Files
swift-mirror/lib/Parse/ParsePattern.cpp
Chris Lattner b204be71cd simplify Parser::isStartOfStmt: just use the current token instead of having
all of the clients pass in the current token.  NFC.


Swift SVN r16601
2014-04-21 04:01:03 +00:00

1349 lines
48 KiB
C++

//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Pattern Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ExprHandle.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
/// \brief Determine the kind of a default argument given a parsed
/// expression that has not yet been type-checked.
static DefaultArgumentKind getDefaultArgKind(ExprHandle *init) {
if (!init || !init->getExpr())
return DefaultArgumentKind::None;
auto magic = dyn_cast<MagicIdentifierLiteralExpr>(init->getExpr());
if (!magic)
return DefaultArgumentKind::Normal;
switch (magic->getKind()) {
case MagicIdentifierLiteralExpr::Column:
return DefaultArgumentKind::Column;
case MagicIdentifierLiteralExpr::File:
return DefaultArgumentKind::File;
case MagicIdentifierLiteralExpr::Line:
return DefaultArgumentKind::Line;
case MagicIdentifierLiteralExpr::Function:
return DefaultArgumentKind::Function;
}
}
static void recoverFromBadSelectorArgument(Parser &P) {
while (P.Tok.isNot(tok::eof) && P.Tok.isNot(tok::r_paren) &&
P.Tok.isNot(tok::l_brace) && P.Tok.isNot(tok::r_brace) &&
!P.isStartOfStmt() && !P.isStartOfDecl()) {
P.skipSingle();
}
P.consumeIf(tok::r_paren);
}
void Parser::DefaultArgumentInfo::setFunctionContext(DeclContext *DC) {
assert(DC->isLocalContext());
for (auto context : ParsedContexts) {
context->changeFunction(DC);
}
}
static ParserStatus parseDefaultArgument(Parser &P,
Parser::DefaultArgumentInfo *defaultArgs,
unsigned argIndex,
ExprHandle *&init) {
SourceLoc equalLoc = P.consumeToken(tok::equal);
// Enter a fresh default-argument context with a meaningless parent.
// We'll change the parent to the function later after we've created
// that declaration.
auto initDC =
P.Context.createDefaultArgumentContext(P.CurDeclContext, argIndex);
Parser::ParseFunctionBody initScope(P, initDC);
ParserResult<Expr> initR = P.parseExpr(diag::expected_init_value);
// Give back the default-argument context if we didn't need it.
if (!initScope.hasClosures()) {
P.Context.destroyDefaultArgumentContext(initDC);
// Otherwise, record it if we're supposed to accept default
// arguments here.
} else if (defaultArgs) {
defaultArgs->ParsedContexts.push_back(initDC);
}
if (!defaultArgs) {
auto inFlight = P.diagnose(equalLoc, diag::non_func_decl_pattern_init);
if (initR.isNonNull())
inFlight.fixItRemove(SourceRange(equalLoc, initR.get()->getEndLoc()));
} else {
defaultArgs->HasDefaultArgument = true;
}
if (initR.hasCodeCompletion()) {
recoverFromBadSelectorArgument(P);
return makeParserCodeCompletionStatus();
}
if (initR.isNull()) {
recoverFromBadSelectorArgument(P);
return makeParserError();
}
init = ExprHandle::get(P.Context, initR.get());
return ParserStatus();
}
/// Determine whether we are at the start of a parameter name when
/// parsing a parameter.
static bool startsParameterName(Parser &parser, bool isClosure) {
// '_' cannot be a type, so it must be a parameter name.
if (parser.Tok.is(tok::kw__))
return true;
// To have a parameter name here, we need a name.
if (!parser.Tok.is(tok::identifier))
return false;
// If the next token is another identifier, '_', or ':', this is a name.
auto nextToken = parser.peekToken();
if (nextToken.isIdentifierOrNone() || nextToken.is(tok::colon))
return true;
// The identifier could be a name or it could be a type. In a closure, we
// assume it's a name, because the type can be inferred. Elsewhere, we
// assume it's a type.
return isClosure;
}
ParserStatus
Parser::parseParameterClause(SourceLoc &leftParenLoc,
SmallVectorImpl<ParsedParameter> &params,
SourceLoc &rightParenLoc,
DefaultArgumentInfo *defaultArgs,
bool isClosure) {
assert(params.empty() && leftParenLoc.isInvalid() &&
rightParenLoc.isInvalid() && "Must start with empty state");
// Consume the starting '(';
leftParenLoc = consumeToken(tok::l_paren);
// Trivial case: empty parameter list.
if (Tok.is(tok::r_paren)) {
rightParenLoc = consumeToken(tok::r_paren);
return ParserStatus();
}
// Parse the parameter list.
return parseList(tok::r_paren, leftParenLoc, rightParenLoc, tok::comma,
/*OptionalSep=*/false, /*AllowSepAfterLast=*/false,
diag::expected_rparen_parameter,
[&]() -> ParserStatus {
ParsedParameter param;
ParserStatus status;
unsigned defaultArgIndex = defaultArgs? defaultArgs->NextIndex++ : 0;
// 'inout'?
if (Tok.isContextualKeyword("inout"))
param.InOutLoc = consumeToken();
// ('let' | 'var')?
if (Tok.is(tok::kw_let)) {
param.LetVarLoc = consumeToken();
param.IsLet = true;
} else if (Tok.is(tok::kw_var)) {
param.LetVarLoc = consumeToken();
param.IsLet = false;
}
if (startsParameterName(*this, isClosure)) {
// identifier-or-none for the first name
if (Tok.is(tok::identifier)) {
param.FirstName = Context.getIdentifier(Tok.getText());
param.FirstNameLoc = consumeToken();
} else if (Tok.is(tok::kw__)) {
param.FirstNameLoc = consumeToken();
}
// identifier-or-none? for the second name
if (Tok.is(tok::identifier)) {
param.SecondName = Context.getIdentifier(Tok.getText());
param.SecondNameLoc = consumeToken();
} else if (Tok.is(tok::kw__)) {
param.SecondNameLoc = consumeToken();
}
// (':' type)?
if (Tok.is(tok::colon)) {
param.ColonLoc = consumeToken();
auto type = parseType(diag::expected_parameter_type);
status |= type;
param.Type = type.getPtrOrNull();
}
} else {
auto type = parseType(diag::expected_parameter_type);
status |= type;
param.Type = type.getPtrOrNull();
}
// '...'?
if (Tok.isEllipsis()) {
param.EllipsisLoc = consumeToken();
}
// ('=' expr)?
if (Tok.is(tok::equal)) {
param.EqualLoc = Tok.getLoc();
status |= parseDefaultArgument(*this, defaultArgs, defaultArgIndex,
param.DefaultArg);
if (param.EllipsisLoc.isValid()) {
// Thee range of the complete default argument.
