mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Change the "metadata base offset" variable into a "class metadata bounds"
variable that contains the base offset and the +/- bounds on the class.
Link this variable from the class descriptor when the class has a resilient
superclass; otherwise, store the +/- bounds there. Use this variable to
compute the immediate-members offset for various runtime queries. Teach the
runtime to fill it in lazily and remove the code to compute it from the
generated code for instantiation. Identify generic arguments with the start
of the immediate class metadata members / end of the {struct,enum} metadata
header and remove the generic-arguments offset from generic type descriptors.
4385 lines
163 KiB
C++
4385 lines
163 KiB
C++
//===--- GenDecl.cpp - IR Generation for Declarations ---------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for local and global
|
|
// declarations in Swift.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/DiagnosticsIRGen.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/TypeMemberVisitor.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/Demangling/ManglingMacros.h"
|
|
#include "swift/IRGen/Linking.h"
|
|
#include "swift/Runtime/HeapObject.h"
|
|
#include "swift/SIL/FormalLinkage.h"
|
|
#include "swift/SIL/SILDebugScope.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/GlobalDecl.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/TypeBuilder.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
#include "ConstantBuilder.h"
|
|
#include "Explosion.h"
|
|
#include "FixedTypeInfo.h"
|
|
#include "GenCall.h"
|
|
#include "GenClass.h"
|
|
#include "GenDecl.h"
|
|
#include "GenMeta.h"
|
|
#include "GenObjC.h"
|
|
#include "GenOpaque.h"
|
|
#include "GenType.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "IRGenFunction.h"
|
|
#include "IRGenMangler.h"
|
|
#include "IRGenModule.h"
|
|
#include "LoadableTypeInfo.h"
|
|
#include "ProtocolInfo.h"
|
|
#include "Signature.h"
|
|
#include "StructLayout.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
bool IRGenerator::tryEnableLazyTypeMetadata(NominalTypeDecl *Nominal) {
|
|
// When compiling with -Onone keep all metadata for the debugger. Even if it
|
|
// is not used by the program itself.
|
|
if (!Opts.shouldOptimize())
|
|
return false;
|
|
|
|
switch (Nominal->getKind()) {
|
|
case DeclKind::Enum:
|
|
case DeclKind::Struct:
|
|
break;
|
|
default:
|
|
// Keep all metadata for classes, because a class can be instantiated by
|
|
// using the library function _typeByName or NSClassFromString.
|
|
return false;
|
|
}
|
|
|
|
switch (getDeclLinkage(Nominal)) {
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::PublicNonUnique:
|
|
// We can't remove metadata for externally visible types.
|
|
return false;
|
|
case FormalLinkage::HiddenUnique:
|
|
case FormalLinkage::HiddenNonUnique:
|
|
// In non-whole-module mode, also internal types are visible externally.
|
|
if (!SIL.isWholeModule())
|
|
return false;
|
|
break;
|
|
case FormalLinkage::Private:
|
|
break;
|
|
}
|
|
|
|
auto insertResult = LazyTypeGlobals.try_emplace(Nominal);
|
|
auto &entry = insertResult.first->second;
|
|
assert(!entry.IsLazy);
|
|
entry.IsLazy = true;
|
|
if (entry.IsMetadataUsed)
|
|
LazyTypeMetadata.push_back(Nominal);
|
|
if (entry.IsDescriptorUsed)
|
|
LazyTypeContextDescriptors.push_back(Nominal);
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Add methods, properties, and protocol conformances from a JITed extension
|
|
/// to an ObjC class using the ObjC runtime.
|
|
///
|
|
/// This must happen after ObjCProtocolInitializerVisitor if any @objc protocols
|
|
/// were defined in the TU.
|
|
class CategoryInitializerVisitor
|
|
: public ClassMemberVisitor<CategoryInitializerVisitor>
|
|
{
|
|
IRGenFunction &IGF;
|
|
IRGenModule &IGM = IGF.IGM;
|
|
IRBuilder &Builder = IGF.Builder;
|
|
|
|
llvm::Constant *class_replaceMethod;
|
|
llvm::Constant *class_addProtocol;
|
|
|
|
llvm::Constant *classMetadata;
|
|
llvm::Constant *metaclassMetadata;
|
|
|
|
public:
|
|
CategoryInitializerVisitor(IRGenFunction &IGF, ExtensionDecl *ext)
|
|
: IGF(IGF)
|
|
{
|
|
class_replaceMethod = IGM.getClassReplaceMethodFn();
|
|
class_addProtocol = IGM.getClassAddProtocolFn();
|
|
|
|
CanType origTy = ext->getAsNominalTypeOrNominalTypeExtensionContext()
|
|
->getDeclaredType()->getCanonicalType();
|
|
classMetadata =
|
|
tryEmitConstantHeapMetadataRef(IGM, origTy, /*allowUninit*/ true);
|
|
assert(classMetadata &&
|
|
"extended objc class doesn't have constant metadata?!");
|
|
classMetadata = llvm::ConstantExpr::getBitCast(classMetadata,
|
|
IGM.ObjCClassPtrTy);
|
|
metaclassMetadata = IGM.getAddrOfMetaclassObject(
|
|
origTy.getClassOrBoundGenericClass(),
|
|
NotForDefinition);
|
|
metaclassMetadata = llvm::ConstantExpr::getBitCast(metaclassMetadata,
|
|
IGM.ObjCClassPtrTy);
|
|
|
|
// We need to make sure the Objective-C runtime has initialized our
|
|
// class. If you try to add or replace a method to a class that isn't
|
|
// initialized yet, the Objective-C runtime will crash in the calls
|
|
// to class_replaceMethod or class_addProtocol.
|
|
Builder.CreateCall(IGM.getGetInitializedObjCClassFn(), classMetadata);
|
|
|
|
// Register ObjC protocol conformances.
|
|
for (auto *p : ext->getLocalProtocols()) {
|
|
if (!p->isObjC())
|
|
continue;
|
|
|
|
llvm::Value *protoRef = IGM.getAddrOfObjCProtocolRef(p, NotForDefinition);
|
|
auto proto = Builder.CreateLoad(protoRef, IGM.getPointerAlignment());
|
|
Builder.CreateCall(class_addProtocol, {classMetadata, proto});
|
|
}
|
|
}
|
|
|
|
void visitMembers(ExtensionDecl *ext) {
|
|
for (Decl *member : ext->getMembers())
|
|
visit(member);
|
|
}
|
|
|
|
void visitTypeDecl(TypeDecl *type) {
|
|
// We'll visit nested types separately if necessary.
|
|
}
|
|
|
|
void visitMissingMemberDecl(MissingMemberDecl *placeholder) {}
|
|
|
|
void visitFuncDecl(FuncDecl *method) {
|
|
if (!requiresObjCMethodDescriptor(method)) return;
|
|
|
|
// Don't emit getters/setters for @NSManaged methods.
|
|
if (method->getAttrs().hasAttribute<NSManagedAttr>())
|
|
return;
|
|
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCMethodDescriptorParts(IGM, method,
|
|
/*extended*/false,
|
|
/*concrete*/true,
|
|
name, types, imp);
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
|
|
llvm::Value *args[] = {
|
|
method->isStatic() ? metaclassMetadata : classMetadata,
|
|
sel,
|
|
imp,
|
|
types
|
|
};
|
|
|
|
Builder.CreateCall(class_replaceMethod, args);
|
|
}
|
|
|
|
// Can't be added in an extension.
|
|
void visitDestructorDecl(DestructorDecl *dtor) {}
|
|
|
|
void visitConstructorDecl(ConstructorDecl *constructor) {
|
|
if (!requiresObjCMethodDescriptor(constructor)) return;
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCMethodDescriptorParts(IGM, constructor, /*extended*/false,
|
|
/*concrete*/true,
|
|
name, types, imp);
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
|
|
llvm::Value *args[] = {
|
|
classMetadata,
|
|
sel,
|
|
imp,
|
|
types
|
|
};
|
|
|
|
Builder.CreateCall(class_replaceMethod, args);
|
|
}
|
|
|
|
void visitPatternBindingDecl(PatternBindingDecl *binding) {
|
|
// Ignore the PBD and just handle the individual vars.
|
|
}
|
|
|
|
void visitVarDecl(VarDecl *prop) {
|
|
if (!requiresObjCPropertyDescriptor(IGM, prop)) return;
|
|
|
|
// FIXME: register property metadata in addition to the methods.
|
|
// ObjC doesn't have a notion of class properties, so we'd only do this
|
|
// for instance properties.
|
|
|
|
// Don't emit getters/setters for @NSManaged properties.
