedSection);
assert((section != FunctionSection::Postmatter || SGF.StartOfPostmatter) &&
"trying to move to postmatter without a registered start "
"of postmatter?");
SGF.B.setInsertionPoint(newIP);
SGF.CurFunctionSection = section;
}
SavedInsertionPoint(const SavedInsertionPoint &) = delete;
SavedInsertionPoint &operator=(const SavedInsertionPoint &) = delete;
~SavedInsertionPoint() {
SGF.B.setInsertionPoint(SavedIP);
SGF.CurFunctionSection = SavedSection;
}
};
} // end namespace Lowering
} // end namespace swift
#endif