Files
swift-mirror/lib/Sema/CSRanking.cpp
Doug Gregor 346ed6e815 Implement partial ordering for protocol extensions.
Compare the generic signatures so that we get appropriate partial
ordering among constrained extensions, extensions of inherited
protocols, etc. Finishes rdar://problem/20335936.

Swift SVN r26726
2015-03-30 21:11:14 +00:00

1193 lines
40 KiB
C++

//===--- CSRanking.cpp - Constraint System Ranking ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements solution ranking heuristics for the
// constraint-based type checker.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
#include "swift/AST/ArchetypeBuilder.h"
#include "llvm/ADT/Statistic.h"
using namespace swift;
using namespace constraints;
//===--------------------------------------------------------------------===//
// Statistics
//===--------------------------------------------------------------------===//
#define DEBUG_TYPE "Constraint solver overall"
STATISTIC(NumDiscardedSolutions, "# of solutions discarded");
void ConstraintSystem::increaseScore(ScoreKind kind) {
unsigned index = static_cast<unsigned>(kind);
++CurrentScore.Data[index];
if (TC.getLangOpts().DebugConstraintSolver) {
auto &log = getASTContext().TypeCheckerDebug->getStream();
if (solverState)
log.indent(solverState->depth * 2);
log << "(increasing score due to ";
switch (kind) {
case SK_Unavailable:
log << "use of an unavailable declaration";
break;
case SK_Fix:
log << "attempting to fix the source";
break;
case SK_ForceUnchecked:
log << "force of an implicitly unwrapped optional";
break;
case SK_UserConversion:
log << "user conversion";
break;
case SK_FunctionConversion:
log << "function conversion";
break;
case SK_NonDefaultLiteral:
log << "non-default literal";
break;
case SK_CollectionUpcastConversion:
log << "collection upcast conversion";
break;
case SK_CollectionBridgedConversion:
log << "collection bridged conversion";
break;
case SK_ValueToOptional:
log << "value to optional";
break;
case SK_ArrayPointerConversion:
log << "array-to-pointer conversion";
break;
case SK_ScalarPointerConversion:
log << "scalar-to-pointer conversion";
break;
}
log << ")\n";
}
}
bool ConstraintSystem::worseThanBestSolution() const {
if (!solverState || !solverState->BestScore ||
CurrentScore <= *solverState->BestScore)
return false;
if (TC.getLangOpts().DebugConstraintSolver) {
auto &log = getASTContext().TypeCheckerDebug->getStream();
log.indent(solverState->depth * 2)
<< "(solution is worse than the best solution)\n";
}
return true;
}
llvm::raw_ostream &constraints::operator<<(llvm::raw_ostream &out,
const Score &score) {
for (unsigned i = 0; i != NumScoreKinds; ++i) {
if (i) out << ' ';
out << score.Data[i];
}
return out;
}
/// \brief Remove the initializers from any tuple types within the
/// given type.
static Type stripInitializers(Type origType) {
return origType.transform([&](Type type) -> Type {
if (auto tupleTy = type->getAs<TupleType>()) {
SmallVector<TupleTypeElt, 4> fields;
for (const auto &field : tupleTy->getFields()) {
fields.push_back(TupleTypeElt(field.getType(),
field.getName(),
DefaultArgumentKind::None,
field.isVararg()));
}
return TupleType::get(fields, type->getASTContext());
}
return type;
});
}
///\ brief Compare two declarations for equality when they are used.
///
static bool sameDecl(Decl *decl1, Decl *decl2) {
if (decl1 == decl2)
return true;
// All types considered identical.
// FIXME: This is a hack. What we really want is to have substituted the
// base type into the declaration reference, so that we can compare the
// actual types to which two type declarations resolve. If those types are
// equivalent, then it doesn't matter which declaration is chosen.
if (isa<TypeDecl>(decl1) && isa<TypeDecl>(decl2))
return true;
if (decl1->getKind() != decl2->getKind())
return false;
return false;
}
/// \brief Compare two overload choices for equality.
static bool sameOverloadChoice(const OverloadChoice &x,
const OverloadChoice &y) {
if (x.getKind() != y.getKind())
return false;
switch (x.getKind()) {
case OverloadChoiceKind::BaseType:
// FIXME: Compare base types after substitution?
return true;
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
return sameDecl(x.getDecl(), y.getDecl());
case OverloadChoiceKind::TypeDecl:
// FIXME: Compare types after substitution?
return sameDecl(x.getDecl(), y.getDecl());
case OverloadChoiceKind::TupleIndex:
return x.getTupleIndex() == y.getTupleIndex();
}
}
/// Compare two declarations to determine whether one is a witness of the other.
static Comparison compareWitnessAndRequirement(TypeChecker &tc, DeclContext *dc,
ValueDecl *decl1,
ValueDecl *decl2) {
// We only have a witness/requirement pair if exactly one of the declarations
// comes from a protocol.
auto proto1 = dyn_cast<ProtocolDecl>(decl1->getDeclContext());
auto proto2 = dyn_cast<ProtocolDecl>(decl2->getDeclContext());
if ((bool)proto1 == (bool)proto2)
return Comparison::Unordered;
// Figure out the protocol, requirement, and potential witness.