SourceRange defaultArgRange;
if (param.DefaultArg) {
if (auto init = param.DefaultArg->getExpr()) {
defaultArgRange = SourceRange(param.EllipsisLoc, init->getEndLoc());
}
}
diagnose(param.EqualLoc, diag::parameter_vararg_default)
.highlight(param.EllipsisLoc)
.fixItRemove(defaultArgRange);
}
}
params.push_back(param);
return status;
});
}
/// Given a pattern "P" based on a pattern atom (either an identifer or _
/// pattern), rebuild and return the nested pattern around another root that
/// replaces the atom.
static Pattern *rebuildImplicitPatternAround(const Pattern *P, Pattern *NewRoot,
ASTContext &C) {
// We'll return a cloned copy of the pattern.
Pattern *Result = P->clone(C, Pattern::Implicit);
class ReplaceRoot : public ASTWalker {
Pattern *NewRoot;
public:
ReplaceRoot(Pattern *NewRoot) : NewRoot(NewRoot) {}
// If we find a typed pattern, replace its subpattern with the NewRoot and
// return.
std::pair<bool, Pattern*> walkToPatternPre(Pattern *P) override {
if (auto *TP = dyn_cast<TypedPattern>(P)) {
TP->setSubPattern(NewRoot);
return { false, TP };
}
return { true, P };
}
// If we get down to a named pattern "x" or any pattern "_", replace it
// with our root.
Pattern *walkToPatternPost(Pattern *P) override {
if (isa<NamedPattern>(P) || isa<AnyPattern>(P))
return NewRoot;
return P;
}
};
return Result->walk(ReplaceRoot(NewRoot));
}
/// Parse a single argument, the leading token is expected to be a (.
static ParserResult<Pattern> parseArgument(
Parser &P, Identifier leadingIdent,
Parser::DefaultArgumentInfo *defaultArgs,
bool &isImpliedNameArgument) {
// Consume the (.
Parser::StructureMarkerRAII ParsingArgument(P, P.Tok);
SourceLoc LPLoc = P.consumeToken(tok::l_paren);
// FIXME: Hack to treat arguments as parameters when building
// binding patterns.
llvm::SaveAndRestore<bool> savedArgumentIsParameter(P.ArgumentIsParameter,
true);
// Decide if this is a singular unnamed argument (e.g. "foo(Int)" or if
// it is a standard tuple body pattern (e.g. "foo(x : Int)"). The former is
// shorthand where the elements get the name of the selector chunk. The
// later includes the names are specified for each piece.
// Before doing a speculative parse, check for the common cases of
// "identifier:" (always named), "identifier)" (always unnamed), and
// "identifier =" (always unnamed). We know to parse the second identifier in
// "identifier(identifier = ...)" as a type because all arguments are required
// to have types.
if (P.Tok.is(tok::identifier) && P.peekToken().is(tok::colon))
isImpliedNameArgument = false;
else if (P.Tok.is(tok::identifier) && P.peekToken().is(tok::r_paren))
isImpliedNameArgument = true;
else if (P.Tok.is(tok::identifier) && P.peekToken().is(tok::equal))
isImpliedNameArgument = true;
else if (P.Tok.is(tok::l_paren)) {
// Nested tuple values like "(a : Int, b: Int)" destructure the argument
// further, so never parse them as an implied name. However, function types
// like "() -> Int" are implied name arguments. Speculatively parse to
// disambiguate the cases.
// Otherwise, we do a full speculative parse to determine this.
Parser::BacktrackingScope backtrack(P);
P.consumeToken(tok::l_paren);
isImpliedNameArgument = P.canParseTypeTupleBody() &&
P.Tok.isNot(tok::r_paren) && P.Tok.isNot(tok::colon) &&
P.Tok.isNot(tok::comma);
} else {
// Otherwise, we do a full speculative parse to determine this.
Parser::BacktrackingScope backtrack(P);
// Allow "identifier(inout Type)"
if (P.Tok.isContextualKeyword("inout"))
P.consumeToken(tok::identifier);
// This is type-only if it is a valid type followed by an r_paren or equal.
isImpliedNameArgument = P.canParseType();
if (isImpliedNameArgument)
isImpliedNameArgument = P.Tok.is(tok::r_paren) || P.Tok.is(tok::equal);
}
// If this is a standard tuple, parse it.
if (!isImpliedNameArgument)
return P.parsePatternTupleAfterLP(/*IsLet*/true, /*IsArgList*/true,
LPLoc, /*DefArgs=*/defaultArgs);
SourceLoc ArgStartLoc = P.Tok.getLoc();
// Create the patterns for the identifier.
Pattern *Name;
if (leadingIdent.empty())
Name = new (P.Context) AnyPattern(ArgStartLoc, /*Implicit=*/true);
else
Name = P.createBindingFromPattern(ArgStartLoc, leadingIdent, /*isLet*/true);
Name->setImplicit();
ParserStatus EltStatus;
Optional<TuplePatternElt> elto;
std::tie(EltStatus, elto) =
P.parsePatternTupleElement(/*isLet*/true, /*isArgumentList*/true,
Name, defaultArgs);
if (EltStatus.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (!elto)
return makeParserError();
TuplePatternElt elt = elto.getValue();
// If we found our r_paren, we're done.
