mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This requires two major changes. The first is that we need to teach SILGen that the isolation of an initializer is essentially dynamic (as far as SILGen is concerned) --- that it needs to emit code in order to get the isolation reference. To make this work, I needed to refactor how we store the expected executor of a function so that it's not always a constant value; instead, we'll need to emit code that DI will lower properly. Fortunately, I can largely build on top of the work that Doug previously did to support #isolation in these functions. The SIL we emit here around delegating initializer calls is not ideal --- the breadcrumb hop ends up jumping to the generic executor, and then DI actually emits the hop to the actor. This is a little silly, but it's hard to eliminate without special-casing the self-rebinding, which honestly we should consider rather than the weirdly global handling of that in SILGen today. The optimizer should eliminate this hop pretty reliably, at least. The second is that we need to teach DI to handle the pattern of code we get in delegating initializers, where the builtin actually has to be passed the self var rather than a class reference. This is because we don't *have* a class reference that's consistently correct in these cases. This ended up being a fairly straightforward generalization. I also taught the hop_to_executor optimizer to skip over the initialization of the default-actor header; there are a lot of simple cases where we still do emit the prologue generic-executor hop, but at least the most trivial case is handled. To do this better, we'd need to teach this bit of the optimizer that the properties of self can be stored to in an initializer prior to the object having escaped, and we don't have that information easily at hand, I think. Fixes rdar://87485045.
1607 lines
62 KiB
C++
1607 lines
62 KiB
C++
//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ArgumentSource.h"
|
|
#include "ExecutorBreadcrumb.h"
|
|
#include "FunctionInputGenerator.h"
|
|
#include "Initialization.h"
|
|
#include "ManagedValue.h"
|
|
#include "SILGenFunction.h"
|
|
#include "Scope.h"
|
|
|
|
#include "swift/AST/CanTypeVisitor.h"
|
|
#include "swift/AST/DiagnosticsSIL.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/PropertyWrappers.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/Basic/Generators.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILArgumentConvention.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
template <typename... T, typename... U>
|
|
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
|
|
U &&...args) {
|
|
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
|
|
}
|
|
|
|
SILValue SILGenFunction::emitSelfDeclForDestructor(VarDecl *selfDecl) {
|
|
SILFunctionConventions conventions = F.getConventionsInContext();
|
|
|
|
// Emit the implicit 'self' argument.
|
|
SILType selfType = conventions.getSILArgumentType(
|
|
conventions.getNumSILArguments() - 1, F.getTypeExpansionContext());
|
|
selfType = F.mapTypeIntoContext(selfType);
|
|
SILValue selfValue = F.begin()->createFunctionArgument(selfType, selfDecl);
|
|
|
|
uint16_t ArgNo = 1; // Hardcoded for destructors.
|
|
auto dv = SILDebugVariable(selfDecl->isLet(), ArgNo);
|
|
|
|
// If we have a move only type, then mark it with
|
|
// mark_unresolved_non_copyable_value so we can't escape it.
|
|
//
|
|
// For now, we do not handle move only class deinits. This is because we need
|
|
// to do a bit more refactoring to handle the weird way that it deals with
|
|
// ownership. But for simple move only deinits (like struct/enum), that are
|
|
// owned, lets mark them as needing to be no implicit copy checked so they
|
|
// cannot escape.
|
|
if (selfType.isMoveOnly() && !selfType.isAnyClassReferenceType()) {
|
|
SILValue addr = B.createAllocStack(selfDecl, selfValue->getType(), dv);
|
|
addr = B.createMarkUnresolvedNonCopyableValueInst(
|
|
selfDecl, addr,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable);
|
|
if (selfValue->getType().isObject()) {
|
|
B.createStore(selfDecl, selfValue, addr, StoreOwnershipQualifier::Init);
|
|
} else {
|
|
B.createCopyAddr(selfDecl, selfValue, addr, IsTake, IsInitialization);
|
|
}
|
|
// drop_deinit invalidates any user-defined struct/enum deinit
|
|
// before the individual members are destroyed.
|
|
addr = B.createDropDeinit(selfDecl, addr);
|
|
selfValue = addr;
|
|
}
|
|
|
|
VarLocs[selfDecl] = VarLoc::get(selfValue);
|
|
SILLocation PrologueLoc(selfDecl);
|
|
PrologueLoc.markAsPrologue();
|
|
B.emitDebugDescription(PrologueLoc, selfValue, dv);
|
|
return selfValue;
|
|
}
|
|
|
|
namespace {
|
|
struct LoweredParamGenerator {
|
|
SILGenFunction &SGF;
|
|
CanSILFunctionType fnTy;
|
|
ArrayRefGenerator<ArrayRef<SILParameterInfo>> parameterTypes;
|
|
|
|
LoweredParamGenerator(SILGenFunction &SGF,
|
|
unsigned numIgnoredTrailingParameters)
|
|
: SGF(SGF), fnTy(SGF.F.getLoweredFunctionType()),
|
|
parameterTypes(
|
|
SGF.F.getLoweredFunctionTypeInContext(SGF.B.getTypeExpansionContext())
|
|
->getParameters().drop_back(numIgnoredTrailingParameters)) {}
|
|
|
|
ParamDecl *paramDecl = nullptr;
|
|
bool isNoImplicitCopy = false;
|
|
LifetimeAnnotation lifetimeAnnotation = LifetimeAnnotation::None;
|
|
|
|
void configureParamData(ParamDecl *paramDecl, bool isNoImplicitCopy,
|
|
LifetimeAnnotation lifetimeAnnotation) {
|
|
this->paramDecl = paramDecl;
|
|
this->isNoImplicitCopy = isNoImplicitCopy;
|
|
this->lifetimeAnnotation = lifetimeAnnotation;
|
|
}
|
|
void resetParamData() {
|
|
configureParamData(nullptr, false, LifetimeAnnotation::None);
|
|
}
|
|
|
|
ManagedValue claimNext() {
|
|
auto parameterInfo = parameterTypes.claimNext();
|
|
|
|
// We should only be called without a param decl when pulling
|
|
// pack parameters out for multiple formal parameters (or a single
|
|
// formal parameter pack).
|
|
// TODO: preserve the parameters captured by the pack into the SIL
|
|
// representation.
|
|
bool isFormalParameterPack = (paramDecl == nullptr);
|
|
assert(!isFormalParameterPack || parameterInfo.isPack());
|
|
|
|
auto paramType =
|
|
SGF.F.mapTypeIntoContext(SGF.getSILType(parameterInfo, fnTy));
|
|
ManagedValue mv = SGF.B.createInputFunctionArgument(
|
|
paramType, paramDecl, isNoImplicitCopy, lifetimeAnnotation,
|
|
/*isClosureCapture*/ false, isFormalParameterPack);
|
|
return mv;
|
|
}
|
|
|
|
bool isFinished() const {
|
|
return parameterTypes.isFinished();
|
|
}
|
|
|
|
void advance() {
|
|
(void) claimNext();
|
|
}
|
|
|
|
void finish() {
|
|
parameterTypes.finish();
|
|
}
|
|
};
|
|
|
|
struct WritebackReabstractedInoutCleanup final : Cleanup {
|
|
SILValue OrigAddress, SubstAddress;
|
|
AbstractionPattern OrigTy;
|
|
CanType SubstTy;
|
|
WritebackReabstractedInoutCleanup(SILValue origAddress, SILValue substAddress,
|
|
AbstractionPattern origTy,
|
|
CanType substTy)
|
|
: OrigAddress(origAddress), SubstAddress(substAddress),
|
|
OrigTy(origTy), SubstTy(substTy)
|
|
{}
|
|
|
|
void emit(SILGenFunction &SGF, CleanupLocation l, ForUnwind_t forUnwind)
|
|
override {
|
|
Scope s(SGF.Cleanups, l);
|
|
// Load the final local value coming in.
|
|
auto mv = SGF.emitLoad(l, SubstAddress,
|
|
SGF.getTypeLowering(SubstAddress->getType()),
|
|
SGFContext(), IsTake);
|
|
// Reabstract the value back to the original representation.
|
|
mv = SGF.emitSubstToOrigValue(l, mv.ensurePlusOne(SGF, l),
|
|
OrigTy, SubstTy);
|
|
// Write it back to the original inout parameter.
|
|
SGF.B.createStore(l, mv.forward(SGF), OrigAddress,
|
|
StoreOwnershipQualifier::Init);
|
|
}
|
|
|
|
void dump(SILGenFunction&) const override {
|
|
llvm::errs() << "WritebackReabstractedInoutCleanup\n";
|
|
OrigAddress->print(llvm::errs());
|
|
SubstAddress->print(llvm::errs());
|
|
}
|
|
};
|
|
|
|
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
|
|
/*RetTy*/ ManagedValue,
|
|
/*ArgTys...*/ AbstractionPattern,
|
|
Initialization *>
|
|
{
|
|
public:
|
|
SILGenFunction &SGF;
|
|
SILLocation loc;
|
|
LoweredParamGenerator ¶meters;
|
|
|
|
EmitBBArguments(SILLocation l, LoweredParamGenerator ¶meters)
|
|
: SGF(parameters.SGF), loc(l), parameters(parameters) {}
|
|
|
|
ManagedValue claimNextParameter() {
|
|
return parameters.claimNext();
|
|
}
|
|
|
|
ManagedValue handleParam(AbstractionPattern origType, CanType substType,
|
|
ParamDecl *pd) {
|
|
// Note: inouts of tuples are not exploded, so we bypass visit().
