Files
swift-mirror/lib/SILPasses/FunctionSignatureOpts.cpp
Adrian Prantl b1a7a7af1b Reference-count inlined functions to keep them alive until we emit debug
info for them and generally clean up the inline scope handling a bit.
Fix the debug scope handling for all clients of SILCloner, especially
the SIL-level spezializers and inliners.
This also adds a ton of additional assertions that will ensure that
future optimization passes won't mess with the debug info in a way that
could confuse the LLVM backend.

Swift SVN r18984
2014-06-18 22:34:10 +00:00

519 lines
19 KiB
C++

//===-- FunctionSignatureOpts.cpp - Optimizes function signatures ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-function-signature-opts"
#include "swift/SILPasses/Passes.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Optional.h"
#include "swift/Basic/NullablePtr.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILDebugScope.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include <type_traits>
using namespace swift;
STATISTIC(NumFunctionSignaturesOptimized, "Total func sig optimized");
STATISTIC(NumDeadArgsEliminated, "Total dead args eliminated");
STATISTIC(NumCallSitesOptimized, "Total call sites optimized");
//===----------------------------------------------------------------------===//
// Argument Analysis
//===----------------------------------------------------------------------===//
namespace {
struct ArgumentDescriptor {
SILArgument *Arg;
bool IsDead;
ArgumentDescriptor() = default;
ArgumentDescriptor(SILArgument *A) : Arg(A), IsDead(A->use_empty()) {}
};
static_assert(std::is_pod<ArgumentDescriptor>::value,
"Argument descriptor should be a POD");
} // end anonymous namespace
/// This function goes through the arguments of F and sees if we have anything
/// to optimize in which case it returns true. If we have nothing to optimize,
/// it returns false.
static bool
analyzeArguments(SILFunction *F,
llvm::SmallVectorImpl<ArgumentDescriptor> &ArgDescList) {
// For now ignore functions with indirect results.
if (F->getLoweredFunctionType()->hasIndirectResult())
return false;
bool ShouldOptimize = false;
for (SILArgument *Arg : F->begin()->getBBArgs()) {
ArgumentDescriptor A{Arg};
if (A.IsDead) {
ShouldOptimize = true;
++NumDeadArgsEliminated;
}
ArgDescList.push_back(A);
}
return ShouldOptimize;
}
//===----------------------------------------------------------------------===//
// Mangling
//===----------------------------------------------------------------------===//
static void createNewName(SILFunction &OldF, ArrayRef<ArgumentDescriptor> Args,
llvm::SmallString<64> &Name) {
llvm::raw_svector_ostream buffer(Name);
// OS for optimized signature.
buffer << "_TTOS_";
// For every argument, put in what we are going to do to that arg in the
// signature. The key is:
//
// 'n' => We did nothing to the argument.
// 'd' => The argument was dead and will be removed.
// 'a2v' => Was a loadable address and we promoted it to a value.
// 'o2u' => Was an @owned argument, but we changed it to be an unowned
// parameter.
// 'o2g' => Was an @owned argument, but we changed it to be a gauranteed
// parameter.
// 's' => Was a loadable value that we exploded into multiple arguments.
//
// Currently we only use 'n' and 'd' since we do not perform the other
// optimizations.
//
// *NOTE* The gauranteed optimization requires knowledge to be taught to the
// ARC optimizer among other passes in order to gaurantee safety. That or you
// need to insert a fix_lifetime (swift_keepAlive) call to make sure we do not
// eliminate the retain, release surrounding the call site in the caller.
//
// Additionally we use a packed signature since at this point we don't need
// any '_'. The fact that we can run this optimization multiple times makes me
// worried about long symbol names so I am trying to keep the symbol names as
// short as possible especially in light of this being applied to specialized
// functions.
for (const ArgumentDescriptor &Arg : Args) {
// If this arg is dead, add 'd' to the packed signature and continue.
if (Arg.IsDead) {
buffer << 'd';
continue;
}
// Otherwise we are doing nothing so add 'n' to the packed signature.