|
|
if (prop->getAttrs().hasAttribute<NSManagedAttr>())
|
|
return;
|
|
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCGetterDescriptorParts(IGM, prop,
|
|
name, types, imp);
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
auto theClass = prop->isStatic() ? metaclassMetadata : classMetadata;
|
|
llvm::Value *getterArgs[] = {theClass, sel, imp, types};
|
|
Builder.CreateCall(class_replaceMethod, getterArgs);
|
|
|
|
if (prop->isSettable(prop->getDeclContext())) {
|
|
emitObjCSetterDescriptorParts(IGM, prop,
|
|
name, types, imp);
|
|
sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
llvm::Value *setterArgs[] = {theClass, sel, imp, types};
|
|
|
|
Builder.CreateCall(class_replaceMethod, setterArgs);
|
|
}
|
|
}
|
|
|
|
void visitSubscriptDecl(SubscriptDecl *subscript) {
|
|
assert(!subscript->isStatic() && "objc doesn't support class subscripts");
|
|
if (!requiresObjCSubscriptDescriptor(IGM, subscript)) return;
|
|
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCGetterDescriptorParts(IGM, subscript,
|
|
name, types, imp);
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
llvm::Value *getterArgs[] = {classMetadata, sel, imp, types};
|
|
Builder.CreateCall(class_replaceMethod, getterArgs);
|
|
|
|
if (subscript->isSettable()) {
|
|
emitObjCSetterDescriptorParts(IGM, subscript,
|
|
name, types, imp);
|
|
sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(),
|
|
name);
|
|
llvm::Value *setterArgs[] = {classMetadata, sel, imp, types};
|
|
|
|
Builder.CreateCall(class_replaceMethod, setterArgs);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Create a descriptor for JITed @objc protocol using the ObjC runtime.
|
|
class ObjCProtocolInitializerVisitor
|
|
: public ClassMemberVisitor<ObjCProtocolInitializerVisitor>
|
|
{
|
|
IRGenFunction &IGF;
|
|
IRGenModule &IGM = IGF.IGM;
|
|
IRBuilder &Builder = IGF.Builder;
|
|
|
|
llvm::Constant *objc_getProtocol,
|
|
*objc_allocateProtocol,
|
|
*objc_registerProtocol,
|
|
*protocol_addMethodDescription,
|
|
*protocol_addProtocol;
|
|
|
|
llvm::Value *NewProto = nullptr;
|
|
|
|
public:
|
|
ObjCProtocolInitializerVisitor(IRGenFunction &IGF)
|
|
: IGF(IGF)
|
|
{
|
|
objc_getProtocol = IGM.getGetObjCProtocolFn();
|
|
objc_allocateProtocol = IGM.getAllocateObjCProtocolFn();
|
|
objc_registerProtocol = IGM.getRegisterObjCProtocolFn();
|
|
protocol_addMethodDescription = IGM.getProtocolAddMethodDescriptionFn();
|
|
protocol_addProtocol = IGM.getProtocolAddProtocolFn();
|
|
}
|
|
|
|
void visitMembers(ProtocolDecl *proto) {
|
|
// Check if the ObjC runtime already has a descriptor for this
|
|
// protocol. If so, use it.
|
|
SmallString<32> buf;
|
|
auto protocolName
|
|
= IGM.getAddrOfGlobalString(proto->getObjCRuntimeName(buf));
|
|
|
|
auto existing = Builder.CreateCall(objc_getProtocol, protocolName);
|
|
auto isNull = Builder.CreateICmpEQ(existing,
|
|
llvm::ConstantPointerNull::get(IGM.ProtocolDescriptorPtrTy));
|
|
|
|
auto existingBB = IGF.createBasicBlock("existing_protocol");
|
|
auto newBB = IGF.createBasicBlock("new_protocol");
|
|
auto contBB = IGF.createBasicBlock("cont");
|
|
Builder.CreateCondBr(isNull, newBB, existingBB);
|
|
|
|
// Nothing to do if there's already a descriptor.
|
|
Builder.emitBlock(existingBB);
|
|
Builder.CreateBr(contBB);
|
|
|
|
Builder.emitBlock(newBB);
|
|
|
|
// Allocate the protocol descriptor.
|
|
NewProto = Builder.CreateCall(objc_allocateProtocol, protocolName);
|
|
|
|
// Add the parent protocols.
|
|
for (auto parentProto : proto->getInheritedProtocols()) {
|
|
if (!parentProto->isObjC())
|
|
continue;
|
|
llvm::Value *parentRef = IGM.getAddrOfObjCProtocolRef(parentProto,
|
|
NotForDefinition);
|
|
parentRef = IGF.Builder.CreateBitCast(parentRef,
|
|
IGM.ProtocolDescriptorPtrTy
|
|
->getPointerTo());
|
|
auto parent = Builder.CreateLoad(parentRef,
|
|
IGM.getPointerAlignment());
|
|
Builder.CreateCall(protocol_addProtocol, {NewProto, parent});
|
|
}
|
|
|
|
// Add the members.
|
|
for (Decl *member : proto->getMembers())
|
|
visit(member);
|
|
|
|
// Register it.
|
|
Builder.CreateCall(objc_registerProtocol, NewProto);
|
|
Builder.CreateBr(contBB);
|
|
|
|
// Store the reference to the runtime's idea of the protocol descriptor.
|
|
Builder.emitBlock(contBB);
|
|
auto result = Builder.CreatePHI(IGM.ProtocolDescriptorPtrTy, 2);
|
|
result->addIncoming(existing, existingBB);
|
|
result->addIncoming(NewProto, newBB);
|
|
|
|
llvm::Value *ref = IGM.getAddrOfObjCProtocolRef(proto, NotForDefinition);
|
|
ref = IGF.Builder.CreateBitCast(ref,
|
|
IGM.ProtocolDescriptorPtrTy->getPointerTo());
|
|
|
|
Builder.CreateStore(result, ref, IGM.getPointerAlignment());
|
|
}
|
|
|
|
void visitTypeDecl(TypeDecl *type) {
|
|
// We'll visit nested types separately if necessary.
|
|
}
|
|
|
|
void visitMissingMemberDecl(MissingMemberDecl *placeholder) {}
|
|
|
|
void visitAbstractFunctionDecl(AbstractFunctionDecl *method) {
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCMethodDescriptorParts(IGM, method, /*extended*/true,
|
|
/*concrete*/false,
|
|
name, types, imp);
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), name);
|
|
|
|
llvm::Value *args[] = {
|
|
NewProto, sel, types,
|
|
// required?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
!method->getAttrs().hasAttribute<OptionalAttr>()),
|
|
// instance?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
isa<ConstructorDecl>(method) || method->isInstanceMember()),
|
|
};
|
|
|
|
Builder.CreateCall(protocol_addMethodDescription, args);
|
|
}
|
|
|
|
void visitPatternBindingDecl(PatternBindingDecl *binding) {
|
|
// Ignore the PBD and just handle the individual vars.
|
|
}
|
|
|
|
void visitAbstractStorageDecl(AbstractStorageDecl *prop) {
|
|
// TODO: Add properties to protocol.
|
|
|
|
llvm::Constant *name, *imp, *types;
|
|
emitObjCGetterDescriptorParts(IGM, prop,
|
|
name, types, imp);
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector.
|
|
llvm::Value *sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), name);
|
|
llvm::Value *getterArgs[] = {
|
|
NewProto, sel, types,
|
|
// required?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
!prop->getAttrs().hasAttribute<OptionalAttr>()),
|
|
// instance?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
prop->isInstanceMember()),
|
|
};
|
|
Builder.CreateCall(protocol_addMethodDescription, getterArgs);
|
|
|
|
if (prop->isSettable(nullptr)) {
|
|
emitObjCSetterDescriptorParts(IGM, prop, name, types, imp);
|
|
sel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), name);
|
|
llvm::Value *setterArgs[] = {
|
|
NewProto, sel, types,
|
|
// required?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
!prop->getAttrs().hasAttribute<OptionalAttr>()),
|
|
// instance?
|
|
llvm::ConstantInt::get(IGM.ObjCBoolTy,
|
|
prop->isInstanceMember()),
|
|
};
|
|
Builder.CreateCall(protocol_addMethodDescription, setterArgs);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class PrettySourceFileEmission : public llvm::PrettyStackTraceEntry {
|
|
const SourceFile &SF;
|
|
public:
|
|
explicit PrettySourceFileEmission(const SourceFile &SF) : SF(SF) {}
|
|
|
|
void print(raw_ostream &os) const override {
|
|
os << "While emitting IR for source file " << SF.getFilename() << '\n';
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Emit all the top-level code in the source file.
|
|
void IRGenModule::emitSourceFile(SourceFile &SF, unsigned StartElem) {
|
|
PrettySourceFileEmission StackEntry(SF);
|
|
llvm::SaveAndRestore<SourceFile *> SetCurSourceFile(CurSourceFile, &SF);
|
|
|
|
// Emit types and other global decls.
|
|
for (unsigned i = StartElem, e = SF.Decls.size(); i != e; ++i)
|
|
emitGlobalDecl(SF.Decls[i]);
|
|
for (auto *localDecl : SF.LocalTypeDecls)
|
|
emitGlobalDecl(localDecl);
|
|
|
|
SF.forAllVisibleModules([&](swift::ModuleDecl::ImportedModule import) {
|
|
swift::ModuleDecl *next = import.second;
|
|
if (next->getName() == SF.getParentModule()->getName())
|
|
return;
|
|
|
|
next->collectLinkLibraries([this](LinkLibrary linkLib) {
|
|
this->addLinkLibrary(linkLib);
|
|
});
|
|
});
|
|
|
|
if (ObjCInterop)
|
|
this->addLinkLibrary(LinkLibrary("objc", LibraryKind::Library));
|
|
}
|
|
|
|
/// Collect elements of an already-existing global list with the given
|
|
/// \c name into \c list.