SourceLoc RPLoc = P.Tok.getLoc();
if (P.consumeIf(tok::r_paren)) {
auto *Res = TuplePattern::createSimple(P.Context, LPLoc, elt, RPLoc);
return makeParserResult(Res);
}
// If not, we must have a default value, and we haven't validated that there
// is a single argument above (because we don't have a "canParseExpr" to check
// that the default value is valid).
//
// If we have a ",", then reject the code with a specific error and recover.
// Otherwise, emit a generic error.
if (!P.consumeIf(tok::comma)) {
P.diagnose(P.Tok, diag::expected_rparen_parameter);
return makeParserError();
}
P.diagnose(ArgStartLoc, diag::implied_name_multiple_parameters)
.fixItInsert(ArgStartLoc, "_: ");
return P.parsePatternTupleAfterLP(/*IsLet*/true, /*IsArgList*/true,
LPLoc, /*DefArgs=*/defaultArgs);
}
namespace {
/// Extra location information for selector-style declarations.
struct SelectorParamLoc {
SourceLoc LParenLoc;
SourceLoc RParenLoc;
bool HasBodyParameterName;
};
}
static ParserStatus
parseSelectorArgument(Parser &P,
SmallVectorImpl<Identifier> &namePieces,
SmallVectorImpl<TuplePatternElt> &argElts,
SmallVectorImpl<TuplePatternElt> &bodyElts,
SmallVectorImpl<SelectorParamLoc> &selectorParamLocs,
Parser::DefaultArgumentInfo &defaultArgs,
SourceLoc &rp) {
ParserResult<Pattern> ArgPatternRes = P.parsePatternIdentifier(true);
assert(ArgPatternRes.isNonNull() &&
"selector argument did not start with an identifier or _!");
Pattern *ArgPattern = ArgPatternRes.get();
ArgPattern->setImplicit();
Identifier leadingIdent;
// Check that a selector name isn't used multiple times, which would
// lead to the function type having multiple arguments with the same name.
if (NamedPattern *name = dyn_cast<NamedPattern>(ArgPattern)) {
VarDecl *decl = name->getDecl();
decl->setImplicit();
leadingIdent = name->getDecl()->getName();
} else {
// If the selector is named "_", then we ignore it.
assert(isa<AnyPattern>(ArgPattern) && "Unexpected selector pattern");
}
if (!P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok, diag::func_selector_without_paren);
return makeParserError();
}
bool isImpliedNameArgument = false;
auto PatternRes = parseArgument(P, leadingIdent, &defaultArgs,
isImpliedNameArgument);
if (PatternRes.hasCodeCompletion())
return PatternRes;
if (PatternRes.isNull()) {
if (PatternRes.isParseError())
recoverFromBadSelectorArgument(P);
return PatternRes;
}
// The result of parsing a '(' pattern is either a ParenPattern or a
// TuplePattern.
if (auto *PP = dyn_cast<ParenPattern>(PatternRes.get())) {
bodyElts.push_back(TuplePatternElt(PP->getSubPattern(), /*init*/nullptr,
DefaultArgumentKind::None));
// Return the ')' location.
rp = PP->getRParenLoc();
} else {
auto *TP = cast<TuplePattern>(PatternRes.get());
// Return the ')' location.
rp = TP->getRParenLoc();
// Reject tuple patterns that aren't a single argument.
if (TP->getNumFields() != 1 || TP->hasVararg()) {
P.diagnose(TP->getLParenLoc(), diag::func_selector_with_not_one_argument);
return makeParserError();
}
bodyElts.push_back(TP->getFields()[0]);
}
namePieces.push_back(leadingIdent);
selectorParamLocs.push_back({ PatternRes.get()->getStartLoc(),
PatternRes.get()->getEndLoc(),
!isImpliedNameArgument });
TuplePatternElt &TPE = bodyElts.back();
ArgPattern = rebuildImplicitPatternAround(TPE.getPattern(), ArgPattern,
P.Context);
argElts.push_back(TuplePatternElt(ArgPattern, TPE.getInit(),
getDefaultArgKind(TPE.getInit())));
return makeParserSuccess();
}
static Pattern *getFirstSelectorPattern(ASTContext &Context,
const Pattern *argPattern,
SourceLoc loc) {
Pattern *any = new (Context) AnyPattern(loc, /*Implicit=*/true);
return rebuildImplicitPatternAround(argPattern, any, Context);
}
static ParserStatus
parseSelectorFunctionArguments(Parser &P,
SmallVectorImpl<Identifier> &NamePieces,
SmallVectorImpl<Pattern *> &BodyPatterns,
SmallVectorImpl<SelectorParamLoc> &SelectorParamLocs,
Parser::DefaultArgumentInfo &DefaultArgs,
Pattern *FirstPattern) {
SourceLoc LParenLoc;
SourceLoc RParenLoc;
SmallVector<Pattern *, 4> ArgPatterns;
SmallVector<TuplePatternElt, 8> ArgElts;
SmallVector<TuplePatternElt, 8> BodyElts;
// For the argument pattern, try to convert the first parameter pattern to
// an anonymous AnyPattern of the same type as the body parameter.
if (ParenPattern *FirstParen = dyn_cast<ParenPattern>(FirstPattern)) {
BodyElts.push_back(TuplePatternElt(FirstParen->getSubPattern()));
LParenLoc = FirstParen->getLParenLoc();
RParenLoc = FirstParen->getRParenLoc();
ArgElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
FirstParen->getSubPattern(),
FirstParen->getLoc())));
} else if (TuplePattern *FirstTuple = dyn_cast<TuplePattern>(FirstPattern)) {
LParenLoc = FirstTuple->getLParenLoc();
RParenLoc = FirstTuple->getRParenLoc();
if (FirstTuple->getNumFields() != 1)
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
if (FirstTuple->getNumFields() >= 1) {
const TuplePatternElt &FirstElt = FirstTuple->getFields()[0];
BodyElts.push_back(FirstElt);
ArgElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
FirstElt.getPattern(),
FirstTuple->getLoc()),
FirstElt.getInit(),
FirstElt.getDefaultArgKind()));
} else {
// Recover by creating a '(_: ())' pattern.