ProtocolDecl *proto;
ValueDecl *req;
ValueDecl *potentialWitness;
if (proto1) {
proto = proto1;
req = decl1;
potentialWitness = decl2;
} else {
proto = proto2;
req = decl2;
potentialWitness = decl1;
}
// Cannot compare type declarations this way.
// FIXME: Use the same type-substitution approach as lookupMemberType.
if (isa<TypeDecl>(req))
return Comparison::Unordered;
if (!potentialWitness->getDeclContext()->isTypeContext())
return Comparison::Unordered;
// Determine whether the type of the witness's context conforms to the
// protocol.
auto owningType
= potentialWitness->getDeclContext()->getDeclaredTypeInContext();
ProtocolConformance *conformance = nullptr;
if (!tc.conformsToProtocol(owningType, proto, dc, true, &conformance) ||
!conformance->isComplete())
return Comparison::Unordered;
// If the witness and the potential witness are not the same, there's no
// ordering here.
if (conformance->getWitness(req, &tc).getDecl() != potentialWitness)
return Comparison::Unordered;
// We have a requirement/witness match.
return proto1? Comparison::Worse : Comparison::Better;
}
namespace {
/// Dependent type opener that maps from a dependent type to its corresponding
/// archetype in the given context.
class ArchetypeOpener : public constraints::DependentTypeOpener {
DeclContext *DC;
public:
explicit ArchetypeOpener(DeclContext *dc) : DC(dc) { }
virtual Type mapGenericTypeParamType(GenericTypeParamType *param) {
return ArchetypeBuilder::mapTypeIntoContext(DC, param);
}
virtual Type mapDependentMemberType(DependentMemberType *memberType) {
return ArchetypeBuilder::mapTypeIntoContext(DC, memberType);
}
};
}
namespace {
/// Describes the relationship between the context types for two declarations.
enum class SelfTypeRelationship {
/// The types are unrelated; ignore the bases entirely.
Unrelated,
/// The types are equivalent.
Equivalent,
/// The first type is a subclass of the second.
Subclass,
/// The second type is a subclass of the first.
Superclass,
/// The first type conforms to the second
ConformsTo,
/// The second type conforms to the first.
ConformedToBy
};
}
/// Determines whether the first type is nominally a superclass of the second
/// type, ignore generic arguments.
static bool isNominallySuperclassOf(TypeChecker &tc, Type type1, Type type2) {
auto nominal1 = type1->getAnyNominal();
if (!nominal1)
return false;
for (auto super2 = type2; super2; super2 = super2->getSuperclass(&tc)) {
if (super2->getAnyNominal() == nominal1)
return true;
}
return false;
}
/// Determine the relationship between the self types of the given declaration
/// contexts..
static SelfTypeRelationship computeSelfTypeRelationship(TypeChecker &tc,
DeclContext *dc,
DeclContext *dc1,
DeclContext *dc2){
// If at least one of the contexts is a non-type context, the two are
// unrelated.
if (!dc1->isTypeContext() || !dc2->isTypeContext())
return SelfTypeRelationship::Unrelated;
Type type1 = dc1->getDeclaredTypeInContext();
Type type2 = dc2->getDeclaredTypeInContext();
// If the types are equal, the answer is simple.
if (type1->isEqual(type2))
return SelfTypeRelationship::Equivalent;
// If both types can have superclasses, which whether one is a superclass
// of the other. The subclass is the common base type.
if (type1->mayHaveSuperclass() && type2->mayHaveSuperclass()) {
if (isNominallySuperclassOf(tc, type1, type2))
return SelfTypeRelationship::Superclass;
if (isNominallySuperclassOf(tc, type2, type1))
return SelfTypeRelationship::Subclass;
return SelfTypeRelationship::Unrelated;
}
// If neither or both are protocol types, consider the bases unrelated.
bool isProtocol1 = isa<ProtocolDecl>(dc1);
bool isProtocol2 = isa<ProtocolDecl>(dc2);
if (isProtocol1 == isProtocol2)
return SelfTypeRelationship::Unrelated;
// Just one of the two is a protocol. Check whether the other conforms to
// that protocol.