|
|
if (pd->isInOut())
|
|
return handleInOut(origType, substType);
|
|
return visit(substType, origType, /*emitInto*/ nullptr);
|
|
}
|
|
|
|
ManagedValue handlePackComponent(FunctionInputGenerator &formalParam) {
|
|
auto origPatternType =
|
|
formalParam.getOrigType().getPackExpansionPatternType();
|
|
|
|
auto substParam = formalParam.getSubstParam();
|
|
CanType substType = substParam.getParameterType();
|
|
|
|
// Forward the pack cleanup and enter a new cleanup for the
|
|
// remaining components.
|
|
auto componentValue = formalParam.projectPackComponent(SGF, loc);
|
|
|
|
// Handle scalar components.
|
|
if (!isa<PackExpansionType>(substType)) {
|
|
return handleScalar(componentValue, origPatternType, substType,
|
|
/*emit into*/ nullptr, substParam.isInOut());
|
|
}
|
|
|
|
auto componentPackTy = componentValue.getType().castTo<SILPackType>();
|
|
|
|
// Handle pack expansion components.
|
|
auto formalPackType = formalParam.getFormalPackType();
|
|
auto componentIndex = formalParam.getPackComponentIndex();
|
|
|
|
auto expectedExpansionTy = SGF.getLoweredRValueType(substType);
|
|
auto expectedPackTy =
|
|
SILPackType::get(SGF.getASTContext(), componentPackTy->getExtInfo(),
|
|
{expectedExpansionTy});
|
|
|
|
// If we don't need a pack transformation, this is simple.
|
|
// This is simultaneously testing that we don't need a transformation
|
|
// and that we don't have other components in the pack.
|
|
if (componentPackTy == expectedPackTy) {
|
|
return componentValue;
|
|
}
|
|
|
|
// FIXME: perform this forwarding by just slicing the original pack.
|
|
bool canForward =
|
|
(expectedExpansionTy == componentPackTy->getElementType(componentIndex));
|
|
|
|
auto rawOutputPackAddr =
|
|
SGF.emitTemporaryPackAllocation(loc,
|
|
SILType::getPrimitiveObjectType(expectedPackTy));
|
|
auto outputFormalPackType =
|
|
CanPackType::get(SGF.getASTContext(), {substType});
|
|
return SGF.emitPackTransform(loc, componentValue,
|
|
formalPackType, componentIndex,
|
|
rawOutputPackAddr, outputFormalPackType, 0,
|
|
canForward, /*plus one*/ !canForward,
|
|
[&](ManagedValue input, SILType outputTy,
|
|
SGFContext context) {
|
|
if (canForward) return input;
|
|
|
|
auto substEltType =
|
|
cast<PackExpansionType>(substType).getPatternType();
|
|
if (auto openedEnv = SGF.getInnermostPackExpansion()->OpenedElementEnv) {
|
|
substEltType =
|
|
openedEnv->mapContextualPackTypeIntoElementContext(substEltType);
|
|
}
|
|
|
|
return handleScalar(input, origPatternType, substEltType,
|
|
context.getEmitInto(), /*inout*/ false);
|
|
});
|
|
}
|
|
|
|
ManagedValue visitType(CanType t, AbstractionPattern orig,
|
|
Initialization *emitInto) {
|
|
auto mv = claimNextParameter();
|
|
return handleScalar(mv, orig, t, emitInto, /*inout*/ false);
|
|
}
|
|
|
|
ManagedValue handleInOut(AbstractionPattern orig, CanType t) {
|
|
auto mv = claimNextParameter();
|
|
return handleScalar(mv, orig, t, /*emitInto*/ nullptr, /*inout*/ true);
|
|
}
|
|
|
|
ManagedValue handleScalar(ManagedValue mv,
|
|
AbstractionPattern orig, CanType t,
|
|
Initialization *emitInto, bool isInOut) {
|
|
assert(!(isInOut && emitInto != nullptr));
|
|
|
|
auto argType = SGF.getLoweredType(t, mv.getType().getCategory());
|
|
|
|
// This is a hack to deal with the fact that Self.Type comes in as a static
|
|
// metatype, but we have to downcast it to a dynamic Self metatype to get
|
|
// the right semantics.
|
|
if (argType != mv.getType()) {
|
|
if (auto argMetaTy = argType.getAs<MetatypeType>()) {
|
|
if (auto argSelfTy = dyn_cast<DynamicSelfType>(argMetaTy.getInstanceType())) {
|
|
assert(argSelfTy.getSelfType()
|
|
== mv.getType().castTo<MetatypeType>().getInstanceType());
|
|
mv = SGF.B.createUncheckedBitCast(loc, mv, argType);
|
|
}
|
|
}
|
|
}
|
|
if (isInOut) {
|
|
// If we are inout and are move only, insert a note to the move checker to
|
|
// check ownership.
|
|
if (mv.getType().isMoveOnly() && !mv.getType().isMoveOnlyWrapped())
|
|
mv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, mv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
ConsumableAndAssignable);
|
|
|
|
// If the value needs to be reabstracted, set up a shadow copy with
|
|
// writeback here.
|
|
if (argType.getASTType() != mv.getType().getASTType()) {
|
|
// Load the value coming in.
|
|
auto origBuf = mv.getValue();
|
|
mv = SGF.emitLoad(loc, origBuf, SGF.getTypeLowering(mv.getType()), SGFContext(), IsTake);
|
|
// Reabstract the value if necessary.
|
|
mv = SGF.emitOrigToSubstValue(loc, mv.ensurePlusOne(SGF, loc), orig, t);
|
|
// Store the value to a local buffer.
|
|
auto substBuf = SGF.emitTemporaryAllocation(loc, argType);
|
|
SGF.B.createStore(loc, mv.forward(SGF), substBuf, StoreOwnershipQualifier::Init);
|
|
// Introduce a writeback to put the final value back in the inout.
|
|
SGF.Cleanups.pushCleanup<WritebackReabstractedInoutCleanup>(origBuf, substBuf, orig, t);
|
|
mv = ManagedValue::forLValue(substBuf);
|
|
}
|
|
|
|
return mv;
|
|
}
|
|
|
|
// This can happen if the value is resilient in the calling convention
|
|
// but not resilient locally.
|
|
bool argIsLoadable = argType.isLoadable(SGF.F);
|
|
if (argIsLoadable) {
|
|
if (argType.isAddress()) {
|
|
mv = SGF.B.createLoadWithSameOwnership(loc, mv);
|
|
argType = argType.getObjectType();
|
|
}
|
|
}
|
|
|
|
assert(argType.getCategory() == mv.getType().getCategory());
|
|
if (argType.getASTType() != mv.getType().getASTType()) {
|
|
// Reabstract the value if necessary.
|
|
mv = SGF.emitOrigToSubstValue(loc, mv.ensurePlusOne(SGF, loc), orig, t);
|
|
}
|
|
|
|
if (parameters.isNoImplicitCopy && !argIsLoadable) {
|
|
// We do not support no implicit copy address only types. Emit an error.
|
|
auto diag = diag::noimplicitcopy_used_on_generic_or_existential;
|
|
diagnose(SGF.getASTContext(), mv.getValue().getLoc().getSourceLoc(),
|
|
diag);
|
|
}
|
|
|
|
// If the value is a (possibly optional) ObjC block passed into the entry
|
|
// point of the function, then copy it so we can treat the value reliably
|
|
// as a heap object. Escape analysis can eliminate this copy if it's
|
|
// unneeded during optimization.
|
|
CanType objectType = t;
|
|
if (auto theObjTy = t.getOptionalObjectType())
|
|
objectType = theObjTy;
|
|
if (isa<FunctionType>(objectType) &&
|
|
cast<FunctionType>(objectType)->getRepresentation()
|
|
== FunctionType::Representation::Block) {
|
|
SILValue blockCopy = SGF.B.createCopyBlock(loc, mv.getValue());
|
|
mv = SGF.emitManagedRValueWithCleanup(blockCopy);
|
|
}
|
|
|
|
if (emitInto) {
|
|
if (mv.isPlusOneOrTrivial(SGF))
|
|
mv.forwardInto(SGF, loc, emitInto);
|
|
else
|
|
mv.copyInto(SGF, loc, emitInto);
|
|
return ManagedValue::forInContext();
|
|
}
|
|
|
|
return mv;
|
|
}
|
|
|
|
ManagedValue visitPackExpansionType(CanPackExpansionType t,
|
|
AbstractionPattern orig,
|
|
Initialization *emitInto) {
|
|
// Pack expansions in the formal parameter list are made
|
|
// concrete as packs.
|
|
return visitType(PackType::get(SGF.getASTContext(), {t})
|
|
->getCanonicalType(),
|
|
orig, emitInto);
|
|
}
|
|
|
|
ManagedValue visitTupleType(CanTupleType t, AbstractionPattern orig,
|
|
Initialization *emitInto) {
|
|
// Only destructure if the abstraction pattern is also a tuple.
