Files
swift-mirror/lib/IRGen/IRGenModule.cpp
Jordan Rose b1b50a134e Autolinking: include all imported modules.
Although Cocoa.framework re-exports AppKit, Foundation, and CoreData, an
arbitrary library does not re-export most of its imports. Normally this
would be fine, but the Clang importer can pull in types too eagerly and
then generate thunks and wrappers for things we don't care about. At least
for now, return to the behavior of autolinking /anything/ that gets visibly
imported.

<rdar://problem/15705923>

Swift SVN r11844
2014-01-03 01:21:11 +00:00

400 lines
14 KiB
C++

//===--- IRGenModule.cpp - Swift Global LLVM IR Generation ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for global declarations in Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/Module.h"
#include "swift/AST/Diagnostics.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/Support/ErrorHandling.h"
#include "GenType.h"
#include "IRGenModule.h"
#include "IRGenDebugInfo.h"
#include "Linking.h"
#include <initializer_list>
using namespace swift;
using namespace irgen;
using clang::CodeGen::CodeGenABITypes;
using llvm::Attribute;
const unsigned DefaultAS = 0;
/// A helper for creating LLVM struct types.
static llvm::StructType *createStructType(IRGenModule &IGM,
StringRef name,
std::initializer_list<llvm::Type*> types) {
return llvm::StructType::create(IGM.getLLVMContext(),
ArrayRef<llvm::Type*>(types.begin(),
types.size()),
name);
};
/// A helper for creating pointer-to-struct types.
static llvm::PointerType *createStructPointerType(IRGenModule &IGM,
StringRef name,
std::initializer_list<llvm::Type*> types) {
return createStructType(IGM, name, types)->getPointerTo(DefaultAS);
};
IRGenModule::IRGenModule(ASTContext &Context,
IRGenOptions &Opts, llvm::Module &Module,
const llvm::DataLayout &DataLayout,
SILModule *SILMod)
: Context(Context), Opts(Opts), Module(Module),
LLVMContext(Module.getContext()), DataLayout(DataLayout),
SILMod(SILMod), TargetInfo(SwiftTargetInfo::get(*this)),
DebugInfo(0), Types(*new TypeConverter(*this))
{
VoidTy = llvm::Type::getVoidTy(getLLVMContext());
Int1Ty = llvm::Type::getInt1Ty(getLLVMContext());
Int8Ty = llvm::Type::getInt8Ty(getLLVMContext());
Int16Ty = llvm::Type::getInt16Ty(getLLVMContext());
Int32Ty = llvm::Type::getInt32Ty(getLLVMContext());
Int64Ty = llvm::Type::getInt64Ty(getLLVMContext());
Int8PtrTy = llvm::Type::getInt8PtrTy(getLLVMContext());
Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
SizeTy = DataLayout.getIntPtrType(getLLVMContext(), /*addrspace*/ 0);
RefCountedStructTy =
llvm::StructType::create(getLLVMContext(), "swift.refcounted");
RefCountedPtrTy = RefCountedStructTy->getPointerTo(/*addrspace*/ 0);
RefCountedNull = llvm::ConstantPointerNull::get(RefCountedPtrTy);
// For now, native weak references are just a pointer.
WeakReferencePtrTy =
createStructPointerType(*this, "swift.weak", { RefCountedPtrTy });
// A type metadata record is the structure pointed to by the canonical
// address point of a type metadata. This is at least one word, and
// potentially more than that, past the start of the actual global
// structure.
TypeMetadataStructTy = createStructType(*this, "swift.type", {
MetadataKindTy // MetadataKind Kind;
});
TypeMetadataPtrTy = TypeMetadataStructTy->getPointerTo(DefaultAS);
// A protocol descriptor describes a protocol. It is not type metadata in
// and of itself, but is referenced in the structure of existential type
// metadata records.
ProtocolDescriptorStructTy = createStructType(*this, "swift.protocol", {
Int8PtrTy, // objc isa
Int8PtrTy, // name
Int8PtrTy, // inherited protocols
Int8PtrTy, // required objc instance methods
Int8PtrTy, // required objc class methods
Int8PtrTy, // optional objc instance methods
Int8PtrTy, // optional objc class methods
Int8PtrTy, // objc properties
Int32Ty, // size
Int32Ty // flags
});
ProtocolDescriptorPtrTy = ProtocolDescriptorStructTy->getPointerTo();
// A tuple type metadata record has a couple extra fields.
auto tupleElementTy = createStructType(*this, "swift.tuple_element_type", {
TypeMetadataPtrTy, // Metadata *Type;
SizeTy // size_t Offset;
});
TupleTypeMetadataPtrTy = createStructPointerType(*this, "swift.tuple_type", {
TypeMetadataStructTy, // (base)
SizeTy, // size_t NumElements;
Int8PtrTy, // const char *Labels;
llvm::ArrayType::get(tupleElementTy, 0) // Element Elements[];
});
// A full type metadata record is basically just an adjustment to the
// address point of a type metadata. Resilience may cause
// additional data to be laid out prior to this address point.