Type protoTy = isProtocol1? type1 : type2;
Type modelTy = isProtocol1? type2 : type1;
auto proto = protoTy->castTo<ProtocolType>()->getDecl();
// If the model type does not conform to the protocol, the bases are
// unrelated.
if (!tc.conformsToProtocol(modelTy, proto, dc, true))
return SelfTypeRelationship::Unrelated;
return isProtocol1? SelfTypeRelationship::ConformedToBy
: SelfTypeRelationship::ConformsTo;
}
// Given a type and a declaration context, return a type with a curried
// 'self' type as input if the declaration context describes a type.
static Type addCurriedSelfType(ASTContext &ctx, Type type, DeclContext *dc) {
if (!dc->isTypeContext())
return type;
auto nominal = dc->getDeclaredTypeOfContext()->getAnyNominal();
auto selfTy = nominal->getInterfaceType()->castTo<MetatypeType>()
->getInstanceType();
if (nominal->isGenericContext())
return GenericFunctionType::get(nominal->getGenericSignature(),
selfTy, type, AnyFunctionType::ExtInfo());
return FunctionType::get(selfTy, type);
}
/// \brief Given two generic function declarations, signal if the first is more
/// "constrained" than the second by comparing the number of constraints
/// applied to each type parameter.
/// Note that this is not a subtype or conversion check - that takes place
/// in isDeclAsSpecializedAs.
static bool isDeclMoreConstrainedThan(ValueDecl *decl1, ValueDecl *decl2) {
if (decl1->getKind() != decl2->getKind() || isa<TypeDecl>(decl1))
return false;
auto func1 = dyn_cast<FuncDecl>(decl1);
auto func2 = dyn_cast<FuncDecl>(decl2);
if (func1 && func2) {
auto gp1 = func1->getGenericParams();
auto gp2 = func2->getGenericParams();
if (gp1 && gp2) {
auto params1 = gp1->getParams();
auto params2 = gp2->getParams();
if (params1.size() == params2.size()) {
for (size_t i = 0; i < params1.size(); i++) {
auto p1 = params1[i];
auto p2 = params2[i];
int np1 = static_cast<int>
(p1->getArchetype()->getConformsTo().size());
int np2 = static_cast<int>
(p2->getArchetype()->getConformsTo().size());
int aDelta = np1 - np2;
if (aDelta)
return aDelta > 0;
}
}
}
}
return false;
}
/// Determine whether one protocol extension is at least as specialized as
/// another.
static bool isProtocolExtensionAsSpecializedAs(TypeChecker &tc,
DeclContext *dc1,
DeclContext *dc2) {
assert(dc1->isProtocolExtensionContext());
assert(dc2->isProtocolExtensionContext());
// If the two generic signatures are identical, neither is as specialized
// as the other.
GenericSignature *sig1 = dc1->getGenericSignatureOfContext();
GenericSignature *sig2 = dc2->getGenericSignatureOfContext();
if (sig1->getCanonicalSignature() == sig2->getCanonicalSignature())
return false;
// Form a constraint system where we've opened up all of the requirements of
// the second protocol extension.
ConstraintSystem cs(tc, dc1, None);
llvm::DenseMap<CanType, TypeVariableType *> replacements;
cs.openGeneric(dc2, sig2->getGenericParams(), sig2->getRequirements(),
false, nullptr, ConstraintLocatorBuilder(nullptr),
replacements);
// Bind the 'Self' type from the first extension to the type parameter from
// opening 'Self' of the second extension.
Type selfType1 = sig1->getGenericParams()[0];
Type selfType2 = sig2->getGenericParams()[0];
cs.addConstraint(ConstraintKind::Bind,
replacements[selfType2->getCanonicalType()],
ArchetypeBuilder::mapTypeIntoContext(dc1, selfType1),
nullptr);
// Solve the system. If the first extension is at least as specialized as the
// second, we're done.
SmallVector<Solution, 1> solutions;
return !cs.solve(solutions, FreeTypeVariableBinding::Disallow);
}
/// \brief Determine whether the first declaration is as "specialized" as
/// the second declaration.
///
/// "Specialized" is essentially a form of subtyping, defined below.
static bool isDeclAsSpecializedAs(TypeChecker &tc, DeclContext *dc,
ValueDecl *decl1, ValueDecl *decl2) {
// If the kinds are different, there's nothing we can do.
// FIXME: This is wrong for type declarations, which we're skipping
// entirely.
if (decl1->getKind() != decl2->getKind() || isa<TypeDecl>(decl1))
return false;
// A non-generic declaration is more specialized than a generic declaration.
if (auto func1 = dyn_cast<AbstractFunctionDecl>(decl1)) {
auto func2 = cast<AbstractFunctionDecl>(decl2);
if (static_cast<bool>(func1->getGenericParams()) !=
static_cast<bool>(func2->getGenericParams()))
return func2->getGenericParams();
}
// A witness is always more specialized than the requirement it satisfies.
switch (compareWitnessAndRequirement(tc, dc, decl1, decl2)) {
case Comparison::Unordered:
break;
case Comparison::Better:
return true;
case Comparison::Worse:
return false;
}
// Members of protocol extensions have special overloading rules.