|
|
if (!orig.isTuple())
|
|
return visitType(t, orig, emitInto);
|
|
|
|
auto &tl = SGF.SGM.Types.getTypeLowering(t, SGF.getTypeExpansionContext());
|
|
|
|
// If the tuple contains pack expansions, and we're not emitting
|
|
// into an initialization already, create a temporary so that we're
|
|
// always emitting into an initialization.
|
|
if (t.containsPackExpansionType() && !emitInto) {
|
|
auto temporary = SGF.emitTemporary(loc, tl);
|
|
|
|
auto result = expandTuple(orig, t, tl, temporary.get());
|
|
assert(result.isInContext()); (void) result;
|
|
|
|
return temporary->getManagedAddress();
|
|
}
|
|
|
|
return expandTuple(orig, t, tl, emitInto);
|
|
}
|
|
|
|
ManagedValue expandTuple(AbstractionPattern orig, CanTupleType t,
|
|
const TypeLowering &tl, Initialization *init) {
|
|
assert((!t.containsPackExpansionType() || init) &&
|
|
"should always have an emission context when expanding "
|
|
"a tuple containing pack expansions");
|
|
|
|
bool canBeGuaranteed = tl.isLoadable();
|
|
|
|
// We only use specific initializations here that can always be split.
|
|
SmallVector<InitializationPtr, 8> eltInitsBuffer;
|
|
MutableArrayRef<InitializationPtr> eltInits;
|
|
if (init) {
|
|
assert(init->canSplitIntoTupleElements());
|
|
eltInits = init->splitIntoTupleElements(SGF, loc, t, eltInitsBuffer);
|
|
}
|
|
|
|
// Collect the exploded elements.
|
|
//
|
|
// Reabstraction can give us original types that are pack
|
|
// expansions without having pack expansions in the result.
|
|
// In this case, we do not need to force emission into a pack
|
|
// expansion.
|
|
SmallVector<ManagedValue, 4> elements;
|
|
orig.forEachTupleElement(t, [&](TupleElementGenerator &elt) {
|
|
auto origEltType = elt.getOrigType();
|
|
auto substEltTypes = elt.getSubstTypes();
|
|
if (!elt.isOrigPackExpansion()) {
|
|
auto eltValue =
|
|
visit(substEltTypes[0], origEltType,
|
|
init ? eltInits[elt.getSubstIndex()].get() : nullptr);
|
|
assert((init != nullptr) == (eltValue.isInContext()));
|
|
if (!eltValue.isInContext())
|
|
elements.push_back(eltValue);
|
|
|
|
if (eltValue.hasCleanup())
|
|
canBeGuaranteed = false;
|
|
} else {
|
|
assert(init);
|
|
expandPack(origEltType, substEltTypes, elt.getSubstIndex(),
|
|
eltInits.slice(elt.getSubstIndex(), substEltTypes.size()),
|
|
elements);
|
|
}
|
|
});
|
|
|
|
// If we emitted into a context, we're done.
|
|
if (init) {
|
|
init->finishInitialization(SGF);
|
|
return ManagedValue::forInContext();
|
|
}
|
|
|
|
if (tl.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
|
|
SmallVector<SILValue, 4> elementValues;
|
|
if (canBeGuaranteed) {
|
|
// If all of the elements were guaranteed, we can form a guaranteed tuple.
|
|
for (auto element : elements)
|
|
elementValues.push_back(element.getUnmanagedValue());
|
|
} else {
|
|
// Otherwise, we need to move or copy values into a +1 tuple.
|
|
for (auto element : elements) {
|
|
SILValue value = element.hasCleanup()
|
|
? element.forward(SGF)
|
|
: element.copyUnmanaged(SGF, loc).forward(SGF);
|
|
elementValues.push_back(value);
|
|
}
|
|
}
|
|
auto tupleValue = SGF.B.createTuple(loc, tl.getLoweredType(),
|
|
elementValues);
|
|
if (tupleValue->getOwnershipKind() == OwnershipKind::None)
|
|
return ManagedValue::forObjectRValueWithoutOwnership(tupleValue);
|
|
return canBeGuaranteed ? ManagedValue::forBorrowedObjectRValue(tupleValue)
|
|
: SGF.emitManagedRValueWithCleanup(tupleValue);
|
|
} else {
|
|
// If the type is address-only, we need to move or copy the elements into
|
|
// a tuple in memory.
|
|
// TODO: It would be a bit more efficient to use a preallocated buffer
|
|
// in this case.
|
|
auto buffer = SGF.emitTemporaryAllocation(loc, tl.getLoweredType());
|
|
for (auto i : indices(elements)) {
|
|
auto element = elements[i];
|
|
auto elementBuffer = SGF.B.createTupleElementAddr(loc, buffer,
|
|
i, element.getType().getAddressType());
|
|
if (element.hasCleanup())
|
|
element.forwardInto(SGF, loc, elementBuffer);
|
|
else
|
|
element.copyInto(SGF, loc, elementBuffer);
|
|
}
|
|
return SGF.emitManagedRValueWithCleanup(buffer);
|
|
}
|
|
}
|
|
|
|
void expandPack(AbstractionPattern origExpansionType,
|
|
CanTupleEltTypeArrayRef substEltTypes,
|
|
size_t firstSubstEltIndex,
|
|
MutableArrayRef<InitializationPtr> eltInits,
|
|
SmallVectorImpl<ManagedValue> &eltMVs) {
|
|
assert(substEltTypes.size() == eltInits.size());
|
|
|
|
// The next parameter is a pack which corresponds to some number of
|
|
// components in the tuple. Some of them may be pack expansions.
|
|
// Either copy/move them into the tuple (necessary if there are any
|
|
// pack expansions) or collect them in eltMVs.
|
|
|
|
// Claim the next parameter, remember whether it was +1, and forward
|
|
// the cleanup. We can get away with just forwarding the cleanup
|
|
// up front, not destructuring it, because we assume that the work
|
|
// we're doing here won't ever unwind.
|
|
ManagedValue packAddrMV = claimNextParameter();
|
|
CleanupCloner cloner(SGF, packAddrMV);
|
|
SILValue packAddr = packAddrMV.forward(SGF);
|
|
auto packTy = packAddr->getType().castTo<SILPackType>();
|
|
|
|
auto origPatternType = origExpansionType.getPackExpansionPatternType();
|
|
|
|
auto inducedPackType =
|
|
CanPackType::get(SGF.getASTContext(), substEltTypes);
|
|
|
|
for (auto packComponentIndex : indices(substEltTypes)) {
|
|
CanType substComponentType = substEltTypes[packComponentIndex];
|
|
Initialization *componentInit =
|
|
eltInits.empty() ? nullptr : eltInits[packComponentIndex].get();
|
|
auto packComponentTy = packTy->getSILElementType(packComponentIndex);
|
|
|
|
auto substExpansionType =
|
|
dyn_cast<PackExpansionType>(substComponentType);
|
|
|
|
// In the scalar case, project out the element address from the
|
|
// pack and use the normal scalar path to trigger initialization.
|
|
if (!substExpansionType) {
|
|
auto packIndex =
|
|
SGF.B.createScalarPackIndex(loc, packComponentIndex, inducedPackType);
|
|
auto eltAddr =
|
|
SGF.B.createPackElementGet(loc, packIndex, packAddr,
|
|
packComponentTy);
|
|
auto eltAddrMV = cloner.clone(eltAddr);
|
|
auto result = handleScalar(eltAddrMV, origPatternType,
|
|
substComponentType, componentInit,
|
|
/*inout*/ false);
|
|
assert(result.isInContext() == (componentInit != nullptr));
|
|
if (!result.isInContext())
|
|
eltMVs.push_back(result);
|
|
continue;
|
|
}
|
|
|
|
// In the pack-expansion case, do the exact same thing,
|
|
// but in a pack loop.
|
|
assert(componentInit);
|
|
assert(componentInit->canPerformPackExpansionInitialization());
|
|
|
|
SILType eltTy;
|
|
CanType substEltType;
|
|
auto openedEnv =
|
|
SGF.createOpenedElementValueEnvironment({packComponentTy},
|
|
{&eltTy},
|
|
{substExpansionType},
|
|
{&substEltType});
|
|
|
|
SGF.emitDynamicPackLoop(loc, inducedPackType, packComponentIndex,
|
|
openedEnv, [&](SILValue indexWithinComponent,
|
|
SILValue expansionPackIndex,
|
|
SILValue packIndex) {
|
|
componentInit->performPackExpansionInitialization(SGF, loc,
|
|
indexWithinComponent,
|
|
[&](Initialization *eltInit) {
|
|
// Project out the pack element and enter a managed value for it.
|
|
auto eltAddr =
|
|
SGF.B.createPackElementGet(loc, packIndex, packAddr, eltTy);
|
|
auto eltAddrMV = cloner.clone(eltAddr);
|
|
|
|
auto result = handleScalar(eltAddrMV, origPatternType, substEltType,
|
|
eltInit, /*inout*/ false);
|
|
assert(result.isInContext()); (void) result;
|
|
});
|
|
});
|
|
componentInit->finishInitialization(SGF);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A helper for creating SILArguments and binding variables to the argument
|
|
/// names.