FullTypeMetadataStructTy = createStructType(*this, "swift.full_type", {
WitnessTablePtrTy,
TypeMetadataStructTy
});
FullTypeMetadataPtrTy = FullTypeMetadataStructTy->getPointerTo(DefaultAS);
// A metadata pattern is a structure from which generic type
// metadata are allocated. We leave this struct type intentionally
// opaque, because the compiler basically never needs to access
// anything from one.
TypeMetadataPatternStructTy =
llvm::StructType::create(getLLVMContext(), "swift.type_pattern");
TypeMetadataPatternPtrTy =
TypeMetadataPatternStructTy->getPointerTo(DefaultAS);
DeallocatingDtorTy = llvm::FunctionType::get(VoidTy, RefCountedPtrTy, false);
llvm::Type *dtorPtrTy = DeallocatingDtorTy->getPointerTo();
// A full heap metadata is basically just an additional small prefix
// on a full metadata, used for metadata corresponding to heap
// allocations.
FullHeapMetadataStructTy =
createStructType(*this, "swift.full_heapmetadata", {
dtorPtrTy,
WitnessTablePtrTy,
TypeMetadataStructTy
});
FullHeapMetadataPtrTy = FullHeapMetadataStructTy->getPointerTo(DefaultAS);
llvm::Type *refCountedElts[] = { TypeMetadataPtrTy, Int32Ty, Int32Ty };
RefCountedStructTy->setBody(refCountedElts);
PtrSize = Size(DataLayout.getPointerSize(DefaultAS));
FunctionPairTy = createStructType(*this, "swift.function", {
FunctionPtrTy,
RefCountedPtrTy,
});
WitnessFunctionPairTy = createStructType(*this, "swift.witness_function", {
FunctionPtrTy,
TypeMetadataPtrTy,
});
OpaquePtrTy = llvm::StructType::create(LLVMContext, "swift.opaque")
->getPointerTo(DefaultAS);
FixedBufferTy = nullptr;
for (unsigned i = 0; i != MaxNumValueWitnesses; ++i)
ValueWitnessTys[i] = nullptr;
ObjCPtrTy = llvm::StructType::create(getLLVMContext(), "objc_object")
->getPointerTo(DefaultAS);
ObjCClassStructTy = llvm::StructType::create(LLVMContext, "objc_class");
ObjCClassPtrTy = ObjCClassStructTy->getPointerTo(DefaultAS);
llvm::Type *objcClassElts[] = {
ObjCClassPtrTy,
ObjCClassPtrTy,
OpaquePtrTy,
OpaquePtrTy,
IntPtrTy
};
ObjCClassStructTy->setBody(objcClassElts);
ObjCSuperStructTy = llvm::StructType::create(LLVMContext, "objc_super");
ObjCSuperPtrTy = ObjCSuperStructTy->getPointerTo(DefaultAS);
llvm::Type *objcSuperElts[] = {
ObjCPtrTy,
ObjCClassPtrTy
};
ObjCSuperStructTy->setBody(objcSuperElts);
// TODO: use "tinycc" on platforms that support it
RuntimeCC = llvm::CallingConv::C;
auto CI = static_cast<ClangImporter*>(&*Context.getClangModuleLoader());
assert(CI && "no clang module loader");
auto &clangASTContext = CI->getClangASTContext();
ABITypes = new CodeGenABITypes(clangASTContext, Module, DataLayout);
if (Opts.DebugInfo) {
DebugInfo = new IRGenDebugInfo(Opts, *CI, *this, Module);
}
}
IRGenModule::~IRGenModule() {
delete &Types;
if (DebugInfo)
delete DebugInfo;
delete ABITypes;
}
static llvm::Constant *getRuntimeFn(IRGenModule &IGM,
llvm::Constant *&cache,
char const *name,
llvm::CallingConv::ID cc,
std::initializer_list<llvm::Type*> retTypes,
std::initializer_list<llvm::Type*> argTypes,
std::initializer_list<Attribute::AttrKind> attrs
= std::initializer_list<Attribute::AttrKind>()) {
if (cache)
return cache;
llvm::Type *retTy;
if (retTypes.size() == 1)
retTy = *retTypes.begin();
else
retTy = llvm::StructType::get(IGM.LLVMContext,
{retTypes.begin(), retTypes.end()},
/*packed*/ false);
auto fnTy = llvm::FunctionType::get(retTy,
{argTypes.begin(), argTypes.end()},
/*isVararg*/ false);
cache = IGM.Module.getOrInsertFunction(name, fnTy);
// Add any function attributes and set the calling convention.
if (auto fn = dyn_cast<llvm::Function>(cache)) {
fn->setCallingConv(cc);
llvm::AttrBuilder b;
for (auto Attr : attrs)
b.addAttribute(Attr);
fn->getAttributes().
addAttributes(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
b));
}
return cache;
}
// Explicitly listing these constants is an unfortunate compromise for
// making the database file much more compact.