buffer << 'n';
}
buffer << '_' << OldF.getName();
}
//===----------------------------------------------------------------------===//
// Optimized Function Creation
//===----------------------------------------------------------------------===//
namespace {
class FunctionSignatureOptCloner
: public SILClonerWithScopes<FunctionSignatureOptCloner> {
using SuperTy = SILClonerWithScopes<FunctionSignatureOptCloner>;
friend class SILVisitor<FunctionSignatureOptCloner>;
friend class SILCloner<FunctionSignatureOptCloner>;
SILFunction &Original;
ArrayRef<ArgumentDescriptor> ArgDescriptors;
FunctionSignatureOptCloner(SILFunction &Original,
ArrayRef<ArgumentDescriptor> ArgDescriptors,
StringRef NewName)
: SuperTy(*initCloned(Original, ArgDescriptors, NewName)),
Original(Original), ArgDescriptors(ArgDescriptors) {}
public:
static SILFunction *cloneFunction(SILFunction *F,
ArrayRef<ArgumentDescriptor> Args,
StringRef NewName) {
FunctionSignatureOptCloner C(*F, Args, NewName);
C.populateCloned();
++NumFunctionSignaturesOptimized;
return C.getCloned();
};
protected:
// Remap the value, handling SILArguments specially given our argument
// descriptors.
SILValue remapValue(SILValue Value) {
// If we don't have a SILArgument, just call to our parent class.
SILArgument *A = dyn_cast<SILArgument>(Value);
if (!A)
return SuperTy::remapValue(Value);
// Grab our argument descriptor.
Optional<ArgumentDescriptor> D = argDescriptorForArgument(A);
// If this is not an argument we are tracking (i.e. from the first BB),
// just remap the value.
if (!D)
return SuperTy::remapValue(Value);
// Ok, we have a first BB value (i.e. a function arg). First make sure that
// we are not attempting to remap a dead argument. A dead argument should
// never have the opporunity to be remapped.
assert(!D->IsDead && "We should never attempt to remap a dead argument");
// Otherwise, we did not perform any optimizations to this argument. Just
// remap it.
return SuperTy::remapValue(Value);
}
private:
// Do a quick search for the Argument \p A. If A is not in the first BB, we
// return None. If we are in the first BB, we return an optional containing
// the argument descriptor.
Optional<ArgumentDescriptor> argDescriptorForArgument(SILArgument *A) {
for (auto &Arg : ArgDescriptors)
if (Arg.Arg == A)
return Arg;
return Nothing_t::Nothing;
}
static SILFunction *initCloned(SILFunction &Orig,
ArrayRef<ArgumentDescriptor> Args,
StringRef NewName);
/// Clone the body of the function into the empty function that was created
/// by initCloned.
void populateCloned();
SILFunction *getCloned() { return &getBuilder().getFunction(); }
};
} // end anonymous namespace
static SILLinkage getOptimizedLinkage(SILLinkage L) {
switch (L) {
case SILLinkage::Public:
case SILLinkage::PublicExternal:
case SILLinkage::Shared:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
// Specializations of public or hidden symbols can be shared by all TUs
// that specialize the definition.
return SILLinkage::Shared;
case SILLinkage::Private:
// Specializations of private symbols should remain so.
return SILLinkage::Private;
}
}
SILFunction *FunctionSignatureOptCloner::initCloned(
SILFunction &Orig, ArrayRef<ArgumentDescriptor> Args, StringRef NewName) {
SILModule &M = Orig.getModule();
// TODO: Change this to always be shared perhaps.
SILLinkage OptimizedLinkage = getOptimizedLinkage(Orig.getLinkage());
// Create the new optimized function type.
CanSILFunctionType OldFTy = Orig.getLoweredFunctionType();
const ASTContext &Ctx = M.getASTContext();
SmallVector<SILParameterInfo, 4> InterfaceParams;
ArrayRef<SILParameterInfo> ParameterInfo = OldFTy->getInterfaceParameters();
for (unsigned i = 0, e = ParameterInfo.size(); i != e; ++i) {
if (Args[i].IsDead)
continue;
InterfaceParams.push_back(ParameterInfo[i]);
}
SILResultInfo InterfaceResult = OldFTy->getInterfaceResult();
CanSILFunctionType NewFTy = SILFunctionType::get(
OldFTy->getGenericSignature(), OldFTy->getExtInfo(),
OldFTy->getCalleeConvention(), InterfaceParams, InterfaceResult, Ctx);
// Create the new function.
SILFunction *NewF = SILFunction::create(
M, OptimizedLinkage, NewName, NewFTy, nullptr, Orig.getLocation(),
Orig.isBare(), Orig.isTransparent(), 0, Orig.getDebugScope(),
Orig.getDeclContext());
// Return our newly created F for cloning.
return NewF;
}
void FunctionSignatureOptCloner::populateCloned() {
SILFunction *Cloned = getCloned();
SILModule &M = Cloned->getModule();
// Create arguments for the entry block.