|
|
class ArgumentInitHelper {
|
|
SILGenFunction &SGF;
|
|
|
|
LoweredParamGenerator loweredParams;
|
|
uint16_t ArgNo = 0;
|
|
|
|
std::optional<FunctionInputGenerator> FormalParamTypes;
|
|
|
|
public:
|
|
ArgumentInitHelper(SILGenFunction &SGF,
|
|
unsigned numIgnoredTrailingParameters)
|
|
: SGF(SGF), loweredParams(SGF, numIgnoredTrailingParameters) {}
|
|
|
|
/// Emit the given list of parameters.
|
|
unsigned emitParams(std::optional<AbstractionPattern> origFnType,
|
|
ParameterList *paramList, ParamDecl *selfParam) {
|
|
// If have an orig function type, initialize FormalParamTypes.
|
|
SmallVector<AnyFunctionType::Param, 8> substFormalParams;
|
|
if (origFnType) {
|
|
// Start by constructing an array of subst params that we can use
|
|
// for the generator. This array needs to stay in scope across
|
|
// the loop below, while we're potentially using FormalParamTypes.
|
|
|
|
auto addParamDecl = [&](ParamDecl *pd) {
|
|
if (pd->hasExternalPropertyWrapper())
|
|
pd = cast<ParamDecl>(pd->getPropertyWrapperBackingProperty());
|
|
substFormalParams.push_back(
|
|
pd->toFunctionParam(pd->getTypeInContext()).getCanonical(nullptr));
|
|
};
|
|
for (auto paramDecl : *paramList) {
|
|
addParamDecl(paramDecl);
|
|
}
|
|
if (selfParam) {
|
|
addParamDecl(selfParam);
|
|
}
|
|
|
|
// Initialize the formal parameter generator. Note that this can
|
|
// immediately claim lowered parameters.
|
|
// Some of the callers to emitBasicProlog do ask it to ignore the
|
|
// formal self parameter, but they do not pass an origFnType down,
|
|
// so we can ignore that possibility.
|
|
FormalParamTypes.emplace(SGF.getASTContext(), loweredParams, *origFnType,
|
|
llvm::ArrayRef(substFormalParams),
|
|
/*ignore final*/ false);
|
|
}
|
|
|
|
// Emit each of the function's explicit parameters in order.
|
|
if (paramList) {
|
|
for (auto *param : *paramList)
|
|
emitParam(param);
|
|
}
|
|
|
|
// The self parameter follows the formal parameters.
|
|
if (selfParam) {
|
|
emitParam(selfParam);
|
|
}
|
|
|
|
if (FormalParamTypes) FormalParamTypes->finish();
|
|
loweredParams.finish();
|
|
|
|
return ArgNo;
|
|
}
|
|
|
|
private:
|
|
ManagedValue makeArgument(SILLocation loc, ParamDecl *pd) {
|
|
LifetimeAnnotation lifetimeAnnotation = LifetimeAnnotation::None;
|
|
bool isNoImplicitCopy = false;
|
|
if (pd->isSelfParameter()) {
|
|
if (auto *afd = dyn_cast<AbstractFunctionDecl>(pd->getDeclContext())) {
|
|
lifetimeAnnotation = afd->getLifetimeAnnotation();
|
|
isNoImplicitCopy = afd->isNoImplicitCopy();
|
|
}
|
|
} else {
|
|
lifetimeAnnotation = pd->getLifetimeAnnotation();
|
|
isNoImplicitCopy = pd->isNoImplicitCopy();
|
|
}
|
|
|
|
// Configure the lowered parameter generator for this formal parameter.
|
|
loweredParams.configureParamData(pd, isNoImplicitCopy, lifetimeAnnotation);
|
|
|
|
ManagedValue paramValue;
|
|
EmitBBArguments argEmitter(loc, loweredParams);
|
|
if (FormalParamTypes && FormalParamTypes->isOrigPackExpansion()) {
|
|
paramValue = argEmitter.handlePackComponent(*FormalParamTypes);
|
|
} else {
|
|
auto substType = pd->getTypeInContext()->getCanonicalType();
|
|
assert(!FormalParamTypes ||
|
|
FormalParamTypes->getSubstParam().getParameterType() == substType);
|
|
auto origType = (FormalParamTypes ? FormalParamTypes->getOrigType()
|
|
: AbstractionPattern(substType));
|
|
|
|
paramValue = argEmitter.handleParam(origType, substType, pd);
|
|
}
|
|
|
|
// Reset the parameter data on the lowered parameter generator.
|
|
loweredParams.resetParamData();
|
|
|
|
// Advance the formal parameter types generator. This must happen
|
|
// after resetting parameter data because it can claim lowered
|
|
// parameters.
|
|
if (FormalParamTypes) {
|
|
FormalParamTypes->advance();
|
|
}
|
|
|
|
return paramValue;
|
|
}
|
|
|
|
void updateArgumentValueForBinding(ManagedValue argrv, SILLocation loc,
|
|
ParamDecl *pd,
|
|
const SILDebugVariable &varinfo) {
|
|
bool calledCompletedUpdate = false;
|
|
SWIFT_DEFER {
|
|
assert(calledCompletedUpdate && "Forgot to call completed update along "
|
|
"all paths or manually turn it off");
|
|
};
|
|
auto completeUpdate = [&](ManagedValue value) -> void {
|
|
SGF.B.emitDebugDescription(loc, value.getValue(), varinfo);
|
|
SGF.VarLocs[pd] = SILGenFunction::VarLoc::get(value.getValue());
|
|
calledCompletedUpdate = true;
|
|
};
|
|
|
|
// If we do not need to support lexical lifetimes, just return value as the
|
|
// updated value.
|
|
if (!SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule()))
|
|
return completeUpdate(argrv);
|
|
|
|
// Look for the following annotations on the function argument:
|
|
// - @noImplicitCopy
|
|
// - @_eagerMove
|
|
// - @_noEagerMove
|
|
bool isNoImplicitCopy = pd->isNoImplicitCopy();
|
|
if (!argrv.getType().isMoveOnly(/*orWrapped=*/false)) {
|
|
isNoImplicitCopy |= pd->getSpecifier() == ParamSpecifier::Borrowing;
|
|
isNoImplicitCopy |= pd->getSpecifier() == ParamSpecifier::Consuming;
|
|
if (pd->isSelfParameter()) {
|
|
auto *dc = pd->getDeclContext();
|
|
if (auto *fn = dyn_cast<FuncDecl>(dc)) {
|
|
auto accessKind = fn->getSelfAccessKind();
|
|
isNoImplicitCopy |= accessKind == SelfAccessKind::Borrowing;
|
|
isNoImplicitCopy |= accessKind == SelfAccessKind::Consuming;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have a no implicit copy argument and the argument is trivial,
|
|
// we need to use copyable to move only to convert it to its move only
|
|
// form.
|
|
if (!isNoImplicitCopy) {
|
|
if (!argrv.getType().isMoveOnly()) {
|
|
// Follow the normal path. The value's lifetime will be enforced based
|
|
// on its ownership.
|
|
return completeUpdate(argrv);
|
|
}
|
|
|
|
// At this point, we have a noncopyable type. If it is owned, create an
|
|
// alloc_box for it.
|
|
if (argrv.getOwnershipKind() == OwnershipKind::Owned) {
|
|
// TODO: Once owned values are mutable, this needs to become mutable.
|
|
auto boxType = SGF.SGM.Types.getContextBoxTypeForCapture(
|
|
pd,
|
|
SGF.SGM.Types.getLoweredRValueType(TypeExpansionContext::minimal(),
|
|
pd->getTypeInContext()),
|
|
SGF.F.getGenericEnvironment(),
|
|
/*mutable*/ false);
|
|
|
|
auto *box = SGF.B.createAllocBox(loc, boxType, varinfo);
|
|
SILValue destAddr = SGF.B.createProjectBox(loc, box, 0);
|
|
SGF.B.emitStoreValueOperation(loc, argrv.forward(SGF), destAddr,
|
|
StoreOwnershipQualifier::Init);
|
|
SGF.emitManagedRValueWithCleanup(box);
|
|
|
|
// We manually set calledCompletedUpdate to true since we want to use
|
|
// the debug info from the box rather than insert a custom debug_value.
|
|
calledCompletedUpdate = true;
|
|
SGF.VarLocs[pd] = SILGenFunction::VarLoc::get(destAddr, box);
|
|
return;
|
|
}
|
|
|
|
// If we have a guaranteed noncopyable argument, we do something a little
|
|
// different. Specifically, we emit it as normal and do a non-consume or
|
|
// assign. The reason why we do this is that a guaranteed argument cannot
|
|
// be used in an escaping closure. So today, we leave it with the
|
|
// misleading consuming message. We still are able to pass it to
|
|
// non-escaping closures though since the onstack partial_apply does not
|
|
// consume the value.
|
|
assert(argrv.getOwnershipKind() == OwnershipKind::Guaranteed);
|
|
argrv = argrv.copy(SGF, loc);
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
|
|
return completeUpdate(argrv);
|
|
}
|
|
|
|
if (argrv.getType().isTrivial(SGF.F)) {
|
|
SILValue value = SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(
|
|
loc, argrv.getValue());
|
|
argrv = SGF.emitManagedRValueWithCleanup(value);
|
|
argrv = SGF.B.createMoveValue(loc, argrv, IsLexical);
|
|
|
|
// If our argument was owned, we use no implicit copy. Otherwise, we
|
|
// use no copy.