|
|
///
|
|
/// We use this when Clang code generation might populate the list.
|
|
static void collectGlobalList(IRGenModule &IGM,
|
|
SmallVectorImpl<llvm::WeakTrackingVH> &list,
|
|
StringRef name) {
|
|
if (auto *existing = IGM.Module.getGlobalVariable(name)) {
|
|
auto *globals = cast<llvm::ConstantArray>(existing->getInitializer());
|
|
for (auto &use : globals->operands()) {
|
|
auto *global = use.get();
|
|
list.push_back(global);
|
|
}
|
|
existing->eraseFromParent();
|
|
}
|
|
|
|
std::for_each(list.begin(), list.end(),
|
|
[](const llvm::WeakTrackingVH &global) {
|
|
assert(!isa<llvm::GlobalValue>(global) ||
|
|
!cast<llvm::GlobalValue>(global)->isDeclaration() &&
|
|
"all globals in the 'used' list must be definitions");
|
|
});
|
|
}
|
|
|
|
/// Emit a global list, i.e. a global constant array holding all of a
|
|
/// list of values. Generally these lists are for various LLVM
|
|
/// metadata or runtime purposes.
|
|
static llvm::GlobalVariable *
|
|
emitGlobalList(IRGenModule &IGM, ArrayRef<llvm::WeakTrackingVH> handles,
|
|
StringRef name, StringRef section,
|
|
llvm::GlobalValue::LinkageTypes linkage,
|
|
llvm::Type *eltTy,
|
|
bool isConstant) {
|
|
// Do nothing if the list is empty.
|
|
if (handles.empty()) return nullptr;
|
|
|
|
// For global lists that actually get linked (as opposed to notional
|
|
// ones like @llvm.used), it's important to set an explicit alignment
|
|
// so that the linker doesn't accidentally put padding in the list.
|
|
Alignment alignment = IGM.getPointerAlignment();
|
|
|
|
// We have an array of value handles, but we need an array of constants.
|
|
SmallVector<llvm::Constant*, 8> elts;
|
|
elts.reserve(handles.size());
|
|
for (auto &handle : handles) {
|
|
auto elt = cast<llvm::Constant>(&*handle);
|
|
if (elt->getType() != eltTy)
|
|
elt = llvm::ConstantExpr::getBitCast(elt, eltTy);
|
|
elts.push_back(elt);
|
|
}
|
|
|
|
auto varTy = llvm::ArrayType::get(eltTy, elts.size());
|
|
auto init = llvm::ConstantArray::get(varTy, elts);
|
|
auto var = new llvm::GlobalVariable(IGM.Module, varTy, isConstant, linkage,
|
|
init, name);
|
|
var->setSection(section);
|
|
var->setAlignment(alignment.getValue());
|
|
|
|
// Mark the variable as used if doesn't have external linkage.
|
|
// (Note that we'd specifically like to not put @llvm.used in itself.)
|
|
if (llvm::GlobalValue::isLocalLinkage(linkage))
|
|
IGM.addUsedGlobal(var);
|
|
return var;
|
|
}
|
|
|
|
void IRGenModule::emitRuntimeRegistration() {
|
|
// Duck out early if we have nothing to register.
|
|
if (SwiftProtocols.empty() && ProtocolConformances.empty() &&
|
|
RuntimeResolvableTypes.empty() &&
|
|
(!ObjCInterop || (ObjCProtocols.empty() && ObjCClasses.empty() &&
|
|
ObjCCategoryDecls.empty())) &&
|
|
FieldDescriptors.empty())
|
|
return;
|
|
|
|
// Find the entry point.
|
|
SILFunction *EntryPoint =
|
|
getSILModule().lookUpFunction(SWIFT_ENTRY_POINT_FUNCTION);
|
|
|
|
// If we're debugging (and not in the REPL), we don't have a
|
|
// main. Find a function marked with the LLDBDebuggerFunction
|
|
// attribute instead.
|
|
if (!EntryPoint && Context.LangOpts.DebuggerSupport) {
|
|
for (SILFunction &SF : getSILModule()) {
|
|
if (SF.hasLocation()) {
|
|
if (Decl* D = SF.getLocation().getAsASTNode<Decl>()) {
|
|
if (auto *FD = dyn_cast<FuncDecl>(D)) {
|
|
if (FD->getAttrs().hasAttribute<LLDBDebuggerFunctionAttr>()) {
|
|
EntryPoint = &SF;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!EntryPoint)
|
|
return;
|
|
|
|
llvm::Function *EntryFunction = Module.getFunction(EntryPoint->getName());
|
|
if (!EntryFunction)
|
|
return;
|
|
|
|
// Create a new function to contain our logic.
|
|
auto fnTy = llvm::FunctionType::get(VoidTy, /*varArg*/ false);
|
|
auto RegistrationFunction = llvm::Function::Create(fnTy,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
"runtime_registration",
|
|
getModule());
|
|
RegistrationFunction->setAttributes(constructInitialAttributes());
|
|
|
|
// Insert a call into the entry function.
|
|
{
|
|
llvm::BasicBlock *EntryBB = &EntryFunction->getEntryBlock();
|
|
llvm::BasicBlock::iterator IP = EntryBB->getFirstInsertionPt();
|
|
IRBuilder Builder(getLLVMContext(),
|
|
DebugInfo && !Context.LangOpts.DebuggerSupport);
|
|
Builder.llvm::IRBuilderBase::SetInsertPoint(EntryBB, IP);
|
|
if (DebugInfo && !Context.LangOpts.DebuggerSupport)
|
|
DebugInfo->setEntryPointLoc(Builder);
|
|
Builder.CreateCall(RegistrationFunction, {});
|
|
}
|
|
|
|
IRGenFunction RegIGF(*this, RegistrationFunction);
|
|
if (DebugInfo && !Context.LangOpts.DebuggerSupport)
|
|
DebugInfo->emitArtificialFunction(RegIGF, RegistrationFunction);
|
|
|
|
// Register ObjC protocols, classes, and extensions we added.
|
|
if (ObjCInterop) {
|
|
if (!ObjCProtocols.empty()) {
|
|
// We need to initialize ObjC protocols in inheritance order, parents
|
|
// first.
|
|
|
|
llvm::DenseSet<ProtocolDecl*> protos;
|
|
for (auto &proto : ObjCProtocols)
|
|
protos.insert(proto.first);
|
|
|
|
llvm::SmallVector<ProtocolDecl*, 4> protoInitOrder;
|
|
|
|
std::function<void(ProtocolDecl*)> orderProtocol
|
|
= [&](ProtocolDecl *proto) {
|
|
// Recursively put parents first.
|
|
for (auto parent : proto->getInheritedProtocols())
|
|
orderProtocol(parent);
|
|
|
|
// Skip if we don't need to reify this protocol.
|
|
auto found = protos.find(proto);
|
|
if (found == protos.end())
|
|
return;
|
|
protos.erase(found);
|
|
protoInitOrder.push_back(proto);
|
|
};
|
|
|
|
while (!protos.empty()) {
|
|
orderProtocol(*protos.begin());
|
|
}
|
|
|
|
// Visit the protocols in the order we established.
|
|
for (auto *proto : protoInitOrder) {
|
|
ObjCProtocolInitializerVisitor(RegIGF)
|
|
.visitMembers(proto);
|
|
}
|
|
}
|
|
|
|
for (llvm::WeakTrackingVH &ObjCClass : ObjCClasses) {
|
|
RegIGF.Builder.CreateCall(getInstantiateObjCClassFn(), {ObjCClass});
|
|
}
|
|
|
|
for (ExtensionDecl *ext : ObjCCategoryDecls) {
|
|
CategoryInitializerVisitor(RegIGF, ext).visitMembers(ext);
|
|
}
|
|
}
|
|
|
|
// Register Swift protocols if we added any.
|
|
if (!SwiftProtocols.empty()) {
|
|
llvm::Constant *protocols = emitSwiftProtocols();
|
|
|
|
llvm::Constant *beginIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
};
|
|
auto begin = llvm::ConstantExpr::getGetElementPtr(
|
|
/*Ty=*/nullptr, protocols, beginIndices);
|
|
llvm::Constant *endIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, SwiftProtocols.size()),
|
|
};
|
|
auto end = llvm::ConstantExpr::getGetElementPtr(
|
|
/*Ty=*/nullptr, protocols, endIndices);
|
|
|
|
RegIGF.Builder.CreateCall(getRegisterProtocolsFn(), {begin, end});
|
|
}
|
|
|
|
// Register Swift protocol conformances if we added any.