TuplePatternElt FirstElt(
new (P.Context) TypedPattern(
new (P.Context) AnyPattern(FirstTuple->getLParenLoc()),
TupleTypeRepr::create(P.Context, {},
FirstTuple->getSourceRange(),
SourceLoc())));
BodyElts.push_back(FirstElt);
ArgElts.push_back(FirstElt);
}
} else
llvm_unreachable("unexpected function argument pattern!");
assert(!ArgElts.empty() && !BodyElts.empty());
NamePieces.push_back(Identifier());
// Parse additional selectors as long as we can.
ParserStatus Status;
for (;;) {
if (P.isAtStartOfBindingName()) {
Status |= parseSelectorArgument(P, NamePieces,
ArgElts, BodyElts, SelectorParamLocs,
DefaultArgs, RParenLoc);
continue;
}
if (P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok, diag::func_selector_with_curry);
// FIXME: better recovery: just parse a tuple instead of skipping tokens.
P.skipUntilDeclRBrace(tok::l_brace);
Status.setIsParseError();
}
break;
}
BodyPatterns.push_back(
TuplePattern::create(P.Context, LParenLoc, BodyElts, RParenLoc));
return Status;
}
/// Map parsed parameters to argument and body patterns.
///
/// \returns the pattern describing the parsed parameters.
static Pattern*
mapParsedParameters(Parser &parser,
SourceLoc leftParenLoc,
MutableArrayRef<Parser::ParsedParameter> params,
SourceLoc rightParenLoc,
bool isFirstParameterClause,
SmallVectorImpl<Identifier> *argNames) {
auto &ctx = parser.Context;
// Local function to create a pattern for a single parameter.
auto createParamPattern = [&](SourceLoc &inOutLoc, bool isLet,
SourceLoc letVarLoc,
Identifier argName, SourceLoc argNameLoc,
Identifier paramName, SourceLoc paramNameLoc,
TypeRepr *type) -> Pattern * {
// Create the parameter based on the name.
Pattern *param;
if (paramName.empty()) {
param = new (ctx) AnyPattern(paramNameLoc);
} else {
// Create a variable to capture this.
ParamDecl *var = new (ctx) ParamDecl(isLet, argNameLoc, argName,
paramNameLoc, paramName, Type(),
parser.CurDeclContext);
param = new (ctx) NamedPattern(var);
}
// If a type was provided, create the typed pattern.
if (type) {
// If 'inout' was specified, turn the type into an in-out type.
if (inOutLoc.isValid()) {
type = new (ctx) InOutTypeRepr(type, inOutLoc);
}
param = new (ctx) TypedPattern(param, type);
} else if (inOutLoc.isValid()) {
parser.diagnose(inOutLoc, diag::inout_must_have_type);
inOutLoc = SourceLoc();
}
// If 'var' or 'let' was specified explicitly, create a pattern for it.
if (letVarLoc.isValid()) {
if (inOutLoc.isValid()) {
parser.diagnose(inOutLoc, diag::inout_varpattern);
inOutLoc = SourceLoc();
} else {
param = new (ctx) VarPattern(letVarLoc, param);
}
}
return param;
};
// Collect the elements of the tuple patterns for argument and body
// parameters.
SmallVector<TuplePatternElt, 4> elements;
SourceLoc ellipsisLoc;
for (auto &param : params) {
// Create the pattern.
Pattern *pattern;
if (param.SecondNameLoc.isValid())
pattern = createParamPattern(param.InOutLoc,
param.IsLet, param.LetVarLoc,
param.FirstName, param.FirstNameLoc,
param.SecondName, param.SecondNameLoc,
param.Type);
else
pattern = createParamPattern(param.InOutLoc,
param.IsLet, param.LetVarLoc,
param.FirstName, SourceLoc(),
param.FirstName, param.FirstNameLoc,
param.Type);
// If this parameter had an ellipsis, check whether it's the last parameter.
if (param.EllipsisLoc.isValid()) {
if (&param != &params.back()) {
parser.diagnose(param.EllipsisLoc, diag::parameter_ellipsis_not_at_end)
.fixItRemove(param.EllipsisLoc);
param.EllipsisLoc = SourceLoc();
} else {
ellipsisLoc = param.EllipsisLoc;
}
}
// Default arguments are only permitted on the first parameter clause.
if (param.DefaultArg && !isFirstParameterClause) {
parser.diagnose(param.EqualLoc, diag::non_func_decl_pattern_init)
.fixItRemove(SourceRange(param.EqualLoc,
param.DefaultArg->getExpr()->getEndLoc()));
}
// Create the tuple pattern elements.
auto defArgKind = getDefaultArgKind(param.DefaultArg);
elements.push_back(TuplePatternElt(pattern, param.DefaultArg, defArgKind));
if (argNames)
argNames->push_back(param.FirstName);
}
return TuplePattern::createSimple(ctx, leftParenLoc, elements,
rightParenLoc, ellipsisLoc.isValid(),
ellipsisLoc);
}
/// Parse a single parameter-clause.
ParserResult<Pattern> Parser::parseSingleParameterClause(bool isClosure) {
ParserStatus status;
SmallVector<ParsedParameter, 4> params;
SourceLoc leftParenLoc, rightParenLoc;
// Parse the parameter clause.
status |= parseParameterClause(leftParenLoc, params, rightParenLoc,
/*defaultArgs=*/nullptr, isClosure);
// Turn the parameter clause into argument and body patterns.
auto pattern = mapParsedParameters(*this, leftParenLoc, params,
rightParenLoc, true, nullptr);
return makeParserResult(status, pattern);
}
/// Parse function arguments.