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind kind;
|
|
switch (pd->getValueOwnership()) {
|
|
case ValueOwnership::Default:
|
|
case ValueOwnership::Shared:
|
|
case ValueOwnership::InOut:
|
|
kind = MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign;
|
|
break;
|
|
|
|
case ValueOwnership::Owned:
|
|
kind = MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
ConsumableAndAssignable;
|
|
break;
|
|
}
|
|
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(loc, argrv, kind);
|
|
return completeUpdate(argrv);
|
|
}
|
|
|
|
if (argrv.getOwnershipKind() == OwnershipKind::Guaranteed) {
|
|
argrv = SGF.B.createGuaranteedCopyableToMoveOnlyWrapperValue(loc, argrv);
|
|
argrv = argrv.copy(SGF, loc);
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
|
|
return completeUpdate(argrv);
|
|
}
|
|
|
|
if (argrv.getOwnershipKind() == OwnershipKind::Owned) {
|
|
// If we have an owned value, forward it into the
|
|
// mark_unresolved_non_copyable_value to avoid an extra destroy_value.
|
|
argrv = SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(loc, argrv);
|
|
argrv = SGF.B.createMoveValue(loc, argrv, IsLexical);
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
ConsumableAndAssignable);
|
|
return completeUpdate(argrv);
|
|
}
|
|
|
|
return completeUpdate(argrv);
|
|
}
|
|
|
|
/// Create a SILArgument and store its value into the given Initialization,
|
|
/// if not null.
|
|
void makeArgumentIntoBinding(SILLocation loc, ParamDecl *pd) {
|
|
ManagedValue argrv = makeArgument(loc, pd);
|
|
if (pd->isInOut()) {
|
|
assert(argrv.getType().isAddress() && "expected inout to be address");
|
|
} else if (!pd->isImmutableInFunctionBody()) {
|
|
// If it's a locally mutable parameter, then we need to move the argument
|
|
// value into a local box to hold the mutated value.
|
|
// We don't need to mark_uninitialized since we immediately initialize.
|
|
auto mutableBox =
|
|
SGF.emitLocalVariableWithCleanup(pd,
|
|
/*uninitialized kind*/ std::nullopt);
|
|
argrv.ensurePlusOne(SGF, loc).forwardInto(SGF, loc, mutableBox.get());
|
|
return;
|
|
}
|
|
// If the variable is immutable, we can bind the value as is.
|
|
// Leave the cleanup on the argument, if any, in place to consume the
|
|
// argument if we're responsible for it.
|
|
SILDebugVariable varinfo(pd->isImmutableInFunctionBody(), ArgNo);
|
|
if (!argrv.getType().isAddress()) {
|
|
// NOTE: We setup SGF.VarLocs[pd] in updateArgumentValueForBinding.
|
|
updateArgumentValueForBinding(argrv, loc, pd, varinfo);
|
|
return;
|
|
}
|
|
|
|
if (auto *allocStack = dyn_cast<AllocStackInst>(argrv.getValue())) {
|
|
allocStack->setArgNo(ArgNo);
|
|
allocStack->setIsFromVarDecl();
|
|
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(
|
|
SGF.getModule()) &&
|
|
SGF.F.getLifetime(pd, allocStack->getType()).isLexical())
|
|
allocStack->setIsLexical();
|
|
SGF.VarLocs[pd] = SILGenFunction::VarLoc::get(allocStack);
|
|
return;
|
|
}
|
|
|
|
if (auto *arg = dyn_cast<SILFunctionArgument>(argrv.getValue())) {
|
|
if (arg->isNoImplicitCopy()) {
|
|
switch (pd->getSpecifier()) {
|
|
case swift::ParamSpecifier::Borrowing:
|
|
// Shouldn't have any cleanups on this.
|
|
assert(!argrv.hasCleanup());
|
|
argrv = ManagedValue::forBorrowedAddressRValue(
|
|
SGF.B.createCopyableToMoveOnlyWrapperAddr(pd, argrv.getValue()));
|
|
break;
|
|
case swift::ParamSpecifier::ImplicitlyCopyableConsuming:
|
|
case swift::ParamSpecifier::Consuming:
|
|
case swift::ParamSpecifier::Default:
|
|
case swift::ParamSpecifier::InOut:
|
|
case swift::ParamSpecifier::LegacyOwned:
|
|
case swift::ParamSpecifier::LegacyShared:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
SILValue debugOperand = argrv.getValue();
|
|
|
|
if (argrv.getType().isMoveOnly()) {
|
|
switch (pd->getValueOwnership()) {
|
|
case ValueOwnership::Default:
|
|
if (pd->isSelfParameter()) {
|
|
assert(!isa<MarkUnresolvedNonCopyableValueInst>(argrv.getValue()) &&
|
|
"Should not have inserted mark must check inst in EmitBBArgs");
|
|
if (!pd->isInOut()) {
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
NoConsumeOrAssign);
|
|
}
|
|
} else {
|
|
if (auto *fArg = dyn_cast<SILFunctionArgument>(argrv.getValue())) {
|
|
switch (fArg->getArgumentConvention()) {
|
|
case SILArgumentConvention::Direct_Guaranteed:
|
|
case SILArgumentConvention::Direct_Owned:
|
|
case SILArgumentConvention::Direct_Unowned:
|
|
case SILArgumentConvention::Indirect_Inout:
|
|
case SILArgumentConvention::Indirect_Out:
|
|
case SILArgumentConvention::Indirect_InoutAliasable:
|
|
case SILArgumentConvention::Pack_Inout:
|
|
case SILArgumentConvention::Pack_Guaranteed:
|
|
case SILArgumentConvention::Pack_Owned:
|
|
case SILArgumentConvention::Pack_Out:
|
|
llvm_unreachable("Should have been handled elsewhere");
|
|
case SILArgumentConvention::Indirect_In:
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
ConsumableAndAssignable);
|
|
break;
|
|
case SILArgumentConvention::Indirect_In_CXX:
|
|
case SILArgumentConvention::Indirect_In_Guaranteed:
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
NoConsumeOrAssign);
|
|
}
|
|
} else {
|
|
assert(isa<MarkUnresolvedNonCopyableValueInst>(argrv.getValue()) &&
|
|
"Should have inserted mark must check inst in EmitBBArgs");
|
|
}
|
|
}
|
|
break;
|
|
case ValueOwnership::InOut: {
|
|
assert(isa<MarkUnresolvedNonCopyableValueInst>(argrv.getValue()) &&
|
|
"Expected mark must check inst with inout to be handled in "
|
|
"emitBBArgs earlier");
|
|
auto mark = cast<MarkUnresolvedNonCopyableValueInst>(argrv.getValue());
|
|
debugOperand = mark->getOperand();
|
|
break;
|
|
}
|
|
case ValueOwnership::Owned:
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
ConsumableAndAssignable);
|
|
break;
|
|
case ValueOwnership::Shared:
|
|
argrv = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
loc, argrv,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DebugValueInst *debugInst
|
|
= SGF.B.emitDebugDescription(loc, debugOperand, varinfo);
|
|
|
|
if (argrv.getValue() != debugOperand) {
|
|
if (auto valueInst =
|
|
dyn_cast<MarkUnresolvedNonCopyableValueInst>(argrv.getValue())) {
|
|
// Move the debug instruction outside of any marker instruction that might
|
|
// have been applied to the value, so that analysis doesn't move the
|
|
// debug_value anywhere it shouldn't be.
|
|
debugInst->moveBefore(valueInst);
|
|
}
|
|
}
|
|
SGF.VarLocs[pd] = SILGenFunction::VarLoc::get(argrv.getValue());
|
|
}
|
|
|
|
void emitParam(ParamDecl *PD) {
|
|
// Register any auxiliary declarations for the parameter to be
|
|
// visited later.
|
|
PD->visitAuxiliaryDecls([&](VarDecl *localVar) {
|
|
SGF.LocalAuxiliaryDecls.push_back(localVar);
|
|
});
|
|
|
|
// If the parameter has an external property wrapper, then the
|
|
// wrapper is the actual parameter. Use that for everything
|
|
// except the auxiliary decls collection above.
|
|
if (PD->hasExternalPropertyWrapper()) {
|
|
PD = cast<ParamDecl>(PD->getPropertyWrapperBackingProperty());
|
|
}
|
|
|
|
SILLocation loc(PD);
|
|
loc.markAsPrologue();
|
|
|
|
assert(PD->getTypeInContext()->isMaterializable());
|
|
|
|
++ArgNo;
|
|
if (PD->hasName() || PD->isIsolated()) {
|
|
makeArgumentIntoBinding(loc, PD);
|
|
} else {
|
|
emitAnonymousParam(loc, PD);
|
|
}
|
|
}
|
|
|
|
void emitAnonymousParam(SILLocation loc, ParamDecl *PD) {
|
|
// A value bound to _ is unused and can be immediately released.
|
|
Scope discardScope(SGF.Cleanups, CleanupLocation(PD));
|
|
|
|
// Manage the parameter.