|
|
if (!ProtocolConformances.empty()) {
|
|
|
|
llvm::Constant *conformances = emitProtocolConformances();
|
|
|
|
llvm::Constant *beginIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
};
|
|
auto begin = llvm::ConstantExpr::getGetElementPtr(
|
|
/*Ty=*/nullptr, conformances, beginIndices);
|
|
llvm::Constant *endIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, ProtocolConformances.size()),
|
|
};
|
|
auto end = llvm::ConstantExpr::getGetElementPtr(
|
|
/*Ty=*/nullptr, conformances, endIndices);
|
|
|
|
RegIGF.Builder.CreateCall(getRegisterProtocolConformancesFn(), {begin, end});
|
|
}
|
|
|
|
if (!RuntimeResolvableTypes.empty()) {
|
|
llvm::Constant *records = emitTypeMetadataRecords();
|
|
|
|
llvm::Constant *beginIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
};
|
|
auto begin = llvm::ConstantExpr::getGetElementPtr(
|
|
/*Ty=*/nullptr, records, beginIndices);
|
|
llvm::Constant *endIndices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, RuntimeResolvableTypes.size()),
|
|
};
|
|
auto end = llvm::ConstantExpr::getGetElementPtr(
|
|
/*Ty=*/nullptr, records, endIndices);
|
|
|
|
RegIGF.Builder.CreateCall(getRegisterTypeMetadataRecordsFn(), {begin, end});
|
|
}
|
|
|
|
if (!FieldDescriptors.empty()) {
|
|
auto *records = emitFieldDescriptors();
|
|
auto *begin =
|
|
llvm::ConstantExpr::getBitCast(records, FieldDescriptorPtrPtrTy);
|
|
auto *size = llvm::ConstantInt::get(SizeTy, FieldDescriptors.size());
|
|
RegIGF.Builder.CreateCall(getRegisterFieldDescriptorsFn(), {begin, size});
|
|
}
|
|
|
|
RegIGF.Builder.CreateRetVoid();
|
|
}
|
|
|
|
/// Return the address of the context descriptor representing the given
|
|
/// decl context.
|
|
///
|
|
/// For a nominal type context, this returns the address of the nominal type
|
|
/// descriptor.
|
|
/// For an extension context, this returns the address of the extension
|
|
/// context descriptor.
|
|
/// For a module or file unit context, this returns the address of the module
|
|
/// context descriptor.
|
|
/// For any other kind of context, this returns an anonymous context descriptor
|
|
/// for the context.
|
|
ConstantReference
|
|
IRGenModule::getAddrOfParentContextDescriptor(DeclContext *from) {
|
|
// Some types get special treatment.
|
|
if (auto Type = dyn_cast<NominalTypeDecl>(from)) {
|
|
// Use a special module context if we have one.
|
|
if (auto context = Mangle::ASTMangler::getSpecialManglingContext(Type)) {
|
|
switch (*context) {
|
|
case Mangle::ASTMangler::ObjCContext:
|
|
return {getAddrOfObjCModuleContextDescriptor(),
|
|
ConstantReference::Direct};
|
|
case Mangle::ASTMangler::ClangImporterContext:
|
|
return {getAddrOfClangImporterModuleContextDescriptor(),
|
|
ConstantReference::Direct};
|
|
}
|
|
}
|
|
|
|
// Wrap up private types in an anonymous context for the containing file
|
|
// unit so that the runtime knows they have unstable identity.
|
|
if (Type->isOutermostPrivateOrFilePrivateScope())
|
|
return {getAddrOfAnonymousContextDescriptor(Type),
|
|
ConstantReference::Direct};
|
|
}
|
|
|
|
auto parent = from->getParent();
|
|
|
|
switch (parent->getContextKind()) {
|
|
case DeclContextKind::AbstractClosureExpr:
|
|
case DeclContextKind::AbstractFunctionDecl:
|
|
case DeclContextKind::SubscriptDecl:
|
|
case DeclContextKind::TopLevelCodeDecl:
|
|
case DeclContextKind::Initializer:
|
|
case DeclContextKind::SerializedLocal:
|
|
return {getAddrOfAnonymousContextDescriptor(from),
|
|
ConstantReference::Direct};
|
|
|
|
case DeclContextKind::GenericTypeDecl:
|
|
if (auto nomTy = dyn_cast<NominalTypeDecl>(parent)) {
|
|
return {getAddrOfTypeContextDescriptor(nomTy, DontRequireMetadata),
|
|
ConstantReference::Direct};
|
|
}
|
|
return {getAddrOfAnonymousContextDescriptor(from),
|
|
ConstantReference::Direct};
|
|
|
|
case DeclContextKind::ExtensionDecl: {
|
|
auto ext = cast<ExtensionDecl>(parent);
|
|
// If the extension is equivalent to its extended context (that is, it's
|
|
// in the same module as the original non-protocol type and
|
|
// has no constraints), then we can use the original nominal type context
|
|
// (assuming there is one).
|
|
if (ext->isEquivalentToExtendedContext()) {
|
|
auto nominal = ext->getExtendedType()->getAnyNominal();
|
|
// If the extended type is an ObjC class, it won't have a nominal type
|
|
// descriptor, so we'll just emit an extension context.
|
|
auto clas = dyn_cast<ClassDecl>(nominal);
|
|
if (!clas || clas->isForeign() || hasKnownSwiftMetadata(*this, clas)) {
|
|
// Some targets don't support relative references to undefined symbols.
|
|
// If the extension is in a different file from the original type
|
|
// declaration, it may not get emitted in this TU. Use an indirect
|
|
// reference to work around the object format limitation.
|
|
auto shouldBeIndirect =
|
|
parent->getModuleScopeContext() != from->getModuleScopeContext()
|
|
? ConstantReference::Indirect
|
|
: ConstantReference::Direct;
|
|
|
|
return getAddrOfLLVMVariableOrGOTEquivalent(
|
|
LinkEntity::forNominalTypeDescriptor(nominal),
|
|
Alignment(4),
|
|
TypeContextDescriptorTy,
|
|
shouldBeIndirect);
|
|
}
|
|
}
|
|
return {getAddrOfExtensionContextDescriptor(ext),
|
|
ConstantReference::Direct};
|
|
}
|
|
|
|
case DeclContextKind::FileUnit:
|
|
parent = parent->getParentModule();
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case DeclContextKind::Module:
|
|
return {getAddrOfModuleContextDescriptor(cast<ModuleDecl>(parent)),
|
|
ConstantReference::Direct};
|
|
}
|
|
}
|
|
|
|
/// Add the given global value to @llvm.used.
|
|
///
|
|
/// This value must have a definition by the time the module is finalized.
|
|
void IRGenModule::addUsedGlobal(llvm::GlobalValue *global) {
|
|
LLVMUsed.push_back(global);
|
|
}
|
|
|
|
/// Add the given global value to @llvm.compiler.used.
|
|
///
|
|
/// This value must have a definition by the time the module is finalized.
|
|
void IRGenModule::addCompilerUsedGlobal(llvm::GlobalValue *global) {
|
|
LLVMCompilerUsed.push_back(global);
|
|
}
|
|
|
|
/// Add the given global value to the Objective-C class list.
|
|
void IRGenModule::addObjCClass(llvm::Constant *classPtr, bool nonlazy) {
|
|
ObjCClasses.push_back(classPtr);
|
|
if (nonlazy)
|
|
ObjCNonLazyClasses.push_back(classPtr);
|
|
}
|
|
|
|
void IRGenModule::addRuntimeResolvableType(NominalTypeDecl *nominal) {
|
|
// Collect the nominal type records we emit into a special section.
|
|
RuntimeResolvableTypes.push_back(nominal);
|
|
|
|
// As soon as the type metadata is available, all the type's conformances
|
|
// must be available, too. The reason is that a type (with the help of its
|
|
// metadata) can be checked at runtime if it conforms to a protocol.
|
|
addLazyConformances(nominal);
|
|
}
|
|
|
|
ConstantReference
|
|
IRGenModule::getConstantReferenceForProtocolDescriptor(ProtocolDecl *proto) {
|
|
if (proto->isObjC()) {
|
|
// ObjC protocol descriptors don't have a unique address, but get uniqued
|
|
// by the Objective-C runtime at load time.
|
|
// Get the indirected address of the protocol descriptor reference variable
|
|
// that the ObjC runtime uniques.
|
|
auto refVar = getAddrOfObjCProtocolRef(proto, NotForDefinition);
|
|
return ConstantReference(refVar, ConstantReference::Indirect);
|
|
}
|
|
|
|
// Try to form a direct reference to the nominal type descriptor if it's in
|
|
// the same binary, or use the GOT entry if it's from another binary.
|
|
return getAddrOfLLVMVariableOrGOTEquivalent(
|
|
LinkEntity::forProtocolDescriptor(proto),
|
|
getPointerAlignment(),
|
|
ProtocolDescriptorStructTy);
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getAddrOfAssociatedTypeGenericParamRef(
|
|
GenericSignature *sig,
|
|
CanDependentMemberType dmt) {
|
|
llvm::SmallVector<AssociatedTypeDecl *, 4> assocTypePath;
|
|
|
|
// Get the base ordinal.