SILBasicBlock *OrigEntryBB = Original.begin();
SILBasicBlock *ClonedEntryBB = new (M) SILBasicBlock(Cloned);
// Create the entry basic block with the function arguments.
for (size_t i = 0, e = OrigEntryBB->bbarg_size(); i != e; ++i) {
// If we have a dead argument, don't create an argument for it.
if (ArgDescriptors[i].IsDead)
continue;
// We could grab this from ArgDescriptors[i], but it makes more sense to
// keep this independent of the argument descriptors.
SILArgument *Arg = OrigEntryBB->getBBArg(i);
// Otherwise create our mapped value.
SILValue MappedValue = new (M)
SILArgument(remapType(Arg->getType()), ClonedEntryBB, Arg->getDecl());
ValueMap.insert(std::make_pair(Arg, MappedValue));
}
getBuilder().setInsertionPoint(ClonedEntryBB);
BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB));
// Recursively visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions other than terminators.
visitSILBasicBlock(OrigEntryBB);
// Now iterate over the BBs and fix up the terminators.
for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
getBuilder().setInsertionPoint(BI->second);
visit(BI->first->getTerminator());
}
}
//===----------------------------------------------------------------------===//
// Main Routine
//===----------------------------------------------------------------------===//
/// This function takes in an old function OldF and a new function NewF that
/// contains the body of OldF that we moved previously into NewF. Then we create
/// a new body for OldF that just marshalls data from its arguments to the args
/// of NewF and calls NewF.
static void convertOldFunctionToThunk(SILFunction *OldF, SILFunction *NewF,
ArrayRef<ArgumentDescriptor> ArgDescs) {
// Then drop all references for the instructions in the first basic block to
// handle any forward references. Currently the only way this can happen is
// via the terminator, but there is no reason not to be careful here.
SILBasicBlock &FirstBB = OldF->front();
for (auto II = std::prev(FirstBB.end()), IE = FirstBB.begin(); II != IE;) {
SILInstruction &I = *II--;
I.eraseFromParent();
}
FirstBB.begin()->eraseFromParent();
// Visit each basic block BB and drop all references BB or any instruction
// that it contains may have to any other basic block. This enables us to just
// perform eraseFromParent on basic blocks without needing to disentangle
// use-def lists. We do not need to worry about any references to the first
// basic block since by definition the first BB must dominate all BB implying
// that such BB have no way to reference the first BB.
for (auto BI = std::prev(OldF->end()), BE = OldF->begin(); BI != BE;) {
SILBasicBlock *BB = BI;
--BI;
BB->dropAllReferences();
}
// Eliminate all basic blocks except for the first basic block. We only need
// one basic block for our thunk.
for (auto BI = std::prev(OldF->end()), BE = OldF->begin(); BI != BE;) {
SILBasicBlock *BB = BI;
--BI;
BB->eraseFromParent();
}
// Create the new thunk basic block.
SILLocation Loc = OldF->getLocation(); // TODO: What is the proper location
// to use here?
SILBuilder Builder(&FirstBB);
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
// Create the args for the thunk's apply, ignoring any dead arguments.
llvm::SmallVector<SILValue, 8> ThunkArgs;
for (unsigned i = 0, e = ArgDescs.size(); i != e; ++i) {
if (ArgDescs[i].IsDead)
continue;
ThunkArgs.push_back(FirstBB.getBBArg(i));
}
// We are ignoring generic functions and functions with out parameters for
// now.
SILType LoweredType = NewF->getLoweredType();
SILType ResultType = LoweredType.getFunctionInterfaceResultType();
SILValue ReturnValue = Builder.createApply(Loc, FRI, LoweredType, ResultType,
ArrayRef<Substitution>(),
ThunkArgs, NewF->isTransparent());
Builder.createReturn(Loc, ReturnValue);
}
/// This function takes in OldF and all callsites of OldF and rewrites the
/// callsites to call the new function.
static void
rewriteApplyInstToCallNewFunction(SILFunction *OldF, SILFunction *NewF,
ArrayRef<ArgumentDescriptor> ArgDescs,
SmallPtrSet<ApplyInst *, 4> &CallSites) {
for (auto *AI : CallSites) {
SILBuilder Builder(AI);
FunctionRefInst *FRI = Builder.createFunctionRef(AI->getLoc(), NewF);
// Create the args for the new apply, ignoring any dead arguments.
llvm::SmallVector<SILValue, 8> NewArgs;
for (unsigned i = 0, e = ArgDescs.size(); i != e; ++i) {
if (ArgDescs[i].IsDead)
continue;
NewArgs.push_back(AI->getOperand(i));
}
// We are ignoring generic functions and functions with out parameters for
// now.