ProtocolDecl *inProtocolExtension1 = decl1->getDeclContext()
->isProtocolExtensionContext();
ProtocolDecl *inProtocolExtension2 = decl2->getDeclContext()
->isProtocolExtensionContext();
if (inProtocolExtension1 && inProtocolExtension2) {
// Both members are in protocol extensions.
// Determine whether the 'Self' type from the first protocol extension
// satisfies all of the requirements of the second protocol extension.
DeclContext *dc1 = decl1->getDeclContext();
DeclContext *dc2 = decl2->getDeclContext();
bool better1 = isProtocolExtensionAsSpecializedAs(tc, dc1, dc2);
bool better2 = isProtocolExtensionAsSpecializedAs(tc, dc2, dc1);
if (better1 != better2) {
return better1;
}
} else if (inProtocolExtension1 || inProtocolExtension2) {
// One member is in a protocol extension, the other is in a concrete type.
// Prefer the member in the concrete type.
return inProtocolExtension2;
}
Type type1 = decl1->getInterfaceType();
Type type2 = decl2->getInterfaceType();
/// What part of the type should we check?
enum {
CheckAll,
CheckInput,
} checkKind;
if (isa<AbstractFunctionDecl>(decl1) || isa<EnumElementDecl>(decl1)) {
// Nothing to do: these have the curried 'self' already.
if (auto elt = dyn_cast<EnumElementDecl>(decl1)) {
checkKind = elt->hasArgumentType() ? CheckInput : CheckAll;
} else {
checkKind = CheckInput;
}
} else {
// Add a curried 'self' type.
assert(!type1->is<GenericFunctionType>() && "Odd generic function type?");
assert(!type2->is<GenericFunctionType>() && "Odd generic function type?");
type1 = addCurriedSelfType(tc.Context, type1, decl1->getDeclContext());
type2 = addCurriedSelfType(tc.Context, type2, decl2->getDeclContext());
// For a subscript declaration, only look at the input type (i.e., the
// indices).
if (isa<SubscriptDecl>(decl1))
checkKind = CheckInput;
else
checkKind = CheckAll;
}
// Construct a constraint system to compare the two declarations.
ConstraintSystem cs(tc, dc, ConstraintSystemOptions());
auto locator = cs.getConstraintLocator(nullptr);
// FIXME: Locator when anchored on a declaration.
// Get the type of a reference to the second declaration.
Type openedType2 = cs.openType(type2, locator,
decl2->getPotentialGenericDeclContext());
// Get the type of a reference to the first declaration, swapping in
// archetypes for the dependent types.
ArchetypeOpener opener(decl1->getPotentialGenericDeclContext());
Type openedType1 = cs.openType(type1, locator,
decl1->getPotentialGenericDeclContext(),
/*skipProtocolSelfConstraint=*/false,
&opener);
// Extract the self types from the declarations, if they have them.
Type selfTy1;
Type selfTy2;
if (decl1->getDeclContext()->isTypeContext()) {
auto funcTy1 = openedType1->castTo<FunctionType>();
selfTy1 = funcTy1->getInput()->getRValueInstanceType();
openedType1 = funcTy1->getResult();
}
if (decl2->getDeclContext()->isTypeContext()) {
auto funcTy2 = openedType2->castTo<FunctionType>();
selfTy2 = funcTy2->getInput()->getRValueInstanceType();
openedType2 = funcTy2->getResult();
}
// Determine the relationship between the 'self' types and add the
// appropriate constraints. The constraints themselves never fail, but
// they help deduce type variables that were opened.
switch (computeSelfTypeRelationship(tc, dc, decl1->getDeclContext(),
decl2->getDeclContext())) {
case SelfTypeRelationship::Unrelated:
// Skip the self types parameter entirely.
break;
case SelfTypeRelationship::Equivalent:
cs.addConstraint(ConstraintKind::Equal, selfTy1, selfTy2, locator);
break;
case SelfTypeRelationship::Subclass:
cs.addConstraint(ConstraintKind::Subtype, selfTy1, selfTy2, locator);
break;
case SelfTypeRelationship::Superclass:
cs.addConstraint(ConstraintKind::Subtype, selfTy2, selfTy1, locator);
break;
case SelfTypeRelationship::ConformsTo:
cs.addConstraint(ConstraintKind::ConformsTo, selfTy1, selfTy2, locator);
break;
case SelfTypeRelationship::ConformedToBy:
cs.addConstraint(ConstraintKind::ConformsTo, selfTy2, selfTy1, locator);
break;
}
switch (checkKind) {
case CheckAll:
// Check whether the first type is a subtype of the second.
cs.addConstraint(ConstraintKind::Subtype,
openedType1,
openedType2,
locator);
break;
case CheckInput: {
// Check whether the first function type's input is a subtype of the second
// type's inputs, i.e., can we forward the arguments?
auto funcTy1 = openedType1->castTo<FunctionType>();
auto funcTy2 = openedType2->castTo<FunctionType>();
cs.addConstraint(ConstraintKind::Subtype,
funcTy1->getInput(),
funcTy2->getInput(),
locator);
break;
}
}
// Solve the system.