|
|
auto baseDMT = dmt;
|
|
CanType base;
|
|
do {
|
|
base = baseDMT.getBase();
|
|
assocTypePath.push_back(baseDMT->getAssocType());
|
|
baseDMT = dyn_cast<DependentMemberType>(base);
|
|
} while (baseDMT);
|
|
auto ordinal = sig->getGenericParamOrdinal(cast<GenericTypeParamType>(base));
|
|
|
|
// Generate a symbol name for the descriptor. This is a private symbol, so
|
|
// isn't ABI, but is useful for ODR coalescing within the same binary.
|
|
IRGenMangler Mangler;
|
|
auto symbolName = Mangler
|
|
.mangleAssociatedTypeGenericParamRef(ordinal, dmt);
|
|
|
|
// Use an existing definition if we have one.
|
|
if (auto existingVar = Module.getGlobalVariable(symbolName))
|
|
return existingVar;
|
|
|
|
// Otherwise, build the reference path.
|
|
ConstantInitBuilder builder(*this);
|
|
auto B = builder.beginStruct();
|
|
B.addInt32(ordinal << 1);
|
|
|
|
for (auto *assocType : reversed(assocTypePath)) {
|
|
auto proto = getConstantReferenceForProtocolDescriptor(
|
|
assocType->getProtocol());
|
|
B.addRelativeAddress(proto);
|
|
|
|
// Find the offset of the associated type entry in witness tables of this
|
|
// protocol.
|
|
auto &protoInfo = getProtocolInfo(assocType->getProtocol());
|
|
auto index = protoInfo.getAssociatedTypeIndex(AssociatedType(assocType))
|
|
.getValue();
|
|
|
|
B.addInt32(index);
|
|
}
|
|
|
|
// Null terminator.
|
|
B.addInt32(0);
|
|
|
|
auto var = B.finishAndCreateGlobal(symbolName, Alignment(4),
|
|
/*constant*/ true);
|
|
var->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
|
|
var->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
setTrueConstGlobal(var);
|
|
return var;
|
|
}
|
|
|
|
void IRGenModule::addLazyConformances(NominalTypeDecl *Nominal) {
|
|
for (const ProtocolConformance *Conf : Nominal->getAllConformances()) {
|
|
IRGen.addLazyWitnessTable(Conf);
|
|
}
|
|
}
|
|
|
|
std::string IRGenModule::GetObjCSectionName(StringRef Section,
|
|
StringRef MachOAttributes) {
|
|
assert(Section.substr(0, 2) == "__" && "expected the name to begin with __");
|
|
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::UnknownObjectFormat:
|
|
llvm_unreachable("must know the object file format");
|
|
case llvm::Triple::MachO:
|
|
return MachOAttributes.empty()
|
|
? ("__DATA," + Section).str()
|
|
: ("__DATA," + Section + "," + MachOAttributes).str();
|
|
case llvm::Triple::ELF:
|
|
return Section.substr(2).str();
|
|
case llvm::Triple::COFF:
|
|
return ("." + Section.substr(2) + "$B").str();
|
|
case llvm::Triple::Wasm:
|
|
error(SourceLoc(), "wasm is not a supported object file format");
|
|
}
|
|
|
|
llvm_unreachable("unexpected object file format");
|
|
}
|
|
|
|
void IRGenModule::SetCStringLiteralSection(llvm::GlobalVariable *GV,
|
|
ObjCLabelType Type) {
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::UnknownObjectFormat:
|
|
llvm_unreachable("must know the object file format");
|
|
case llvm::Triple::MachO:
|
|
switch (Type) {
|
|
case ObjCLabelType::ClassName:
|
|
GV->setSection("__TEXT,__objc_classname,cstring_literals");
|
|
return;
|
|
case ObjCLabelType::MethodVarName:
|
|
GV->setSection("__TEXT,__objc_methname,cstring_literals");
|
|
return;
|
|
case ObjCLabelType::MethodVarType:
|
|
GV->setSection("__TEXT,__objc_methtype,cstring_literals");
|
|
return;
|
|
case ObjCLabelType::PropertyName:
|
|
GV->setSection("__TEXT,__cstring,cstring_literals");
|
|
return;
|
|
}
|
|
case llvm::Triple::ELF:
|
|
return;
|
|
case llvm::Triple::COFF:
|
|
return;
|
|
case llvm::Triple::Wasm:
|
|
error(SourceLoc(), "wasm is not a supported object file format");
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unexpected object file format");
|
|
}
|
|
|
|
void IRGenModule::emitGlobalLists() {
|
|
if (ObjCInterop) {
|
|
// Objective-C class references go in a variable with a meaningless
|
|
// name but a magic section.
|
|
emitGlobalList(*this, ObjCClasses, "objc_classes",
|
|
GetObjCSectionName("__objc_classlist",
|
|
"regular,no_dead_strip"),
|
|
llvm::GlobalValue::InternalLinkage, Int8PtrTy, false);
|
|
|
|
// So do categories.
|
|
emitGlobalList(*this, ObjCCategories, "objc_categories",
|
|
GetObjCSectionName("__objc_catlist",
|
|
"regular,no_dead_strip"),
|
|
llvm::GlobalValue::InternalLinkage, Int8PtrTy, false);
|
|
|
|
// Emit nonlazily realized class references in a second magic section to make
|
|
// sure they are realized by the Objective-C runtime before any instances
|
|
// are allocated.
|
|
emitGlobalList(*this, ObjCNonLazyClasses, "objc_non_lazy_classes",
|
|
GetObjCSectionName("__objc_nlclslist",
|
|
"regular,no_dead_strip"),
|
|
llvm::GlobalValue::InternalLinkage, Int8PtrTy, false);
|
|
}
|
|
|
|
// @llvm.used
|
|
|
|
// Collect llvm.used globals already in the module (coming from ClangCodeGen).
|
|
collectGlobalList(*this, LLVMUsed, "llvm.used");
|
|
emitGlobalList(*this, LLVMUsed, "llvm.used", "llvm.metadata",
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
Int8PtrTy,
|
|
false);
|
|
|
|
// Collect llvm.compiler.used globals already in the module (coming
|
|
// from ClangCodeGen).
|
|
collectGlobalList(*this, LLVMCompilerUsed, "llvm.compiler.used");
|
|
emitGlobalList(*this, LLVMCompilerUsed, "llvm.compiler.used", "llvm.metadata",
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
Int8PtrTy,
|
|
false);
|
|
}
|
|
|
|
static bool hasCodeCoverageInstrumentation(SILFunction &f, SILModule &m) {
|
|
return f.getProfiler() && m.getOptions().EmitProfileCoverageMapping;
|
|
}
|
|
|
|
void IRGenerator::emitGlobalTopLevel() {
|
|
// Generate order numbers for the functions in the SIL module that
|
|
// correspond to definitions in the LLVM module.
|
|
unsigned nextOrderNumber = 0;
|
|
for (auto &silFn : PrimaryIGM->getSILModule().getFunctions()) {
|
|
// Don't bother adding external declarations to the function order.
|
|
if (!silFn.isDefinition()) continue;
|
|
FunctionOrder.insert(std::make_pair(&silFn, nextOrderNumber++));
|
|
}
|
|
|
|
for (SILGlobalVariable &v : PrimaryIGM->getSILModule().getSILGlobals()) {
|
|
Decl *decl = v.getDecl();
|
|
CurrentIGMPtr IGM = getGenModule(decl ? decl->getDeclContext() : nullptr);
|
|
IGM->emitSILGlobalVariable(&v);
|
|
}
|
|
PrimaryIGM->emitCoverageMapping();
|
|
|
|
// Emit SIL functions.
|
|
for (SILFunction &f : PrimaryIGM->getSILModule()) {
|
|
// Eagerly emit functions that are externally visible. Functions with code
|
|
// coverage instrumentation must also be eagerly emitted.
|
|
if (!f.isPossiblyUsedExternally() &&
|
|
!hasCodeCoverageInstrumentation(f, PrimaryIGM->getSILModule()))
|
|
continue;
|
|
|
|
CurrentIGMPtr IGM = getGenModule(&f);
|
|
IGM->emitSILFunction(&f);
|
|
}
|
|
|
|
// Emit static initializers.
|
|
for (auto Iter : *this) {
|
|
IRGenModule *IGM = Iter.second;
|
|
IGM->emitSILStaticInitializers();
|
|
}
|
|
|
|
// Emit witness tables.
|
|
for (SILWitnessTable &wt : PrimaryIGM->getSILModule().getWitnessTableList()) {
|
|
CurrentIGMPtr IGM = getGenModule(wt.getConformance()->getDeclContext());
|
|
if (!canEmitWitnessTableLazily(&wt)) {
|
|
IGM->emitSILWitnessTable(&wt);
|
|
}
|
|
}
|
|
|
|
for (auto Iter : *this) {
|
|
IRGenModule *IGM = Iter.second;
|
|
IGM->finishEmitAfterTopLevel();
|
|
}
|
|
}
|
|
|
|
void IRGenModule::finishEmitAfterTopLevel() {
|
|
// Emit the implicit import of the swift standard library.