|
|
auto argrv = makeArgument(loc, PD);
|
|
|
|
// Emit debug information for the argument.
|
|
SILDebugVariable DebugVar(PD->isLet(), ArgNo);
|
|
if (argrv.getType().isAddress())
|
|
SGF.B.emitDebugDescription(loc, argrv.getValue(), DebugVar);
|
|
else
|
|
SGF.B.emitDebugDescription(loc, argrv.getValue(), DebugVar);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
static void makeArgument(Type ty, ParamDecl *decl,
|
|
SmallVectorImpl<SILValue> &args, SILGenFunction &SGF) {
|
|
assert(ty && "no type?!");
|
|
|
|
if (ty->is<PackExpansionType>()) {
|
|
ty = PackType::get(SGF.getASTContext(), {ty});
|
|
}
|
|
|
|
// Destructure tuple value arguments.
|
|
if (!decl->isInOut()) {
|
|
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
|
|
for (auto fieldType : tupleTy->getElementTypes())
|
|
makeArgument(fieldType, decl, args, SGF);
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto loweredTy = SGF.getLoweredTypeForFunctionArgument(ty);
|
|
if (decl->isInOut())
|
|
loweredTy = SILType::getPrimitiveAddressType(loweredTy.getASTType());
|
|
auto arg = SGF.F.begin()->createFunctionArgument(loweredTy, decl);
|
|
args.push_back(arg);
|
|
}
|
|
|
|
void SILGenFunction::bindParameterForForwarding(ParamDecl *param,
|
|
SmallVectorImpl<SILValue> ¶meters) {
|
|
if (param->hasExternalPropertyWrapper()) {
|
|
param = cast<ParamDecl>(param->getPropertyWrapperBackingProperty());
|
|
}
|
|
|
|
makeArgument(param->getTypeInContext(), param, parameters, *this);
|
|
}
|
|
|
|
void SILGenFunction::bindParametersForForwarding(const ParameterList *params,
|
|
SmallVectorImpl<SILValue> ¶meters) {
|
|
for (auto param : *params)
|
|
bindParameterForForwarding(param, parameters);
|
|
}
|
|
|
|
static void emitCaptureArguments(SILGenFunction &SGF,
|
|
GenericSignature origGenericSig,
|
|
CapturedValue capture,
|
|
uint16_t ArgNo) {
|
|
if (auto *expr = capture.getPackElement()) {
|
|
SILLocation Loc(expr);
|
|
Loc.markAsPrologue();
|
|
|
|
auto interfaceType = expr->getType()->mapTypeOutOfContext();
|
|
|
|
auto type = SGF.F.mapTypeIntoContext(interfaceType);
|
|
auto &lowering = SGF.getTypeLowering(type);
|
|
SILType ty = lowering.getLoweredType();
|
|
|
|
SILValue arg;
|
|
|
|
auto expansion = SGF.getTypeExpansionContext();
|
|
auto captureKind = SGF.SGM.Types.getDeclCaptureKind(capture, expansion);
|
|
switch (captureKind) {
|
|
case CaptureKind::Constant:
|
|
case CaptureKind::StorageAddress:
|
|
case CaptureKind::Immutable: {
|
|
auto argIndex = SGF.F.begin()->getNumArguments();
|
|
// Non-escaping stored decls are captured as the address of the value.
|
|
auto param = SGF.F.getConventions().getParamInfoForSILArg(argIndex);
|
|
if (SGF.F.getConventions().isSILIndirect(param))
|
|
ty = ty.getAddressType();
|
|
|
|
auto *fArg = SGF.F.begin()->createFunctionArgument(ty, nullptr);
|
|
fArg->setClosureCapture(true);
|
|
|
|
arg = fArg;
|
|
break;
|
|
}
|
|
|
|
case CaptureKind::ImmutableBox:
|
|
case CaptureKind::Box:
|
|
llvm_unreachable("should be impossible");
|
|
}
|
|
|
|
ManagedValue mv = ManagedValue::forBorrowedRValue(arg);
|
|
auto inserted = SGF.OpaqueValues.insert(std::make_pair(expr, mv));
|
|
assert(inserted.second);
|
|
(void) inserted;
|
|
|
|
return;
|
|
}
|
|
|
|
auto *VD = cast<VarDecl>(capture.getDecl());
|
|
|
|
SILLocation Loc(VD);
|
|
Loc.markAsPrologue();
|
|
|
|
auto interfaceType = VD->getInterfaceType()->getReducedType(
|
|
origGenericSig);
|
|
|
|
// If we're capturing a parameter pack, wrap it in a tuple.
|
|
bool isPack = false;
|
|
if (isa<PackExpansionType>(interfaceType)) {
|
|
assert(!VD->supportsMutation() &&
|
|
"Cannot capture a pack as an lvalue");
|
|
|
|
SmallVector<TupleTypeElt, 1> elts;
|
|
elts.push_back(interfaceType);
|
|
interfaceType = CanTupleType(TupleType::get(elts, SGF.getASTContext()));
|
|
isPack = true;
|
|
}
|
|
|
|
auto type = SGF.F.mapTypeIntoContext(interfaceType);
|
|
auto &lowering = SGF.getTypeLowering(type);
|
|
SILType ty = lowering.getLoweredType();
|
|
|
|
bool isNoImplicitCopy;
|
|
|
|
if (ty.isTrivial(SGF.F) || ty.isMoveOnly()) {
|
|
isNoImplicitCopy = false;
|
|
} else if (VD->isNoImplicitCopy()) {
|
|
isNoImplicitCopy = true;
|
|
} else if (auto pd = dyn_cast<ParamDecl>(VD)) {
|
|
switch (pd->getSpecifier()) {
|
|
case ParamSpecifier::Borrowing:
|
|
case ParamSpecifier::Consuming:
|
|
isNoImplicitCopy = true;
|
|
break;
|
|
case ParamSpecifier::ImplicitlyCopyableConsuming:
|
|
case ParamSpecifier::Default:
|
|
case ParamSpecifier::InOut:
|
|
case ParamSpecifier::LegacyOwned:
|
|
case ParamSpecifier::LegacyShared:
|
|
isNoImplicitCopy = false;
|
|
break;
|
|
}
|
|
} else {
|
|
isNoImplicitCopy = false;
|
|
}
|
|
|
|
SILValue arg;
|
|
SILFunctionArgument *box = nullptr;
|
|
|
|
auto expansion = SGF.getTypeExpansionContext();
|
|
auto captureKind = SGF.SGM.Types.getDeclCaptureKind(capture, expansion);
|
|
switch (captureKind) {
|
|
case CaptureKind::Constant: {
|
|
assert(!isPack);
|
|
|
|
// Constant decls are captured by value.
|
|
auto *fArg = SGF.F.begin()->createFunctionArgument(ty, VD);
|
|
fArg->setClosureCapture(true);
|
|
|
|
ManagedValue val = ManagedValue::forBorrowedRValue(fArg);
|
|
|
|
// If the original variable was settable, then Sema will have treated the
|
|
// VarDecl as an lvalue, even in the closure's use. As such, we need to
|
|
// allow formation of the address for this captured value. Create a
|
|
// temporary within the closure to provide this address.
|
|
if (VD->isSettable(VD->getDeclContext())) {
|
|
auto addr = SGF.emitTemporary(VD, lowering);
|
|
// We have created a copy that needs to be destroyed.
|
|
val = SGF.B.emitCopyValueOperation(Loc, val);
|
|
// We use the SILValue version of this because the SILGenBuilder version
|
|
// will create a cloned cleanup, which we do not want since our temporary
|
|
// already has a cleanup.
|
|
//
|
|
// MG: Is this the right semantics for createStore? Seems like that
|
|
// should be potentially a different API.
|
|
SGF.B.emitStoreValueOperation(VD, val.forward(SGF), addr->getAddress(),
|
|
StoreOwnershipQualifier::Init);
|
|
addr->finishInitialization(SGF);
|
|
val = addr->getManagedAddress();
|
|
}
|
|
|
|
if (isNoImplicitCopy && !val.getType().isMoveOnly()) {
|
|
val = SGF.B.createGuaranteedCopyableToMoveOnlyWrapperValue(VD, val);
|
|
}
|
|
|
|
// If this constant is a move only type, we need to add no_consume_or_assign checking to
|
|
// ensure that we do not consume this captured value in the function. This
|
|
// is because closures can be invoked multiple times which is inconsistent
|
|
// with consuming the move only type.
|
|
if (val.getType().isMoveOnly()) {
|
|
val = val.ensurePlusOne(SGF, Loc);
|
|
val = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
Loc, val,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
|
|
}
|
|
|
|
arg = val.getValue();
|
|
break;
|
|
}
|
|
|
|
case CaptureKind::ImmutableBox:
|
|
case CaptureKind::Box: {
|
|
assert(!isPack);
|
|
|
|
// LValues are captured as a retained @box that owns
|
|
// the captured value.
|
|
bool isMutable = captureKind == CaptureKind::Box;
|
|
// Get the content for the box in the minimal resilience domain because we
|
|
// are declaring a type.