SmallVector<Solution, 1> solutions;
if (cs.solve(solutions, FreeTypeVariableBinding::Allow))
return false;
// Ban value-to-optional conversions.
return solutions[0].getFixedScore().Data[SK_ValueToOptional] == 0;
}
Comparison TypeChecker::compareDeclarations(DeclContext *dc,
ValueDecl *decl1,
ValueDecl *decl2){
bool decl1Better = isDeclAsSpecializedAs(*this, dc, decl1, decl2);
bool decl2Better = isDeclAsSpecializedAs(*this, dc, decl2, decl1);
if (decl1Better == decl2Better)
return Comparison::Unordered;
return decl1Better? Comparison::Better : Comparison::Worse;
}
SolutionCompareResult ConstraintSystem::compareSolutions(
ConstraintSystem &cs,
ArrayRef<Solution> solutions,
const SolutionDiff &diff,
unsigned idx1,
unsigned idx2) {
// Whether the solutions are identical.
bool identical = true;
// Compare the fixed scores by themselves.
if (solutions[idx1].getFixedScore() != solutions[idx2].getFixedScore()) {
return solutions[idx1].getFixedScore() < solutions[idx2].getFixedScore()
? SolutionCompareResult::Better
: SolutionCompareResult::Worse;
}
// Compute relative score.
unsigned score1 = 0;
unsigned score2 = 0;
auto foundRefinement1 = false;
auto foundRefinement2 = false;
bool isStdlibOptionalMPlusOperator1 = false;
bool isStdlibOptionalMPlusOperator2 = false;
// Compare overload sets.
for (auto &overload : diff.overloads) {
auto choice1 = overload.choices[idx1];
auto choice2 = overload.choices[idx2];
// If the systems made the same choice, there's nothing interesting here.
if (sameOverloadChoice(choice1, choice2))
continue;
auto decl1 = choice1.getDecl();
auto dc1 = decl1->getDeclContext();
auto decl2 = choice2.getDecl();
auto dc2 = decl2->getDeclContext();
// The two systems are not identical. If the decls in question are distinct
// protocol members, let the checks below determine if the two choices are
// 'identical' or not. This allows us to structurally unify disparate
// protocol members during overload resolution.
if ((dc1->getContextKind() == DeclContextKind::NominalTypeDecl) &&
(dc1->getContextKind() == dc2->getContextKind())) {
auto ntd1 = dyn_cast<NominalTypeDecl>(dc1);
auto ntd2 = dyn_cast<NominalTypeDecl>(dc2);
identical = (ntd1 != ntd2) &&
(ntd1->getKind() == DeclKind::Protocol) &&
(ntd2->getKind() == DeclKind::Protocol);
} else {
identical = false;
}
// If the kinds of overload choice don't match...
if (choice1.getKind() != choice2.getKind()) {
identical = false;
// A declaration found directly beats any declaration found via dynamic
// lookup, bridging, or optional unwrapping.
if (choice1.getKind() == OverloadChoiceKind::Decl &&
(choice2.getKind() == OverloadChoiceKind::DeclViaDynamic ||
choice2.getKind() == OverloadChoiceKind::DeclViaBridge ||
choice2.getKind() == OverloadChoiceKind::DeclViaUnwrappedOptional)) {
++score1;
continue;
}
if ((choice1.getKind() == OverloadChoiceKind::DeclViaDynamic ||
choice1.getKind() == OverloadChoiceKind::DeclViaBridge ||
choice1.getKind() == OverloadChoiceKind::DeclViaUnwrappedOptional) &&
choice2.getKind() == OverloadChoiceKind::Decl) {
++score2;
continue;
}
continue;
}
// The kinds of overload choice match, but the contents don't.
auto &tc = cs.getTypeChecker();
switch (choice1.getKind()) {
case OverloadChoiceKind::TupleIndex:
break;
case OverloadChoiceKind::BaseType:
llvm_unreachable("Never considered different");
case OverloadChoiceKind::TypeDecl:
break;
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
// Determine whether one declaration is more specialized than the other.