|
|
if (DebugInfo) {
|
|
std::pair<swift::Identifier, swift::SourceLoc> AccessPath[] = {
|
|
{ Context.StdlibModuleName, swift::SourceLoc() }
|
|
};
|
|
|
|
auto Imp = ImportDecl::create(Context,
|
|
getSwiftModule(),
|
|
SourceLoc(),
|
|
ImportKind::Module, SourceLoc(),
|
|
AccessPath);
|
|
DebugInfo->emitImport(Imp);
|
|
}
|
|
}
|
|
|
|
void IRGenerator::emitSwiftProtocols() {
|
|
for (auto &m : *this) {
|
|
m.second->emitSwiftProtocols();
|
|
}
|
|
}
|
|
|
|
void IRGenerator::emitProtocolConformances() {
|
|
for (auto &m : *this) {
|
|
m.second->emitProtocolConformances();
|
|
}
|
|
}
|
|
|
|
void IRGenerator::emitTypeMetadataRecords() {
|
|
for (auto &m : *this) {
|
|
m.second->emitTypeMetadataRecords();
|
|
}
|
|
}
|
|
|
|
/// Emit any lazy definitions (of globals or functions or whatever
|
|
/// else) that we require.
|
|
void IRGenerator::emitLazyDefinitions() {
|
|
while (!LazyTypeMetadata.empty() ||
|
|
!LazyTypeContextDescriptors.empty() ||
|
|
!LazyFunctionDefinitions.empty() ||
|
|
!LazyFieldTypes.empty() ||
|
|
!LazyWitnessTables.empty()) {
|
|
|
|
while (!LazyFieldTypes.empty()) {
|
|
auto info = LazyFieldTypes.pop_back_val();
|
|
auto &IGM = *info.IGM;
|
|
|
|
for (auto fieldType : info.fieldTypes) {
|
|
if (fieldType->hasArchetype())
|
|
continue;
|
|
|
|
// All of the required attributes are going to be preserved
|
|
// by field reflection metadata in the mangled name, so
|
|
// there is no need to worry about ownership semantics here.
|
|
if (auto refStorTy = dyn_cast<ReferenceStorageType>(fieldType))
|
|
fieldType = refStorTy.getReferentType();
|
|
|
|
// Make sure that all of the field type metadata is forced,
|
|
// otherwise there might be a problem when fields are accessed
|
|
// through reflection.
|
|
(void)irgen::getOrCreateTypeMetadataAccessFunction(IGM, fieldType);
|
|
}
|
|
}
|
|
|
|
// Emit any lazy type metadata we require.
|
|
while (!LazyTypeMetadata.empty()) {
|
|
NominalTypeDecl *type = LazyTypeMetadata.pop_back_val();
|
|
auto &entry = LazyTypeGlobals.find(type)->second;
|
|
assert(entry.IsLazy && entry.IsMetadataUsed && !entry.IsMetadataEmitted);
|
|
entry.IsMetadataEmitted = true;
|
|
CurrentIGMPtr IGM = getGenModule(type->getDeclContext());
|
|
emitLazyTypeMetadata(*IGM.get(), type);
|
|
}
|
|
while (!LazyTypeContextDescriptors.empty()) {
|
|
NominalTypeDecl *type = LazyTypeContextDescriptors.pop_back_val();
|
|
auto &entry = LazyTypeGlobals.find(type)->second;
|
|
assert(entry.IsLazy && entry.IsDescriptorUsed &&
|
|
!entry.IsDescriptorEmitted);
|
|
entry.IsDescriptorEmitted = true;
|
|
CurrentIGMPtr IGM = getGenModule(type->getDeclContext());
|
|
emitLazyTypeContextDescriptor(*IGM.get(), type,
|
|
RequireMetadata_t(entry.IsMetadataUsed));
|
|
}
|
|
while (!LazyWitnessTables.empty()) {
|
|
SILWitnessTable *wt = LazyWitnessTables.pop_back_val();
|
|
CurrentIGMPtr IGM = getGenModule(wt->getConformance()->getDeclContext());
|
|
IGM->emitSILWitnessTable(wt);
|
|
}
|
|
|
|
// Emit any lazy function definitions we require.
|
|
while (!LazyFunctionDefinitions.empty()) {
|
|
SILFunction *f = LazyFunctionDefinitions.pop_back_val();
|
|
CurrentIGMPtr IGM = getGenModule(f);
|
|
assert(!f->isPossiblyUsedExternally()
|
|
&& "function with externally-visible linkage emitted lazily?");
|
|
IGM->emitSILFunction(f);
|
|
}
|
|
}
|
|
}
|
|
|
|
void IRGenerator::noteUseOfTypeGlobals(NominalTypeDecl *type,
|
|
bool isUseOfMetadata,
|
|
RequireMetadata_t requireMetadata) {
|
|
// Try to create a new record of the fact that we used this type.
|
|
auto insertResult = LazyTypeGlobals.try_emplace(type);
|
|
auto &entry = insertResult.first->second;
|
|
|
|
bool metadataWasUsed = entry.IsMetadataUsed;
|
|
bool descriptorWasUsed = entry.IsDescriptorUsed;
|
|
|
|
bool isNovelUseOfMetadata = false;
|
|
bool isNovelUseOfDescriptor = false;
|
|
|
|
// Flag that we have a use of the metadata if
|
|
// - the reference was directly to the metadata
|
|
// - the reference was to the descriptor, but it requested the emission
|
|
// of metadata
|
|
if (!metadataWasUsed && (isUseOfMetadata || requireMetadata)) {
|
|
if (metadataWasUsed) return;
|
|
entry.IsMetadataUsed = true;
|
|
isNovelUseOfMetadata = true;
|
|
}
|
|
|
|
if (!descriptorWasUsed && !isUseOfMetadata) {
|
|
if (descriptorWasUsed) return;
|
|
entry.IsDescriptorUsed = true;
|
|
isNovelUseOfDescriptor = true;
|
|
}
|
|
|
|
// If the type isn't known to be lazy, don't mess around with the queues.
|
|
if (!entry.IsLazy)
|
|
return;
|
|
|
|
// Enqueue metadata emission if we have a novel use of it.
|
|
if (isNovelUseOfMetadata)
|
|
LazyTypeMetadata.push_back(type);
|
|
|
|
// Enqueue descriptor emission if we have a novel use of it or if we
|
|
// need to re-emit it because we're suddenly using metadata for it.
|
|
if (isNovelUseOfDescriptor ||
|
|
(isNovelUseOfMetadata && entry.IsDescriptorEmitted)) {
|
|
entry.IsDescriptorEmitted = false; // clear this in case it was true
|
|
LazyTypeContextDescriptors.push_back(type);
|
|
}
|
|
}
|
|
|
|
void IRGenerator::emitEagerClassInitialization() {
|
|
if (ClassesForEagerInitialization.empty())
|
|
return;
|
|
|
|
// Emit the register function in the primary module.
|
|
IRGenModule *IGM = getPrimaryIGM();
|
|
|
|
llvm::Function *RegisterFn = llvm::Function::Create(
|
|
llvm::FunctionType::get(IGM->VoidTy, false),
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
"_swift_eager_class_initialization");
|
|
IGM->Module.getFunctionList().push_back(RegisterFn);
|
|
IRGenFunction RegisterIGF(*IGM, RegisterFn);
|
|
RegisterFn->setAttributes(IGM->constructInitialAttributes());
|
|
RegisterFn->setCallingConv(IGM->DefaultCC);
|
|
|
|
for (ClassDecl *CD : ClassesForEagerInitialization) {
|
|
Type Ty = CD->getDeclaredType();
|
|
llvm::Value *MetaData = RegisterIGF.emitTypeMetadataRef(getAsCanType(Ty));
|
|
assert(CD->getAttrs().hasAttribute<StaticInitializeObjCMetadataAttr>());
|
|
|
|
// Get the metadata to make sure that the class is registered. We need to
|
|
// add a use (empty inline asm instruction) for the metadata. Otherwise
|
|
// llvm would optimize the metadata accessor call away because it's
|
|
// defined as "readnone".
|
|
llvm::FunctionType *asmFnTy =
|
|
llvm::FunctionType::get(IGM->VoidTy, {MetaData->getType()},
|
|
false /* = isVarArg */);
|
|
llvm::InlineAsm *inlineAsm =
|
|
llvm::InlineAsm::get(asmFnTy, "", "r", true /* = SideEffects */);
|
|
RegisterIGF.Builder.CreateAsmCall(inlineAsm, MetaData);
|
|
}
|
|
RegisterIGF.Builder.CreateRetVoid();
|
|
|
|
// Add the registration function as a static initializer. We use a priority
|
|
// slightly lower than used for C++ global constructors, so that the code is
|
|
// executed before C++ global constructors (in case someone uses archives
|
|
// from a C++ global constructor).
|
|
llvm::appendToGlobalCtors(IGM->Module, RegisterFn, 60000, nullptr);
|
|
}
|
|
|
|
/// Emit symbols for eliminated dead methods, which can still be referenced
|
|
/// from other modules. This happens e.g. if a public class contains a (dead)
|
|
/// private method.