/// func-arguments:
/// curried-arguments | selector-arguments
/// curried-arguments:
/// parameter-clause+
/// selector-arguments:
/// '(' selector-element ')' (identifier '(' selector-element ')')+
/// selector-element:
/// identifier '(' pattern-atom (':' type)? ('=' expr)? ')'
///
ParserStatus
Parser::parseFunctionArguments(SmallVectorImpl<Identifier> &NamePieces,
SmallVectorImpl<Pattern *> &BodyPatterns,
DefaultArgumentInfo &DefaultArgs) {
// Figure out of we have a tuple-like declaration rather than a selector-style
// declaration.
bool HasSelectorStyleSignature = false;
{
BacktrackingScope BS(*this);
consumeToken(tok::l_paren);
while (!Tok.is(tok::eof) && !Tok.is(tok::r_paren))
skipSingle();
if (consumeIf(tok::r_paren))
HasSelectorStyleSignature = isAtStartOfBindingName();
}
// If we don't have a selector-style signature, parse parameter-clauses.
if (!HasSelectorStyleSignature) {
ParserStatus status;
bool isFirstParameterClause = true;
while (Tok.is(tok::l_paren)) {
SmallVector<ParsedParameter, 4> params;
SourceLoc leftParenLoc, rightParenLoc;
// Parse the parameter clause.
status |= parseParameterClause(leftParenLoc, params, rightParenLoc,
&DefaultArgs, /*isClosure=*/false);
// Turn the parameter clause into argument and body patterns.
auto pattern = mapParsedParameters(*this, leftParenLoc, params,
rightParenLoc,
isFirstParameterClause,
isFirstParameterClause ? &NamePieces
: nullptr);
BodyPatterns.push_back(pattern);
isFirstParameterClause = false;
}
return status;
}
// Parse all of the selector arguments or curried argument pieces.
// Parse the first function argument clause.
bool IsFirstArgumentNameImplied;
ParserResult<Pattern> ArgPattern =
parseArgument(*this, NamePieces.front(), &DefaultArgs,
IsFirstArgumentNameImplied);
if (ArgPattern.isNull() || ArgPattern.hasCodeCompletion())
return ArgPattern;
// Prime the selector parameter location data.
SmallVector<SelectorParamLoc, 4> SelectorParamLocs;
SelectorParamLocs.push_back({ArgPattern.get()->getStartLoc(),
ArgPattern.get()->getEndLoc(),
!IsFirstArgumentNameImplied});
// This looks like a selector-style argument. Try to convert the first
// argument pattern into a single argument type and parse subsequent
// selector forms.
ParserStatus Status = ParserStatus(ArgPattern) |
parseSelectorFunctionArguments(*this, NamePieces, BodyPatterns,
SelectorParamLocs, DefaultArgs,
ArgPattern.get());
if (Status.isSuccess()) {
auto firstLParenLoc = SelectorParamLocs[0].LParenLoc;
auto diag = diagnose(firstLParenLoc, diag::selector_func_decl_removed);
// If the first parameter has a name, add "_ " after the first '('.
if (SelectorParamLocs[0].HasBodyParameterName) {
auto afterFirstLParenLoc
= Lexer::getLocForEndOfToken(Context.SourceMgr, firstLParenLoc);
diag.fixItInsert(afterFirstLParenLoc, "_ ");
}
// Replace the closing ')' of the first argument with ','.
diag.fixItReplace(SourceRange(SelectorParamLocs[0].RParenLoc), ",");
for (unsigned i = 1, n = SelectorParamLocs.size(); i != n; ++i) {
const auto &ParamLoc = SelectorParamLocs[i];
// The opening '(' becomes either ':' or ' ', depending on
// whether this parameter has a name.
diag.fixItReplace(SourceRange(ParamLoc.LParenLoc),
ParamLoc.HasBodyParameterName? " " : ": ");
// A non-terminating closing ')' becomes ','.
if (i < n-1) {
diag.fixItReplace(SourceRange(ParamLoc.RParenLoc), ",");
}
}
}
return Status;
}
/// parseFunctionSignature - Parse a function definition signature.
/// func-signature:
/// func-arguments func-signature-result?
/// func-signature-result:
/// '->' type
///
/// Note that this leaves retType as null if unspecified.
ParserStatus
Parser::parseFunctionSignature(Identifier SimpleName,
DeclName &FullName,
SmallVectorImpl<Pattern *> &bodyPatterns,
DefaultArgumentInfo &defaultArgs,
TypeRepr *&retType) {
SmallVector<Identifier, 4> NamePieces;
NamePieces.push_back(SimpleName);
FullName = SimpleName;
ParserStatus Status;
// We force first type of a func declaration to be a tuple for consistency.
if (Tok.is(tok::l_paren)) {
Status = parseFunctionArguments(NamePieces, bodyPatterns, defaultArgs);
FullName = DeclName(Context, SimpleName,
llvm::makeArrayRef(NamePieces.begin() + 1,
NamePieces.end()));
if (bodyPatterns.empty()) {
// If we didn't get anything, add a () pattern to avoid breaking
// invariants.
assert(Status.hasCodeCompletion() || Status.isError());
bodyPatterns.push_back(TuplePattern::create(Context, Tok.getLoc(),
{}, Tok.getLoc()));
}
} else {
diagnose(Tok, diag::func_decl_without_paren);
Status = makeParserError();
// Recover by creating a '() -> ?' signature.
auto *EmptyTuplePattern =
TuplePattern::create(Context, PreviousLoc, {}, PreviousLoc);
bodyPatterns.push_back(EmptyTuplePattern);
FullName = DeclName(Context, SimpleName, { });
}
// If there's a trailing arrow, parse the rest as the result type.
if (Tok.is(tok::arrow) || Tok.is(tok::colon)) {
if (!consumeIf(tok::arrow)) {
// FixIt ':' to '->'.
diagnose(Tok, diag::func_decl_expected_arrow)
.fixItReplace(SourceRange(Tok.getLoc()), "->");
consumeToken(tok::colon);
}
ParserResult<TypeRepr> ResultType =
parseType(diag::expected_type_function_result);
if (ResultType.hasCodeCompletion())
return ResultType;
retType = ResultType.getPtrOrNull();
if (!retType) {
Status.setIsParseError();
return Status;
}
} else {
// Otherwise, we leave retType null.
retType = nullptr;
}
return Status;
}
ParserStatus
Parser::parseConstructorArguments(DeclName &FullName, Pattern *&BodyPattern,
DefaultArgumentInfo &DefaultArgs) {
// It's just a pattern. Parse it.
if (Tok.is(tok::l_paren)) {
SmallVector<ParsedParameter, 4> params;
SourceLoc leftParenLoc, rightParenLoc;
// Parse the parameter clause.