SILType LoweredType = NewF->getLoweredType();
SILType ResultType = LoweredType.getFunctionInterfaceResultType();
// Create the new apply.
ApplyInst *NewAI = Builder.createApply(AI->getLoc(), FRI, LoweredType,
ResultType, ArrayRef<Substitution>(),
NewArgs, NewF->isTransparent());
// Replace all uses of the old apply with the new apply.
AI->replaceAllUsesWith(NewAI);
// Erase the old apply.
AI->eraseFromParent();
++NumCallSitesOptimized;
}
}
/// This function takes in a SILFunction F and its callsites in the current
/// module and produces a new SILFunction that has the body of F but with
/// optimized function arguments. F is changed to be a thunk that calls NewF to
/// reduce code duplication in cases where we missed a callsite to F. The
/// function returns true if we were successful in creating the new function and
/// returns false otherwise.
static bool
optimizeFunctionSignature(SILFunction *F,
llvm::SmallPtrSet<ApplyInst *, 4> &CallSites) {
DEBUG(llvm::dbgs() << "Optimizing Function Signature of " << F->getName()
<< "\n");
// If F has no body, bail...
if (F->empty()) {
DEBUG(llvm::dbgs() << " Has no body... Bailing!\n");
return false;
}
// For now ignore generic functions to keep things simple...
if (F->getLoweredFunctionType()->isPolymorphic()) {
DEBUG(llvm::dbgs() << " Polymorphic function... Bailing!\n");
return false;
}
// An array containing our ArgumentDescriptor objects that contain information
// from our analysis.
llvm::SmallVector<ArgumentDescriptor, 8> Arguments;
// Analyze function arguments. If there is no work to be done, exit early.
if (!analyzeArguments(F, Arguments)) {
DEBUG(llvm::dbgs() << " Has no optimizable arguments... "
"bailing...\n");
return false;
}
DEBUG(llvm::dbgs() << " Has optimizable arguments... Performing "
"optimizations...\n");
llvm::SmallString<64> NewFName;
createNewName(*F, Arguments, NewFName);
SILFunction *NewF;
// Ok, we have optimizations that we can perform here. First attempt to look
// up the optimized function from the module if we already created it in a
// previous pass manager iteration.
if (!(NewF = F->getModule().lookUpFunction(NewFName))) {
// Otherwise, create the new function and transfer the current function over
// to that function.
NewF = FunctionSignatureOptCloner::cloneFunction(F, Arguments, NewFName);
}
// Change the old function into a thunk.
convertOldFunctionToThunk(F, NewF, Arguments);
// Rewrite all apply inst to be to the new function.
rewriteApplyInstToCallNewFunction(F, NewF, Arguments, CallSites);
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
namespace {
class FunctionSignatureOpts : public SILModuleTransform {
public:
FunctionSignatureOpts() {}
void run() {
SILModule *M = getModule();
DEBUG(llvm::dbgs() << "**** Optimizing Function Signatures ****\n\n");
// Construct a map from Callee -> Call Site Set.
llvm::DenseMap<SILFunction *, llvm::SmallPtrSet<ApplyInst *, 4>>
CalleeToCallSiteSetMap;
std::vector<SILFunction *> FunctionsToVisit;
for (auto &Caller : *M) {
FunctionsToVisit.push_back(&Caller);
for (auto &BB : Caller) {
for (auto &I : BB) {
auto *AI = dyn_cast<ApplyInst>(&I);
if (!AI)
continue;
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
continue;
SILFunction *Callee = FRI->getReferencedFunction();
CalleeToCallSiteSetMap[Callee].insert(AI);
}
}
}
// Process each function in the callgraph that we are able to optimize.
//
// TODO: Determine if it is profitable to always perform this optimization
// even if a function is not called locally. As far as we can tell. Down the
// line more calls may be exposed and the inliner might be able to handle
// those calls.
bool Changed = false;
for (auto P : CalleeToCallSiteSetMap) {
SILFunction *F = P.first;
Changed |= optimizeFunctionSignature(F, CalleeToCallSiteSetMap[F]);
}
// If we changed anything, invalidate the call graph.
if (Changed)
invalidateAnalysis(SILAnalysis::InvalidationKind::CallGraph);
}
StringRef getName() override { return "Function Signature Optimization"; }
};
} // end anonymous namespace
SILTransform *swift::createFunctionSignatureOpts() {
return new FunctionSignatureOpts();
}