bool firstAsSpecializedAs = false;
bool secondAsSpecializedAs = false;
if (isDeclAsSpecializedAs(tc, cs.DC, decl1, decl2)) {
++score1;
firstAsSpecializedAs = true;
}
if (isDeclAsSpecializedAs(tc, cs.DC, decl2, decl1)) {
++score2;
secondAsSpecializedAs = true;
}
// If each is as specialized as the other, and both are constructors,
// check the constructor kind.
if (firstAsSpecializedAs && secondAsSpecializedAs) {
if (auto ctor1 = dyn_cast<ConstructorDecl>(decl1)) {
if (auto ctor2 = dyn_cast<ConstructorDecl>(decl2)) {
if (ctor1->getInitKind() != ctor2->getInitKind()) {
if (ctor1->getInitKind() < ctor2->getInitKind())
++score1;
else
++score2;
}
}
}
}
// If both declarations come from Clang, and one is a type and the other
// is a function, prefer the function.
if (decl1->hasClangNode() &&
decl2->hasClangNode() &&
((isa<TypeDecl>(decl1) &&
isa<AbstractFunctionDecl>(decl2)) ||
(isa<AbstractFunctionDecl>(decl1) &&
isa<TypeDecl>(decl2)))) {
if (isa<TypeDecl>(decl1))
++score2;
else
++score1;
}
// A class member is always better than a curried instance member.
// If the members agree on instance-ness, a property is better than a
// method (because a method is usually immediately invoked).
if (!decl1->isInstanceMember() && decl2->isInstanceMember())
++score1;
else if (!decl2->isInstanceMember() && decl1->isInstanceMember())
++score2;
else if (isa<VarDecl>(decl1) && isa<FuncDecl>(decl2))
++score1;
else if (isa<VarDecl>(decl2) && isa<FuncDecl>(decl1))
++score2;
// If we haven't found a refinement, record whether one overload is in
// any way more constrained than another. We'll only utilize this
// information in the case of a potential ambiguity.
if (!(foundRefinement1 && foundRefinement2)) {
if (isDeclMoreConstrainedThan(decl1, decl2)) {
foundRefinement1 = true;
}
if (isDeclMoreConstrainedThan(decl2, decl1)) {
foundRefinement2 = true;
}
}
// FIXME: Lousy hack for ?? to prefer the catamorphism (flattening)
// over the mplus (non-flattening) overload if all else is equal.
if (decl1->getName().str() == "??") {
assert(decl2->getName().str() == "??");
auto check = [](const ValueDecl *VD) -> bool {
if (!VD->getModuleContext()->isStdlibModule())
return false;
auto fnTy = VD->getType()->castTo<AnyFunctionType>();
if (!fnTy->getResult()->getAnyOptionalObjectType())
return false;
// Check that the standard library hasn't added another overload of
// the ?? operator.
auto inputTupleTy = fnTy->getInput()->castTo<TupleType>();
auto inputTypes = inputTupleTy->getElementTypes();
assert(inputTypes.size() == 2);
assert(inputTypes[0]->getAnyOptionalObjectType());
auto autoclosure = inputTypes[1]->castTo<AnyFunctionType>();
assert(autoclosure->isAutoClosure());
auto secondParamTy = autoclosure->getResult();
assert(secondParamTy->getAnyOptionalObjectType());
(void)secondParamTy;
return true;
};
isStdlibOptionalMPlusOperator1 = check(decl1);
isStdlibOptionalMPlusOperator2 = check(decl2);
}
break;
}
}
// Compare the type variable bindings.
auto &tc = cs.getTypeChecker();
for (auto &binding : diff.typeBindings) {
// If the type variable isn't one for which we should be looking at the
// bindings, don't.
if (!binding.typeVar->getImpl().prefersSubtypeBinding())
continue;
auto type1 = binding.bindings[idx1];
auto type2 = binding.bindings[idx2];
// Strip any initializers from tuples in the type; they aren't
// to be compared.
type1 = stripInitializers(type1);
type2 = stripInitializers(type2);
// If the types are equivalent, there's nothing more to do.
if (type1->isEqual(type2))
continue;
// If either of the types still contains type variables, we can't
// compare them.
// FIXME: This is really unfortunate. More type variable sharing
// (when it's sane) would help us do much better here.
if (type1->hasTypeVariable() || type2->hasTypeVariable()) {
identical = false;
continue;
}
// If one type is an implicitly unwrapped optional of the other,
// prefer the non-optional.
bool type1Better = false;
bool type2Better = false;
if (auto type1Obj = type1->getImplicitlyUnwrappedOptionalObjectType()) {
if (type1Obj->isEqual(type2))
type2Better = true;
}
if (auto type2Obj = type2->getImplicitlyUnwrappedOptionalObjectType()) {
if (type2Obj->isEqual(type1))
type1Better = true;
}
if (type1Better || type2Better) {
if (type1Better)
++score1;
if (type2Better)
++score2;
continue;
}
// If one type is a subtype of the other, but not vice-verse,
// we prefer the system with the more-constrained type.