//
// They have to be non-local because otherwise we'll get warnings when
// a particular x-macro expansion doesn't use one.
namespace RuntimeConstants {
const auto ReadNone = llvm::Attribute::ReadNone;
const auto ReadOnly = llvm::Attribute::ReadOnly;
const auto NoUnwind = llvm::Attribute::NoUnwind;
const auto C_CC = llvm::CallingConv::C;
}
#define RETURNS(...) { __VA_ARGS__ }
#define ARGS(...) { __VA_ARGS__ }
#define NO_ARGS {}
#define ATTRS(...) { __VA_ARGS__ }
#define NO_ATTRS {}
#define FUNCTION(ID, NAME, CC, RETURNS, ARGS, ATTRS) \
llvm::Constant *IRGenModule::get##ID##Fn() { \
using namespace RuntimeConstants; \
return getRuntimeFn(*this, ID##Fn, #NAME, CC, \
RETURNS, ARGS, ATTRS); \
}
#include "RuntimeFunctions.def"
llvm::Constant *IRGenModule::getEmptyTupleMetadata() {
if (EmptyTupleMetadata)
return EmptyTupleMetadata;
return EmptyTupleMetadata =
Module.getOrInsertGlobal("_TMdT_", FullTypeMetadataStructTy);
}
llvm::Constant *IRGenModule::getObjCEmptyCachePtr() {
if (ObjCEmptyCachePtr) return ObjCEmptyCachePtr;
// struct objc_cache _objc_empty_cache;
ObjCEmptyCachePtr = Module.getOrInsertGlobal("_objc_empty_cache",
OpaquePtrTy->getElementType());
return ObjCEmptyCachePtr;
}
llvm::Constant *IRGenModule::getObjCEmptyVTablePtr() {
if (ObjCEmptyVTablePtr) return ObjCEmptyVTablePtr;
// IMP _objc_empty_vtable;
if (Opts.UseJIT) {
ObjCEmptyVTablePtr = llvm::ConstantPointerNull::get(OpaquePtrTy);
} else {
ObjCEmptyVTablePtr = Module.getOrInsertGlobal("_objc_empty_vtable",
OpaquePtrTy->getElementType());
}
return ObjCEmptyVTablePtr;
}
llvm::Constant *IRGenModule::getSize(Size size) {
return llvm::ConstantInt::get(SizeTy, size.getValue());
}
void IRGenModule::addLinkLibrary(const LinkLibrary &linkLib) {
llvm::LLVMContext &ctx = Module.getContext();
switch (linkLib.getKind()) {
case LibraryKind::Library: {
// FIXME: Use target-independent linker option.
// Clang uses CGM.getTargetCodeGenInfo().getDependentLibraryOption(...).
llvm::SmallString<32> buf;
buf += "-l";
buf += linkLib.getName();
auto flag = llvm::MDString::get(ctx, buf);
AutolinkEntries.push_back(llvm::MDNode::get(ctx, flag));
break;
}
case LibraryKind::Framework:
llvm::Value *args[] = {
llvm::MDString::get(ctx, "-framework"),
llvm::MDString::get(ctx, linkLib.getName())
};
AutolinkEntries.push_back(llvm::MDNode::get(ctx, args));
break;
}
}
// FIXME: This should just be the implementation of
// llvm::array_pod_sort_comparator. The only difference is that it uses
// std::less instead of operator<.
template <typename T>
static int pointerPODSortComparator(T * const *lhs, T * const *rhs) {
std::less<T *> lt;
if (lt(*lhs, *rhs))
return -1;
if (lt(*rhs, *lhs))
return -1;
return 0;
}
void IRGenModule::emitAutolinkInfo() {
// FIXME: This constant should be vended by LLVM somewhere.
static const char * const LinkerOptionsFlagName = "Linker Options";
// Remove duplicates.
llvm::array_pod_sort(AutolinkEntries.begin(), AutolinkEntries.end(),
pointerPODSortComparator);
auto newEnd = std::unique(AutolinkEntries.begin(), AutolinkEntries.end());
AutolinkEntries.erase(newEnd, AutolinkEntries.end());
llvm::LLVMContext &ctx = Module.getContext();
Module.addModuleFlag(llvm::Module::AppendUnique, LinkerOptionsFlagName,
llvm::MDNode::get(ctx, AutolinkEntries));
}
void IRGenModule::finalize() {
emitGlobalLists();
emitAutolinkInfo();
if (DebugInfo)
DebugInfo->finalize();
}
void IRGenModule::unimplemented(SourceLoc loc, StringRef message) {
Context.Diags.diagnose(loc, diag::irgen_unimplemented, message);
}
void IRGenModule::error(SourceLoc loc, const Twine &message) {
SmallVector<char, 128> buffer;
Context.Diags.diagnose(loc, diag::irgen_failure,
message.toStringRef(buffer));
}