ParserStatus status
= parseParameterClause(leftParenLoc, params, rightParenLoc,
&DefaultArgs, /*isClosure=*/false);
// Turn the parameter clause into argument and body patterns.
llvm::SmallVector<Identifier, 2> namePieces;
BodyPattern = mapParsedParameters(*this, leftParenLoc, params,
rightParenLoc,
/*isFirstParameterClause=*/true,
&namePieces);
FullName = DeclName(Context, Context.Id_init, namePieces);
return status;
}
SourceLoc InitLoc = PreviousLoc;
if (!isAtStartOfBindingName()) {
// Complain that we expected '(' or a parameter name.
{
auto diag = diagnose(Tok, diag::expected_lparen_initializer);
if (Tok.is(tok::l_brace))
diag.fixItInsert(Tok.getLoc(), "() ");
}
// Create an empty tuple to recover.
BodyPattern = TuplePattern::createSimple(Context, Tok.getLoc(), {},
Tok.getLoc());
FullName = DeclName(Context, Context.Id_init, { });
return makeParserError();
}
// This is not a parenthesis, but we should provide a reasonable source range
// for parameters.
SourceLoc LParenLoc = Tok.getLoc();
// Parse additional selectors as long as we can.
ParserStatus Status;
SmallVector<TuplePatternElt, 4> ArgElts;
SmallVector<TuplePatternElt, 4> BodyElts;
SourceLoc RParenLoc;
SmallVector<Identifier, 4> NamePieces;
SmallVector<SelectorParamLoc, 4> SelectorParamLocs;
SourceLoc FirstSelectorPieceLoc;
for (;;) {
if (FirstSelectorPieceLoc.isInvalid())
FirstSelectorPieceLoc = Tok.getLoc();
if (isAtStartOfBindingName()) {
Status |= parseSelectorArgument(*this, NamePieces, ArgElts, BodyElts,
SelectorParamLocs, DefaultArgs,
RParenLoc);
continue;
}
if (Tok.is(tok::l_paren)) {
// FIXME: Should we assume this is '_'?
diagnose(Tok, diag::func_selector_with_curry);
// FIXME: better recovery: just parse a tuple instead of skipping tokens.
skipUntilDeclRBrace(tok::l_brace);
Status.setIsParseError();
}
break;
}
if (Status.isSuccess()) {
auto diag = diagnose(InitLoc, diag::selector_func_decl_removed);
// Replace the whitespace after "init" up to the first name with
// the (new) opening '('.
SourceLoc afterInitLoc = Lexer::getLocForEndOfToken(Context.SourceMgr,
InitLoc);
diag.fixItReplaceChars(afterInitLoc, FirstSelectorPieceLoc, "(");
for (unsigned i = 0, n = SelectorParamLocs.size(); i != n; ++i) {
const auto &ParamLoc = SelectorParamLocs[i];
// The opening '(' becomes either ':' or ' ', depending on
// whether this parameter has a name.
diag.fixItReplace(SourceRange(ParamLoc.LParenLoc),
ParamLoc.HasBodyParameterName? " " : ": ");
// A non-terminating closing ')' becomes ','.
if (i < n-1) {
diag.fixItReplace(SourceRange(ParamLoc.RParenLoc), ",");
}
}
}
BodyPattern = TuplePattern::create(Context, LParenLoc, BodyElts,
RParenLoc);
FullName = DeclName(Context, Context.Id_init, NamePieces);
return Status;
}
/// Parse a pattern.
/// pattern ::= pattern-atom
/// pattern ::= pattern-atom ':' type
/// pattern ::= 'var' pattern
/// pattern ::= 'let' pattern
ParserResult<Pattern> Parser::parsePattern(bool isLet) {
// If this is a let or var pattern parse it.
if (Tok.is(tok::kw_let) || Tok.is(tok::kw_var))
return parsePatternVarOrLet();
// First, parse the pattern atom.
ParserResult<Pattern> Result = parsePatternAtom(isLet);
// Now parse an optional type annotation.
if (consumeIf(tok::colon)) {
if (Result.isNull()) {
// Recover by creating AnyPattern.
Result = makeParserErrorResult(new (Context) AnyPattern(PreviousLoc));
}
ParserResult<TypeRepr> Ty = parseType();
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (Ty.isNull())
Ty = makeParserResult(new (Context) ErrorTypeRepr(PreviousLoc));
Result = makeParserResult(Result,
new (Context) TypedPattern(Result.get(), Ty.get()));
}
return Result;
}
ParserResult<Pattern> Parser::parsePatternVarOrLet() {
assert((Tok.is(tok::kw_let) || Tok.is(tok::kw_var)) && "expects let or var");
bool isLet = Tok.is(tok::kw_let);
SourceLoc varLoc = consumeToken();
// 'var' and 'let' patterns shouldn't nest.
if (InVarOrLetPattern)
diagnose(varLoc, diag::var_pattern_in_var, unsigned(isLet));
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar);
ParserResult<Pattern> subPattern = parsePattern(isLet);
if (subPattern.hasCodeCompletion())
return makeParserCodeCompletionResult<Pattern>();
if (subPattern.isNull())
return nullptr;
return makeParserResult(new (Context) VarPattern(varLoc, subPattern.get()));
}
/// \brief Determine whether this token can start a binding name, whether an
/// identifier or the special discard-value binding '_'.
bool Parser::isAtStartOfBindingName() {
return Tok.is(tok::kw__) || (Tok.is(tok::identifier) && !isStartOfDecl());
}
Pattern *Parser::createBindingFromPattern(SourceLoc loc, Identifier name,
bool isLet) {
VarDecl *var;
if (ArgumentIsParameter) {
var = new (Context) ParamDecl(isLet, loc, name, loc, name, Type(),
CurDeclContext);
} else {
var = new (Context) VarDecl(/*static*/ false, /*IsLet*/ isLet,
loc, name, Type(), CurDeclContext);
}
return new (Context) NamedPattern(var);
}
/// Parse an identifier as a pattern.