|
|
void IRGenModule::emitVTableStubs() {
|
|
llvm::Function *stub = nullptr;
|
|
for (auto I = getSILModule().zombies_begin();
|
|
I != getSILModule().zombies_end(); ++I) {
|
|
const SILFunction &F = *I;
|
|
if (! F.isExternallyUsedSymbol())
|
|
continue;
|
|
|
|
if (!stub) {
|
|
// Create a single stub function which calls swift_deletedMethodError().
|
|
stub = llvm::Function::Create(llvm::FunctionType::get(VoidTy, false),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
"_swift_dead_method_stub");
|
|
stub->setAttributes(constructInitialAttributes());
|
|
Module.getFunctionList().push_back(stub);
|
|
stub->setCallingConv(DefaultCC);
|
|
auto *entry = llvm::BasicBlock::Create(getLLVMContext(), "entry", stub);
|
|
auto *errorFunc = getDeletedMethodErrorFn();
|
|
llvm::CallInst::Create(errorFunc, ArrayRef<llvm::Value *>(), "", entry);
|
|
new llvm::UnreachableInst(getLLVMContext(), entry);
|
|
}
|
|
|
|
// For each eliminated method symbol create an alias to the stub.
|
|
auto *alias = llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
|
|
F.getName(), stub);
|
|
|
|
if (F.getEffectiveSymbolLinkage() == SILLinkage::Hidden)
|
|
alias->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
|
|
if (useDllStorage())
|
|
alias->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
|
|
}
|
|
}
|
|
|
|
void IRGenModule::emitTypeVerifier() {
|
|
// Look up the types to verify.
|
|
|
|
SmallVector<CanType, 4> TypesToVerify;
|
|
for (auto name : IRGen.Opts.VerifyTypeLayoutNames) {
|
|
// Look up the name in the module.
|
|
SmallVector<ValueDecl*, 1> lookup;
|
|
swift::ModuleDecl *M = getSwiftModule();
|
|
M->lookupMember(lookup, M, DeclName(Context.getIdentifier(name)),
|
|
Identifier());
|
|
if (lookup.empty()) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_not_found,
|
|
name);
|
|
continue;
|
|
}
|
|
|
|
TypeDecl *typeDecl = nullptr;
|
|
for (auto decl : lookup) {
|
|
if (auto td = dyn_cast<TypeDecl>(decl)) {
|
|
if (typeDecl) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_ambiguous,
|
|
name);
|
|
goto next;
|
|
}
|
|
typeDecl = td;
|
|
break;
|
|
}
|
|
}
|
|
if (!typeDecl) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_not_found, name);
|
|
continue;
|
|
}
|
|
|
|
{
|
|
auto type = typeDecl->getDeclaredInterfaceType();
|
|
if (type->hasTypeParameter()) {
|
|
Context.Diags.diagnose(SourceLoc(), diag::type_to_verify_dependent,
|
|
name);
|
|
continue;
|
|
}
|
|
|
|
TypesToVerify.push_back(type->getCanonicalType());
|
|
}
|
|
next:;
|
|
}
|
|
if (TypesToVerify.empty())
|
|
return;
|
|
|
|
// Find the entry point.
|
|
SILFunction *EntryPoint =
|
|
getSILModule().lookUpFunction(SWIFT_ENTRY_POINT_FUNCTION);
|
|
|
|
if (!EntryPoint)
|
|
return;
|
|
|
|
llvm::Function *EntryFunction = Module.getFunction(EntryPoint->getName());
|
|
if (!EntryFunction)
|
|
return;
|
|
|
|
// Create a new function to contain our logic.
|
|
auto fnTy = llvm::FunctionType::get(VoidTy, /*varArg*/ false);
|
|
auto VerifierFunction = llvm::Function::Create(fnTy,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
"type_verifier",
|
|
getModule());
|
|
VerifierFunction->setAttributes(constructInitialAttributes());
|
|
|
|
// Insert a call into the entry function.
|
|
{
|
|
llvm::BasicBlock *EntryBB = &EntryFunction->getEntryBlock();
|
|
llvm::BasicBlock::iterator IP = EntryBB->getFirstInsertionPt();
|
|
IRBuilder Builder(getLLVMContext(), DebugInfo);
|
|
Builder.llvm::IRBuilderBase::SetInsertPoint(EntryBB, IP);
|
|
if (DebugInfo)
|
|
DebugInfo->setEntryPointLoc(Builder);
|
|
Builder.CreateCall(VerifierFunction, {});
|
|
}
|
|
|
|
IRGenTypeVerifierFunction VerifierIGF(*this, VerifierFunction);
|
|
VerifierIGF.emit(TypesToVerify);
|
|
}
|
|
|
|
/// Get SIL-linkage for something that's not required to be visible
|
|
/// and doesn't actually need to be uniqued.
|
|
static SILLinkage getNonUniqueSILLinkage(FormalLinkage linkage,
|
|
ForDefinition_t forDefinition) {
|
|
switch (linkage) {
|
|
case FormalLinkage::PublicUnique:
|
|
case FormalLinkage::PublicNonUnique:
|
|
return (forDefinition ? SILLinkage::Shared : SILLinkage::PublicExternal);
|
|
|
|
case FormalLinkage::HiddenUnique:
|
|
case FormalLinkage::HiddenNonUnique:
|
|
return (forDefinition ? SILLinkage::Shared : SILLinkage::HiddenExternal);
|
|
|
|
case FormalLinkage::Private:
|
|
return SILLinkage::Private;
|
|
}
|
|
llvm_unreachable("bad formal linkage");
|
|
}
|
|
|
|
SILLinkage LinkEntity::getLinkage(ForDefinition_t forDefinition) const {
|
|
// For when `this` is a protocol conformance of some kind.
|
|
auto getLinkageAsConformance = [&] {
|
|
return getLinkageForProtocolConformance(
|
|
getProtocolConformance()->getRootNormalConformance(), forDefinition);
|
|
};
|
|
|
|
switch (getKind()) {
|
|
case Kind::DispatchThunk:
|
|
case Kind::DispatchThunkInitializer:
|
|
case Kind::DispatchThunkAllocator: {
|
|
auto *decl = getDecl();
|
|
|
|
// Protocol requirements don't have their own access control
|
|
if (auto *proto = dyn_cast<ProtocolDecl>(decl->getDeclContext()))
|
|
decl = proto;
|
|
|
|
return getSILLinkage(getDeclLinkage(decl), forDefinition);
|
|
}
|
|
|
|
// Most type metadata depend on the formal linkage of their type.
|
|
case Kind::ValueWitnessTable: {
|
|
auto type = getType();
|
|
|
|
// Builtin types, (), () -> () and so on are in the runtime.
|
|
if (!type.getAnyNominal())
|
|
return getSILLinkage(FormalLinkage::PublicUnique, forDefinition);
|
|
|
|
// Imported types.
|
|
if (getTypeMetadataAccessStrategy(type) ==
|
|
MetadataAccessStrategy::NonUniqueAccessor)
|
|
return SILLinkage::Shared;
|
|
|
|
// Everything else is only referenced inside its module.
|
|
return SILLinkage::Private;
|
|
}
|
|
|
|
case Kind::TypeMetadataInstantiationCache:
|
|
case Kind::TypeMetadataInstantiationFunction:
|
|
case Kind::TypeMetadataPattern:
|
|
return SILLinkage::Private;
|
|
|
|
case Kind::TypeMetadataLazyCacheVariable: {
|
|
auto type = getType();
|
|
|
|
// Imported types, non-primitive structural types.
|
|
if (getTypeMetadataAccessStrategy(type) ==
|
|
MetadataAccessStrategy::NonUniqueAccessor)
|
|
return SILLinkage::Shared;
|
|
|
|
// Everything else is only referenced inside its module.
|
|
return SILLinkage::Private;
|
|
}
|
|
|
|
case Kind::TypeMetadata:
|
|
switch (getMetadataAddress()) {
|
|
case TypeMetadataAddress::FullMetadata:
|
|
// The full metadata object is private to the containing module.
|
|
return SILLinkage::Private;
|
|
case TypeMetadataAddress::AddressPoint: {
|
|
auto *nominal = getType().getAnyNominal();
|
|
return getSILLinkage(nominal
|
|
? getDeclLinkage(nominal)
|
|
: FormalLinkage::PublicUnique,
|
|
forDefinition);
|
|
}
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
|
|
// ...but we don't actually expose individual value witnesses (right now).
|
|
case Kind::ValueWitness:
|
|
return getNonUniqueSILLinkage(getDeclLinkage(getType().getAnyNominal()),
|
|
forDefinition);
|
|
|
|
// Foreign type metadata candidates are always shared; the runtime
|
|
// does the uniquing.