// FIXME: Collapse this check into the second check.
type1Better = tc.isSubtypeOf(type1, type2, cs.DC);
type2Better = tc.isSubtypeOf(type2, type1, cs.DC);
if (type1Better || type2Better) {
if (type1Better)
++score1;
if (type2Better)
++score2;
// Prefer the unlabeled form of a type.
auto unlabeled1 = type1->getUnlabeledType(cs.getASTContext());
auto unlabeled2 = type2->getUnlabeledType(cs.getASTContext());
if (unlabeled1->isEqual(unlabeled2)) {
if (type1->isEqual(unlabeled1)) {
++score1;
continue;
}
if (type2->isEqual(unlabeled2)) {
++score2;
continue;
}
}
identical = false;
continue;
}
// The systems are not considered equivalent.
identical = false;
// If one type is convertible to of the other, but not vice-versa.
type1Better = tc.isConvertibleTo(type1, type2, cs.DC);
type2Better = tc.isConvertibleTo(type2, type1, cs.DC);
if (type1Better || type2Better) {
if (type1Better)
++score1;
if (type2Better)
++score2;
continue;
}
// A concrete type is better than an archetype.
// FIXME: Total hack.
if (type1->is<ArchetypeType>() != type2->is<ArchetypeType>()) {
if (type1->is<ArchetypeType>())
++score2;
else
++score1;
continue;
}
// FIXME:
// This terrible hack is in place to support equality comparisons of non-
// equatable option types to 'nil'. Until we have a way to constrain a type
// variable on "!Equatable", if all other aspects of the overload choices
// are equal, favor the overload that does not require an implicit literal
// argument conversion to 'nil'.
// Post-1.0, we'll need to remove this hack in favor of richer constraint
// declarations.
if (!(score1 || score2)) {
if (auto nominalType2 = type2->getNominalOrBoundGenericNominal()) {
if ((nominalType2->getName() ==
cs.TC.Context.Id_OptionalNilComparisonType)) {
++score1;
}
} else if (auto nominalType1 = type1->getNominalOrBoundGenericNominal()) {
if ((nominalType1->getName() ==
cs.TC.Context.Id_OptionalNilComparisonType)) {
++score2;
}
}
}
}
// All other things considered equal, if any overload choice is more
// more constrained than the other, increment the score.
if (score1 == score2) {
if (foundRefinement1) {
++score1;
}
if (foundRefinement2) {
++score2;
}
}
// FIXME: All other things being equal, prefer the catamorphism (flattening)
// overload of ?? over the mplus (non-flattening) overload.
if (score1 == score2) {
// This is correct: we want to /disprefer/ the mplus.
score2 += isStdlibOptionalMPlusOperator1;
score1 += isStdlibOptionalMPlusOperator2;
}
// FIXME: There are type variables and overloads not common to both solutions
// that haven't been considered. They make the systems different, but don't
// affect ranking. We need to handle this.
// If the scores are different, we have a winner.
if (score1 != score2) {
return score1 > score2? SolutionCompareResult::Better
: SolutionCompareResult::Worse;
}
// Neither system wins; report whether they were identical or not.
return identical? SolutionCompareResult::Identical
: SolutionCompareResult::Incomparable;
}
Optional<unsigned>
ConstraintSystem::findBestSolution(SmallVectorImpl<Solution> &viable,
bool minimize) {
if (viable.empty())
return None;
if (viable.size() == 1)
return 0;
SolutionDiff diff(viable);
// Find a potential best.
SmallVector<bool, 16> losers(viable.size(), false);
unsigned bestIdx = 0;
for (unsigned i = 1, n = viable.size(); i != n; ++i) {
switch (compareSolutions(*this, viable, diff, i, bestIdx)) {
case SolutionCompareResult::Identical:
// FIXME: Might want to warn about this in debug builds, so we can
// find a way to eliminate the redundancy in the search space.
case SolutionCompareResult::Incomparable:
break;
case SolutionCompareResult::Worse:
losers[i] = true;
break;
case SolutionCompareResult::Better:
losers[bestIdx] = true;
bestIdx = i;
break;
}
}
// Make sure that our current best is better than all of the solved systems.
bool ambiguous = false;
for (unsigned i = 0, n = viable.size(); i != n && !ambiguous; ++i) {
if (i == bestIdx)
continue;
switch (compareSolutions(*this, viable, diff, bestIdx, i)) {
case SolutionCompareResult::Identical:
// FIXME: Might want to warn about this in debug builds, so we can
// find a way to eliminate the redundancy in the search space.