|
|
ty = SGF.SGM.Types.getLoweredType(type, TypeExpansionContext::minimal());
|
|
auto boxTy = SGF.SGM.Types.getContextBoxTypeForCapture(
|
|
VD, ty.getASTType(), SGF.F.getGenericEnvironment(),
|
|
/*mutable*/ isMutable);
|
|
box = SGF.F.begin()->createFunctionArgument(
|
|
SILType::getPrimitiveObjectType(boxTy), VD);
|
|
box->setClosureCapture(true);
|
|
arg = SGF.B.createProjectBox(VD, box, 0);
|
|
if (isNoImplicitCopy && !arg->getType().isMoveOnly()) {
|
|
arg = SGF.B.createCopyableToMoveOnlyWrapperAddr(VD, arg);
|
|
}
|
|
break;
|
|
}
|
|
case CaptureKind::StorageAddress:
|
|
assert(!isPack);
|
|
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case CaptureKind::Immutable: {
|
|
auto argIndex = SGF.F.begin()->getNumArguments();
|
|
// Non-escaping stored decls are captured as the address of the value.
|
|
auto argConv = SGF.F.getConventions().getSILArgumentConvention(argIndex);
|
|
bool isInOut = (argConv == SILArgumentConvention::Indirect_Inout ||
|
|
argConv == SILArgumentConvention::Indirect_InoutAliasable);
|
|
auto param = SGF.F.getConventions().getParamInfoForSILArg(argIndex);
|
|
if (SGF.F.getConventions().isSILIndirect(param)) {
|
|
ty = ty.getAddressType();
|
|
}
|
|
auto *fArg = SGF.F.begin()->createFunctionArgument(ty, VD);
|
|
fArg->setClosureCapture(true);
|
|
arg = SILValue(fArg);
|
|
|
|
if (isNoImplicitCopy && !arg->getType().isMoveOnly()) {
|
|
switch (argConv) {
|
|
case SILArgumentConvention::Indirect_Inout:
|
|
case SILArgumentConvention::Indirect_InoutAliasable:
|
|
case SILArgumentConvention::Indirect_In:
|
|
case SILArgumentConvention::Indirect_In_Guaranteed:
|
|
case SILArgumentConvention::Indirect_In_CXX:
|
|
case SILArgumentConvention::Pack_Inout:
|
|
case SILArgumentConvention::Pack_Owned:
|
|
case SILArgumentConvention::Pack_Guaranteed:
|
|
arg = SGF.B.createCopyableToMoveOnlyWrapperAddr(VD, arg);
|
|
break;
|
|
|
|
case SILArgumentConvention::Direct_Owned:
|
|
arg = SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(VD, arg);
|
|
break;
|
|
|
|
case SILArgumentConvention::Direct_Guaranteed:
|
|
arg = SGF.B.createGuaranteedCopyableToMoveOnlyWrapperValue(VD, arg);
|
|
break;
|
|
|
|
case SILArgumentConvention::Direct_Unowned:
|
|
case SILArgumentConvention::Indirect_Out:
|
|
case SILArgumentConvention::Pack_Out:
|
|
llvm_unreachable("should be impossible");
|
|
}
|
|
}
|
|
|
|
// If we have an inout noncopyable parameter, insert a consumable and
|
|
// assignable.
|
|
//
|
|
// NOTE: If we have an escaping closure, we are going to emit an error later
|
|
// in SIL since it is illegal to capture an inout value in an escaping
|
|
// closure. The later code knows how to handle that we have the
|
|
// mark_unresolved_non_copyable_value here.
|
|
if (isInOut && arg->getType().isMoveOnly()) {
|
|
arg = SGF.B.createMarkUnresolvedNonCopyableValueInst(
|
|
Loc, arg,
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
ConsumableAndAssignable);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we captured a pack as a tuple, create a pack from the elements
|
|
// of the tuple.
|
|
if (isPack) {
|
|
auto tupleType = ty.castTo<TupleType>();
|
|
assert(tupleType->getNumElements() == 1);
|
|
|
|
auto packType =
|
|
SILPackType::get(SGF.getASTContext(),
|
|
SILPackType::ExtInfo(/*indirect=*/true),
|
|
{tupleType.getElementType(0)});
|
|
auto packValue = SGF.emitTemporaryPackAllocation(
|
|
Loc, SILType::getPrimitiveObjectType(packType));
|
|
|
|
auto formalPackType = cast<TupleType>(type->getCanonicalType())
|
|
.getInducedPackType();
|
|
SGF.projectTupleElementsToPack(Loc, arg, packValue, formalPackType);
|
|
|
|
arg = packValue;
|
|
}
|
|
|
|
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(arg, box);
|
|
SILDebugVariable DbgVar(VD->isLet(), ArgNo);
|
|
if (auto *AllocStack = dyn_cast<AllocStackInst>(arg)) {
|
|
AllocStack->setArgNo(ArgNo);
|
|
} else if (box || ty.isAddress()) {
|
|
SGF.B.emitDebugDescription(Loc, arg, DbgVar);
|
|
} else {
|
|
SGF.B.emitDebugDescription(Loc, arg, DbgVar);
|
|
}
|
|
}
|
|
|
|
void SILGenFunction::emitProlog(
|
|
DeclContext *DC, CaptureInfo captureInfo, ParameterList *paramList,
|
|
ParamDecl *selfParam, Type resultType, std::optional<Type> errorType,
|
|
SourceLoc throwsLoc) {
|
|
// Emit the capture argument variables. These are placed last because they
|
|
// become the first curry level of the SIL function.
|
|
bool hasErasedIsolation =
|
|
(TypeContext && TypeContext->ExpectedLoweredType->hasErasedIsolation());
|
|
|
|
uint16_t ArgNo = emitBasicProlog(DC, paramList, selfParam, resultType,
|
|
errorType, throwsLoc,
|
|
/*ignored parameters*/
|
|
(hasErasedIsolation ? 1 : 0) +
|
|
captureInfo.getCaptures().size());
|
|
|
|
// If we're emitting into a type context that expects erased isolation,
|
|
// add (and ignore) the isolation parameter.
|
|
if (hasErasedIsolation) {
|
|
SILType ty = SILType::getOpaqueIsolationType(getASTContext());
|
|
SILValue val = F.begin()->createFunctionArgument(ty);
|
|
(void) val;
|
|
}
|
|
|
|
for (auto capture : captureInfo.getCaptures()) {
|
|
if (capture.isDynamicSelfMetadata()) {
|
|
auto selfMetatype = MetatypeType::get(
|
|
captureInfo.getDynamicSelfType());
|
|
SILType ty = getLoweredType(selfMetatype);
|
|
SILValue val = F.begin()->createFunctionArgument(ty);
|
|
(void) val;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (capture.isOpaqueValue()) {
|
|
OpaqueValueExpr *opaqueValue = capture.getOpaqueValue();
|
|
Type type = opaqueValue->getType()->mapTypeOutOfContext();
|
|
type = F.mapTypeIntoContext(type);
|
|
auto &lowering = getTypeLowering(type);
|
|
SILType ty = lowering.getLoweredType();
|
|
SILValue val = F.begin()->createFunctionArgument(ty);
|
|
|
|
// Opaque values are always passed 'owned', so add a clean up if needed.
|
|
//
|
|
// TODO: Should this be tied to the mv?
|
|
if (!lowering.isTrivial())
|
|
enterDestroyCleanup(val);
|
|
|
|
ManagedValue mv;
|
|
if (lowering.isTrivial())
|
|
mv = ManagedValue::forObjectRValueWithoutOwnership(val);
|
|
else
|
|
mv = ManagedValue::forUnmanagedOwnedValue(val);
|
|
|
|
OpaqueValues[opaqueValue] = mv;
|
|
|
|
continue;
|
|
}
|
|
|
|
emitCaptureArguments(*this, DC->getGenericSignatureOfContext(),
|
|
capture, ++ArgNo);
|
|
}
|
|
|
|
emitExpectedExecutorProlog();
|
|
|
|
// IMPORTANT: This block should be the last one in `emitProlog`,
|
|
// since it terminates BB and no instructions should be insterted after it.
|
|
// Emit an unreachable instruction if a parameter type is
|
|
// uninhabited
|
|
if (paramList) {
|
|
for (auto *param : *paramList) {
|
|
if (param->getTypeInContext()->isStructurallyUninhabited()) {
|
|
SILLocation unreachableLoc(param);
|
|
unreachableLoc.markAsPrologue();
|
|
B.createUnreachable(unreachableLoc);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void emitIndirectPackParameter(SILGenFunction &SGF,
|
|
PackType *resultType,
|
|
CanTupleEltTypeArrayRef
|
|
resultTypesInContext,
|
|
AbstractionPattern origExpansionType,
|
|
DeclContext *DC) {
|
|
auto &ctx = SGF.getASTContext();
|
|
|
|
bool indirect =
|
|
origExpansionType.arePackElementsPassedIndirectly(SGF.SGM.Types);
|
|
SmallVector<CanType, 4> packElts;
|
|
for (auto substEltType : resultTypesInContext) {
|
|
auto origComponentType
|
|
= origExpansionType.getPackExpansionComponentType(substEltType);
|
|
CanType loweredEltTy =
|
|
SGF.getLoweredRValueType(origComponentType, substEltType);
|
|
packElts.push_back(loweredEltTy);
|
|
}
|
|
|
|
SILPackType::ExtInfo extInfo(indirect);
|
|
auto packType = SILPackType::get(ctx, extInfo, packElts);
|
|
auto resultSILType = SILType::getPrimitiveAddressType(packType);
|
|
|
|
auto var = new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
|
|
ctx.getIdentifier("$return_value"), SourceLoc(),
|
|
ctx.getIdentifier("$return_value"),
|
|
DC);
|
|
var->setSpecifier(ParamSpecifier::InOut);
|
|
var->setInterfaceType(resultType);
|
|
auto *arg = SGF.F.begin()->createFunctionArgument(resultSILType, var);
|
|
(void)arg;
|
|
}
|
|
|
|
static void emitIndirectResultParameters(SILGenFunction &SGF,
|
|
Type resultType,
|
|
AbstractionPattern origResultType,
|
|
DeclContext *DC) {
|
|
CanType resultTypeInContext =
|
|
DC->mapTypeIntoContext(resultType)->getCanonicalType();
|
|
|
|
// Tuples in the original result type are expanded.