ParserResult<Pattern> Parser::parsePatternIdentifier(bool isLet) {
SourceLoc loc = Tok.getLoc();
if (consumeIf(tok::kw__)) {
return makeParserResult(new (Context) AnyPattern(loc));
}
StringRef text = Tok.getText();
if (consumeIf(tok::identifier)) {
Identifier ident = Context.getIdentifier(text);
return makeParserResult(createBindingFromPattern(loc, ident, isLet));
}
return nullptr;
}
/// Parse a pattern "atom", meaning the part that precedes the
/// optional type annotation.
///
/// pattern-atom ::= identifier
/// pattern-atom ::= '_'
/// pattern-atom ::= pattern-tuple
ParserResult<Pattern> Parser::parsePatternAtom(bool isLet) {
switch (Tok.getKind()) {
case tok::l_paren:
return parsePatternTuple(isLet, /*IsArgList*/false,/*DefaultArgs*/nullptr);
case tok::identifier:
case tok::kw__:
return parsePatternIdentifier(isLet);
case tok::code_complete:
// Just eat the token and return an error status, *not* the code completion
// status. We can not code complete anything here -- we expect an
// identifier.
consumeToken(tok::code_complete);
return nullptr;
default:
if (Tok.isKeyword() &&
(peekToken().is(tok::colon) || peekToken().is(tok::equal))) {
diagnose(Tok, diag::expected_pattern_is_keyword, Tok.getText());
SourceLoc Loc = Tok.getLoc();
consumeToken();
return makeParserErrorResult(new (Context) AnyPattern(Loc));
}
diagnose(Tok, diag::expected_pattern);
return nullptr;
}
}
std::pair<ParserStatus, Optional<TuplePatternElt>>
Parser::parsePatternTupleElement(bool isLet, bool isArgumentList,
Pattern *ImplicitName,
DefaultArgumentInfo *defaultArgs) {
// Function argument lists can have "inout" applied to TypedPatterns in their
// arguments.
SourceLoc InOutLoc;
if (isArgumentList && Tok.isContextualKeyword("inout"))
InOutLoc = consumeToken(tok::identifier);
unsigned defaultArgIndex = (defaultArgs ? defaultArgs->NextIndex++ : 0);
// Parse the pattern.
ParserResult<Pattern> pattern;
// If this is a normal tuple value, parse it as a pattern. If it is a "type
// only" case (e.g. an implicitly named selector argument) then parse a type
// and build the pattern around it.
if (!ImplicitName) {
pattern = parsePattern(isLet);
if (pattern.hasCodeCompletion())
return std::make_pair(makeParserCodeCompletionStatus(), Nothing);
if (pattern.isNull())
return std::make_pair(makeParserError(), Nothing);
} else {
ParserResult<TypeRepr> Ty = parseType();
if (Ty.hasCodeCompletion())
return std::make_pair(makeParserCodeCompletionStatus(), Nothing);
if (Ty.isNull())
return std::make_pair(makeParserError(), Nothing);
// Build this as typed_pattern(name).
pattern = makeParserResult(new (Context) TypedPattern(ImplicitName,
Ty.get()));
}
// Parse the optional initializer.
ExprHandle *init = nullptr;
if (Tok.is(tok::equal))
parseDefaultArgument(*this, defaultArgs, defaultArgIndex, init);
// If this is an inout function argument, validate that the sub-pattern is
// a TypedPattern.
if (InOutLoc.isValid()) {
if (auto *TP = dyn_cast<TypedPattern>(pattern.get())) {
// Change the TypeRep of the underlying typed pattern to be an inout
// typerep.
TypeLoc &LocInfo = TP->getTypeLoc();
LocInfo = TypeLoc(new (Context) InOutTypeRepr(LocInfo.getTypeRepr(),
InOutLoc));
} else if (isa<VarPattern>(pattern.get())) {
diagnose(InOutLoc, diag::inout_varpattern);
} else {
diagnose(InOutLoc, diag::inout_must_have_type);
}
}
return std::make_pair(
makeParserSuccess(),
TuplePatternElt(pattern.get(), init, getDefaultArgKind(init)));
}
ParserResult<Pattern> Parser::parsePatternTuple(bool isLet, bool isArgumentList,
DefaultArgumentInfo *defaults) {
StructureMarkerRAII ParsingPatternTuple(*this, Tok);
SourceLoc LPLoc = consumeToken(tok::l_paren);
return parsePatternTupleAfterLP(isLet, isArgumentList, LPLoc, defaults);
}
/// Parse a tuple pattern. The leading left paren has already been consumed and
/// we are looking at the next token. LPLoc specifies its location.
///
/// pattern-tuple:
/// '(' pattern-tuple-body? ')'
/// pattern-tuple-body:
/// pattern-tuple-element (',' pattern-tuple-body)*
ParserResult<Pattern>
Parser::parsePatternTupleAfterLP(bool isLet, bool isArgumentList,
SourceLoc LPLoc,
DefaultArgumentInfo *defaults) {
SourceLoc RPLoc, EllipsisLoc;
auto diagToUse = isArgumentList ? diag::expected_rparen_parameter
: diag::expected_rparen_tuple_pattern_list;
// Parse all the elements.