break;
case SolutionCompareResult::Better:
losers[i] = true;
break;
case SolutionCompareResult::Worse:
losers[bestIdx] = true;
SWIFT_FALLTHROUGH;
case SolutionCompareResult::Incomparable:
// If we're not supposed to minimize the result set, just return eagerly.
if (!minimize)
return None;
ambiguous = true;
break;
}
}
// If the result was not ambiguous, we're done.
if (!ambiguous) {
NumDiscardedSolutions += viable.size() - 1;
return bestIdx;
}
// The comparison was ambiguous. Identify any solutions that are worse than
// any other solution.
for (unsigned i = 0, n = viable.size(); i != n; ++i) {
// If the first solution has already lost once, don't bother looking
// further.
if (losers[i])
continue;
for (unsigned j = i + 1; j != n; ++j) {
// If the second solution has already lost once, don't bother looking
// further.
if (losers[j])
continue;
switch (compareSolutions(*this, viable, diff, i, j)) {
case SolutionCompareResult::Identical:
// FIXME: Dub one of these the loser arbitrarily?
break;
case SolutionCompareResult::Better:
losers[j] = true;
break;
case SolutionCompareResult::Worse:
losers[i] = true;
break;
case SolutionCompareResult::Incomparable:
break;
}
}
}
// Remove any solution that is worse than some other solution.
unsigned outIndex = 0;
for (unsigned i = 0, n = viable.size(); i != n; ++i) {
// Skip over the losing solutions.
if (losers[i])
continue;
// If we have skipped any solutions, move this solution into the next
// open position.
if (outIndex < i)
viable[outIndex] = std::move(viable[i]);
++outIndex;
}
viable.erase(viable.begin() + outIndex, viable.end());
NumDiscardedSolutions += viable.size() - outIndex;
return None;
}
SolutionDiff::SolutionDiff(ArrayRef<Solution> solutions) {
if (solutions.size() <= 1)
return;
// Populate the type bindings with the first solution.
llvm::DenseMap<TypeVariableType *, SmallVector<Type, 2>> typeBindings;
for (auto binding : solutions[0].typeBindings) {
typeBindings[binding.first].push_back(binding.second);
}
// Populate the overload choices with the first solution.
llvm::DenseMap<ConstraintLocator *, SmallVector<OverloadChoice, 2>>
overloadChoices;
for (auto choice : solutions[0].overloadChoices) {
overloadChoices[choice.first].push_back(choice.second.choice);
}
// Find the type variables and overload locators common to all of the
// solutions.
for (auto &solution : solutions.slice(1)) {
// For each type variable bound in all of the previous solutions, check
// whether we have a binding for this type variable in this solution.
SmallVector<TypeVariableType *, 4> removeTypeBindings;
for (auto &binding : typeBindings) {
auto known = solution.typeBindings.find(binding.first);
if (known == solution.typeBindings.end()) {
removeTypeBindings.push_back(binding.first);
continue;
}
// Add this solution's binding to the results.
binding.second.push_back(known->second);
}
// Remove those type variables for which this solution did not have a
// binding.
for (auto typeVar : removeTypeBindings) {
typeBindings.erase(typeVar);
}
removeTypeBindings.clear();
// For each overload locator for which we have an overload choice in
// all of the previous solutions. Check whether we have an overload choice
// in this solution.
SmallVector<ConstraintLocator *, 4> removeOverloadChoices;
for (auto &overloadChoice : overloadChoices) {
auto known = solution.overloadChoices.find(overloadChoice.first);
if (known == solution.overloadChoices.end()) {
removeOverloadChoices.push_back(overloadChoice.first);
continue;
}
// Add this solution's overload choice to the results.
overloadChoice.second.push_back(known->second.choice);
}
// Remove those overload locators for which this solution did not have
// an overload choice.
for (auto overloadChoice : removeOverloadChoices) {
overloadChoices.erase(overloadChoice);
}
}
// Look through the type variables that have bindings in all of the
// solutions, and add those that have differences to the diff.
for (auto &binding : typeBindings) {
Type singleType;
for (auto type : binding.second) {
if (!singleType)
singleType = type;
else if (!singleType->isEqual(type)) {
// We have a difference. Add this binding to the diff.
this->typeBindings.push_back(
SolutionDiff::TypeBindingDiff{
binding.first,
std::move(binding.second)
});
break;
}
}
}
// Look through the overload locators that have overload choices in all of
// the solutions, and add those that have differences to the diff.
for (auto &overloadChoice : overloadChoices) {
OverloadChoice singleChoice = overloadChoice.second[0];
for (auto choice : overloadChoice.second) {
if (!sameOverloadChoice(singleChoice, choice)) {
// We have a difference. Add this set of overload choices to the diff.
this->overloads.push_back(
SolutionDiff::OverloadDiff{
overloadChoice.first,
overloadChoice.second
});
}
}
}
}