|
|
if (origResultType.isTuple()) {
|
|
origResultType.forEachTupleElement(resultTypeInContext,
|
|
[&](TupleElementGenerator &elt) {
|
|
auto origEltType = elt.getOrigType();
|
|
auto substEltTypes = elt.getSubstTypes(resultType);
|
|
|
|
// If the original element isn't a pack expansion, pull out the
|
|
// corresponding substituted tuple element and recurse.
|
|
if (!elt.isOrigPackExpansion()) {
|
|
emitIndirectResultParameters(SGF, substEltTypes[0], origEltType, DC);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, bind a pack parameter.
|
|
PackType *resultPackType = [&] {
|
|
SmallVector<Type, 4> packElts(substEltTypes.begin(),
|
|
substEltTypes.end());
|
|
return PackType::get(SGF.getASTContext(), packElts);
|
|
}();
|
|
emitIndirectPackParameter(SGF, resultPackType, elt.getSubstTypes(),
|
|
origEltType, DC);
|
|
});
|
|
return;
|
|
}
|
|
|
|
assert(!resultType->is<PackExpansionType>());
|
|
|
|
// If the return type is address-only, emit the indirect return argument.
|
|
|
|
// The calling convention always uses minimal resilience expansion.
|
|
auto resultConvType = SGF.SGM.Types.getLoweredType(
|
|
resultTypeInContext, TypeExpansionContext::minimal());
|
|
|
|
// And the abstraction pattern may force an indirect return even if the
|
|
// concrete type wouldn't normally be returned indirectly.
|
|
if (!SILModuleConventions::isReturnedIndirectlyInSIL(resultConvType,
|
|
SGF.SGM.M)) {
|
|
if (!SILModuleConventions(SGF.SGM.M).useLoweredAddresses()
|
|
|| origResultType.getResultConvention(SGF.SGM.Types) != AbstractionPattern::Indirect)
|
|
return;
|
|
}
|
|
|
|
auto &ctx = SGF.getASTContext();
|
|
auto var = new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
|
|
ctx.getIdentifier("$return_value"), SourceLoc(),
|
|
ctx.getIdentifier("$return_value"),
|
|
DC);
|
|
var->setSpecifier(ParamSpecifier::InOut);
|
|
var->setInterfaceType(resultType);
|
|
auto &resultTI =
|
|
SGF.SGM.Types.getTypeLowering(origResultType, resultTypeInContext,
|
|
SGF.getTypeExpansionContext());
|
|
SILType resultSILType = resultTI.getLoweredType().getAddressType();
|
|
auto *arg = SGF.F.begin()->createFunctionArgument(resultSILType, var);
|
|
(void)arg;
|
|
}
|
|
|
|
static void emitIndirectErrorParameter(SILGenFunction &SGF,
|
|
Type errorType,
|
|
AbstractionPattern origErrorType,
|
|
DeclContext *DC) {
|
|
CanType errorTypeInContext =
|
|
DC->mapTypeIntoContext(errorType)->getCanonicalType();
|
|
|
|
// If the error type is address-only, emit the indirect error argument.
|
|
|
|
// The calling convention always uses minimal resilience expansion.
|
|
auto errorConvType = SGF.SGM.Types.getLoweredType(
|
|
origErrorType, errorTypeInContext, TypeExpansionContext::minimal());
|
|
|
|
// And the abstraction pattern may force an indirect return even if the
|
|
// concrete type wouldn't normally be returned indirectly.
|
|
if (!SILModuleConventions::isThrownIndirectlyInSIL(errorConvType,
|
|
SGF.SGM.M)) {
|
|
if (!SILModuleConventions(SGF.SGM.M).useLoweredAddresses()
|
|
|| origErrorType.getErrorConvention(SGF.SGM.Types)
|
|
!= AbstractionPattern::Indirect)
|
|
return;
|
|
}
|
|
|
|
auto &ctx = SGF.getASTContext();
|
|
auto var = new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
|
|
ctx.getIdentifier("$error"), SourceLoc(),
|
|
ctx.getIdentifier("$error"),
|
|
DC);
|
|
var->setSpecifier(ParamSpecifier::InOut);
|
|
var->setInterfaceType(errorType);
|
|
|
|
auto &errorTI =
|
|
SGF.SGM.Types.getTypeLowering(origErrorType, errorTypeInContext,
|
|
SGF.getTypeExpansionContext());
|
|
SILType errorSILType = errorTI.getLoweredType().getAddressType();
|
|
assert(SGF.IndirectErrorResult == nullptr);
|
|
SGF.IndirectErrorResult = SGF.F.begin()->createFunctionArgument(errorSILType, var);
|
|
}
|
|
|
|
uint16_t SILGenFunction::emitBasicProlog(
|
|
DeclContext *DC, ParameterList *paramList, ParamDecl *selfParam,
|
|
Type resultType, std::optional<Type> errorType, SourceLoc throwsLoc,
|
|
unsigned numIgnoredTrailingParameters) {
|
|
// Create the indirect result parameters.
|
|
auto genericSig = DC->getGenericSignatureOfContext();
|
|
resultType = resultType->getReducedType(genericSig);
|
|
if (errorType)
|
|
errorType = (*errorType)->getReducedType(genericSig);
|
|
|
|
std::optional<AbstractionPattern> origClosureType;
|
|
if (TypeContext) origClosureType = TypeContext->OrigType;
|
|
|
|
AbstractionPattern origResultType = origClosureType
|
|
? origClosureType->getFunctionResultType()
|
|
: AbstractionPattern(genericSig.getCanonicalSignature(),
|
|
resultType->getCanonicalType());
|
|
|
|
emitIndirectResultParameters(*this, resultType, origResultType, DC);
|
|
|
|
std::optional<AbstractionPattern> origErrorType;
|
|
if (origClosureType && !origClosureType->isTypeParameterOrOpaqueArchetype()) {
|
|
origErrorType = origClosureType->getFunctionThrownErrorType();
|
|
if (origErrorType && !errorType)
|
|
errorType = origErrorType->getEffectiveThrownErrorType();
|
|
} else if (errorType) {
|
|
origErrorType = AbstractionPattern(genericSig.getCanonicalSignature(),
|
|
(*errorType)->getCanonicalType());
|
|
}
|
|
|
|
if (origErrorType && errorType &&
|
|
F.getConventions().hasIndirectSILErrorResults()) {
|
|
emitIndirectErrorParameter(*this, *errorType, *origErrorType, DC);
|
|
}
|
|
|
|
// Emit the argument variables in calling convention order.
|
|
unsigned ArgNo =
|
|
ArgumentInitHelper(*this, numIgnoredTrailingParameters)
|
|
.emitParams(origClosureType, paramList, selfParam);
|
|
|
|
// Record the ArgNo of the artificial $error inout argument.
|
|
if (errorType && IndirectErrorResult == nullptr) {
|
|
CanType errorTypeInContext =
|
|
DC->mapTypeIntoContext(*errorType)->getCanonicalType();
|
|
auto loweredErrorTy = getLoweredType(*origErrorType, errorTypeInContext);
|
|
ManagedValue undef = emitUndef(loweredErrorTy);
|
|
SILDebugVariable dbgVar("$error", /*Constant*/ false, ++ArgNo);
|
|
RegularLocation loc = RegularLocation::getAutoGeneratedLocation();
|
|
if (throwsLoc.isValid())
|
|
loc = throwsLoc;
|
|
B.emitDebugDescription(loc, undef.getValue(), dbgVar);
|
|
}
|
|
|
|
for (auto &bb : B.getFunction())
|
|
for (auto &i : bb) {
|
|
auto *alloc = dyn_cast<AllocStackInst>(&i);
|
|
if (!alloc)
|
|
continue;
|
|
auto varInfo = alloc->getVarInfo();
|
|
if (!varInfo || varInfo->ArgNo)
|
|
continue;
|
|
// The allocation has a varinfo but no argument number, which should not
|
|
// happen in the prolog. Unfortunately, some copies can generate wrong
|
|
// debug info, so we have to fix it here, by invalidating it.
|
|
alloc->invalidateVarInfo();
|
|
}
|
|
|
|
return ArgNo;
|
|
}
|