SmallVector<TuplePatternElt, 8> elts;
ParserStatus ListStatus =
parseList(tok::r_paren, LPLoc, RPLoc, tok::comma, /*OptionalSep=*/false,
/*AllowSepAfterLast=*/false, diagToUse, [&] () -> ParserStatus {
// Parse the pattern tuple element.
ParserStatus EltStatus;
Optional<TuplePatternElt> elt;
std::tie(EltStatus, elt) = parsePatternTupleElement(isLet, isArgumentList,
nullptr, defaults);
if (EltStatus.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (!elt)
return makeParserError();
// Add this element to the list.
elts.push_back(*elt);
// If there is no ellipsis, we're done with the element.
if (Tok.isNotEllipsis())
return makeParserSuccess();
SourceLoc ellLoc = consumeToken();
// An element cannot have both an initializer and an ellipsis.
if (elt->getInit()) {
diagnose(ellLoc, diag::tuple_ellipsis_init)
.highlight(elt->getInit()->getExpr()->getSourceRange());
// Return success since the error was semantic, and the caller should not
// attempt recovery.
return makeParserSuccess();
}
// An ellipsis element shall have a specified element type.
// FIXME: This seems unnecessary.
TypedPattern *typedPattern = dyn_cast<TypedPattern>(elt->getPattern());
if (!typedPattern) {
diagnose(ellLoc, diag::untyped_pattern_ellipsis)
.highlight(elt->getPattern()->getSourceRange());
// Return success so that the caller does not attempt recovery -- it
// should have already happened when we were parsing the tuple element.
return makeParserSuccess();
}
// Variadic elements must come last.
// FIXME: Unnecessary restriction. It makes conversion more interesting,
// but is not complicated to support.
if (Tok.is(tok::r_paren)) {
EllipsisLoc = ellLoc;
} else {
diagnose(ellLoc, diag::ellipsis_pattern_not_at_end);
}
return makeParserSuccess();
});
return makeParserResult(ListStatus, TuplePattern::createSimple(
Context, LPLoc, elts, RPLoc,
EllipsisLoc.isValid(), EllipsisLoc));
}
ParserResult<Pattern> Parser::parseMatchingPattern() {
// TODO: Since we expect a pattern in this position, we should optimistically
// parse pattern nodes for productions shared by pattern and expression
// grammar. For short-term ease of initial implementation, we always go
// through the expr parser for ambiguious productions.
// Parse productions that can only be patterns.
// matching-pattern ::= matching-pattern-var
if (Tok.is(tok::kw_var) || Tok.is(tok::kw_let))
return parseMatchingPatternVarOrVal();
// matching-pattern ::= 'is' type
if (Tok.is(tok::kw_is))
return parseMatchingPatternIs();
// matching-pattern ::= expr
// Fall back to expression parsing for ambiguous forms. Name lookup will
// disambiguate.
ParserResult<Expr> subExpr = parseExpr(diag::expected_pattern);
if (subExpr.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (subExpr.isNull())
return nullptr;
return makeParserResult(new (Context) ExprPattern(subExpr.get()));
}
ParserResult<Pattern> Parser::parseMatchingPatternVarOrVal() {
assert((Tok.is(tok::kw_let) || Tok.is(tok::kw_var)) && "expects val or var");
bool isVal = Tok.is(tok::kw_let);
SourceLoc varLoc = consumeToken();
// 'var' and 'let' patterns shouldn't nest.
if (InVarOrLetPattern)
diagnose(varLoc, diag::var_pattern_in_var, unsigned(isVal));
// In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isVal ? IVOLP_InLet : IVOLP_InVar);
ParserResult<Pattern> subPattern = parseMatchingPattern();
if (subPattern.isNull())
return nullptr;
return makeParserResult(new (Context) VarPattern(varLoc, subPattern.get()));
}
// matching-pattern ::= 'is' type
ParserResult<Pattern> Parser::parseMatchingPatternIs() {
SourceLoc isLoc = consumeToken(tok::kw_is);
ParserResult<TypeRepr> castType = parseType();
if (castType.isNull() || castType.hasCodeCompletion())
return nullptr;
return makeParserResult(new (Context) IsaPattern(isLoc, castType.get(),
nullptr));
}
bool Parser::isOnlyStartOfMatchingPattern() {
return Tok.is(tok::kw_var) || Tok.is(tok::kw_let) || Tok.is(tok::kw_is);
}
bool Parser::canParsePattern() {
switch (Tok.getKind()) {
case tok::kw_let: /// pattern ::= 'let' pattern
case tok::kw_var: /// pattern ::= 'var' pattern
consumeToken();
return canParsePattern();
default:
/// pattern ::= pattern-atom
/// pattern ::= pattern-atom ':' type
if (!canParsePatternAtom())
return false;
if (!consumeIf(tok::colon))
return true;
return canParseType();
}
}
bool Parser::canParsePatternAtom() {
switch (Tok.getKind()) {
case tok::l_paren: return canParsePatternTuple();
case tok::identifier:
case tok::kw__:
consumeToken();
return true;
default:
return false;
}
}
bool Parser::canParsePatternTuple() {
if (!consumeIf(tok::l_paren)) return false;
if (Tok.isNot(tok::r_paren)) {
do {
// The contextual inout marker is part of argument lists.
if (Tok.isContextualKeyword("inout"))
consumeToken(tok::identifier);
if (!canParsePattern()) return false;
// Parse default values. This aren't actually allowed, but we recover
// better if we skip over them.
if (consumeIf(tok::equal)) {
while (Tok.isNot(tok::eof) && Tok.isNot(tok::r_paren) &&
Tok.isNot(tok::r_brace) && Tok.isNotEllipsis() &&
Tok.isNot(tok::comma) &&
!isStartOfDecl()) {
skipSingle();
}
}
} while (consumeIf(tok::comma));
}
if (Tok.isEllipsis())
consumeToken();
return consumeIf(tok::r_paren);
}