|
|
case Kind::ForeignTypeMetadataCandidate:
|
|
return SILLinkage::Shared;
|
|
|
|
case Kind::TypeMetadataAccessFunction:
|
|
switch (getTypeMetadataAccessStrategy(getType())) {
|
|
case MetadataAccessStrategy::PublicUniqueAccessor:
|
|
return getSILLinkage(FormalLinkage::PublicUnique, forDefinition);
|
|
case MetadataAccessStrategy::HiddenUniqueAccessor:
|
|
return getSILLinkage(FormalLinkage::HiddenUnique, forDefinition);
|
|
case MetadataAccessStrategy::PrivateAccessor:
|
|
return getSILLinkage(FormalLinkage::Private, forDefinition);
|
|
case MetadataAccessStrategy::NonUniqueAccessor:
|
|
return SILLinkage::Shared;
|
|
}
|
|
llvm_unreachable("bad metadata access kind");
|
|
|
|
case Kind::ObjCClassRef:
|
|
return SILLinkage::Private;
|
|
|
|
// Continuation prototypes need to be external or else LLVM will fret.
|
|
case Kind::CoroutineContinuationPrototype:
|
|
return SILLinkage::PublicExternal;
|
|
|
|
case Kind::FieldOffset: {
|
|
auto *varDecl = cast<VarDecl>(getDecl());
|
|
|
|
auto linkage = getDeclLinkage(varDecl);
|
|
|
|
// Resilient classes don't expose field offset symbols.
|
|
if (cast<ClassDecl>(varDecl->getDeclContext())->isResilient()) {
|
|
assert(linkage != FormalLinkage::PublicNonUnique &&
|
|
linkage != FormalLinkage::HiddenNonUnique &&
|
|
"Cannot have a resilient class with non-unique linkage");
|
|
|
|
if (linkage == FormalLinkage::PublicUnique)
|
|
linkage = FormalLinkage::HiddenUnique;
|
|
}
|
|
|
|
return getSILLinkage(linkage, forDefinition);
|
|
}
|
|
|
|
case Kind::ObjCClass:
|
|
case Kind::ObjCMetaclass:
|
|
case Kind::SwiftMetaclassStub:
|
|
case Kind::NominalTypeDescriptor:
|
|
case Kind::PropertyDescriptor:
|
|
case Kind::ClassMetadataBaseOffset:
|
|
case Kind::ProtocolDescriptor:
|
|
return getSILLinkage(getDeclLinkage(getDecl()), forDefinition);
|
|
|
|
case Kind::DirectProtocolWitnessTable:
|
|
case Kind::ProtocolWitnessTableAccessFunction:
|
|
case Kind::ProtocolConformanceDescriptor:
|
|
return getLinkageAsConformance();
|
|
|
|
case Kind::ProtocolWitnessTableLazyAccessFunction:
|
|
case Kind::ProtocolWitnessTableLazyCacheVariable: {
|
|
auto *nominal = getType().getAnyNominal();
|
|
assert(nominal);
|
|
if (getDeclLinkage(nominal) == FormalLinkage::Private ||
|
|
getLinkageAsConformance() == SILLinkage::Private) {
|
|
return SILLinkage::Private;
|
|
} else {
|
|
return SILLinkage::Shared;
|
|
}
|
|
}
|
|
|
|
case Kind::AssociatedTypeMetadataAccessFunction:
|
|
case Kind::AssociatedTypeWitnessTableAccessFunction:
|
|
case Kind::GenericProtocolWitnessTableCache:
|
|
case Kind::GenericProtocolWitnessTableInstantiationFunction:
|
|
return SILLinkage::Private;
|
|
|
|
case Kind::SILFunction:
|
|
return getSILFunction()->getEffectiveSymbolLinkage();
|
|
|
|
case Kind::SILGlobalVariable:
|
|
return getSILGlobalVariable()->getLinkage();
|
|
|
|
case Kind::ReflectionBuiltinDescriptor:
|
|
case Kind::ReflectionFieldDescriptor: {
|
|
// Reflection descriptors for imported types have shared linkage,
|
|
// since we may emit them in other TUs in the same module.
|
|
if (auto *nominal = getType().getAnyNominal())
|
|
if (getDeclLinkage(nominal) == FormalLinkage::PublicNonUnique)
|
|
return SILLinkage::Shared;
|
|
return SILLinkage::Private;
|
|
}
|
|
case Kind::ReflectionAssociatedTypeDescriptor:
|
|
if (getLinkageAsConformance() == SILLinkage::Shared)
|
|
return SILLinkage::Shared;
|
|
return SILLinkage::Private;
|
|
|
|
case Kind::ModuleDescriptor:
|
|
case Kind::ExtensionDescriptor:
|
|
case Kind::AnonymousDescriptor:
|
|
return SILLinkage::Shared;
|
|
}
|
|
llvm_unreachable("bad link entity kind");
|
|
}
|
|
|
|
static bool isAvailableExternally(IRGenModule &IGM, const DeclContext *dc) {
|
|
dc = dc->getModuleScopeContext();
|
|
if (isa<ClangModuleUnit>(dc) ||
|
|
dc == IGM.getSILModule().getAssociatedContext())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool isAvailableExternally(IRGenModule &IGM, const Decl *decl) {
|
|
return isAvailableExternally(IGM, decl->getDeclContext());
|
|
}
|
|
|
|
static bool isAvailableExternally(IRGenModule &IGM, Type type) {
|
|
if (auto decl = type->getAnyNominal())
|
|
return isAvailableExternally(IGM, decl->getDeclContext());
|
|
return true;
|
|
}
|
|
|
|
bool LinkEntity::isAvailableExternally(IRGenModule &IGM) const {
|
|
switch (getKind()) {
|
|
case Kind::DispatchThunk:
|
|
case Kind::DispatchThunkInitializer:
|
|
case Kind::DispatchThunkAllocator:
|
|
return ::isAvailableExternally(IGM, getDecl());
|
|
|
|
case Kind::ValueWitnessTable:
|
|
case Kind::TypeMetadata:
|
|
return ::isAvailableExternally(IGM, getType());
|
|
|
|
case Kind::ForeignTypeMetadataCandidate:
|
|
assert(!::isAvailableExternally(IGM, getType()));
|
|
return false;
|
|
|
|
case Kind::ObjCClass:
|
|
case Kind::ObjCMetaclass:
|
|
// FIXME: Removing this triggers a linker bug
|
|
return true;
|
|
|
|
case Kind::SwiftMetaclassStub:
|
|
case Kind::ClassMetadataBaseOffset:
|
|
case Kind::PropertyDescriptor:
|
|
case Kind::NominalTypeDescriptor:
|
|
case Kind::ProtocolDescriptor:
|
|
return ::isAvailableExternally(IGM, getDecl());
|
|
|
|
case Kind::DirectProtocolWitnessTable:
|
|
case Kind::ProtocolConformanceDescriptor:
|
|
return ::isAvailableExternally(IGM, getProtocolConformance()->getDeclContext());
|
|
|
|
case Kind::ObjCClassRef:
|
|
case Kind::ModuleDescriptor:
|
|
case Kind::ExtensionDescriptor:
|
|
case Kind::AnonymousDescriptor:
|
|
case Kind::TypeMetadataInstantiationCache:
|
|
case Kind::TypeMetadataInstantiationFunction:
|
|
case Kind::TypeMetadataPattern:
|
|
return false;
|
|
|
|
case Kind::ValueWitness:
|
|
case Kind::TypeMetadataAccessFunction:
|
|
case Kind::TypeMetadataLazyCacheVariable:
|
|
case Kind::FieldOffset:
|
|
case Kind::ProtocolWitnessTableAccessFunction:
|
|
case Kind::ProtocolWitnessTableLazyAccessFunction:
|
|
case Kind::ProtocolWitnessTableLazyCacheVariable:
|
|
case Kind::AssociatedTypeMetadataAccessFunction:
|
|
case Kind::AssociatedTypeWitnessTableAccessFunction:
|
|
case Kind::GenericProtocolWitnessTableCache:
|
|
case Kind::GenericProtocolWitnessTableInstantiationFunction:
|
|
case Kind::SILFunction:
|
|
case Kind::SILGlobalVariable:
|
|
case Kind::ReflectionBuiltinDescriptor:
|
|
case Kind::ReflectionFieldDescriptor:
|
|
case Kind::ReflectionAssociatedTypeDescriptor:
|
|
case Kind::CoroutineContinuationPrototype:
|
|
llvm_unreachable("Relative reference to unsupported link entity");
|
|
}
|
|
llvm_unreachable("bad link entity kind");
|
|
}
|
|
|
|
static std::tuple<llvm::GlobalValue::LinkageTypes,
|
|
llvm::GlobalValue::VisibilityTypes,
|
|
llvm::GlobalValue::DLLStorageClassTypes>
|
|
getIRLinkage(const UniversalLinkageInfo &info, SILLinkage linkage,
|
|
ForDefinition_t isDefinition,
|
|
bool isWeakImported) {
|
|
#define RESULT(LINKAGE, VISIBILITY, DLL_STORAGE) \
|
|
std::make_tuple(llvm::GlobalValue::LINKAGE##Linkage, \
|
|
llvm::GlobalValue::VISIBILITY##Visibility, \
|
|
llvm::GlobalValue::DLL_STORAGE##StorageClass)
|
|
|
|
// Use protected visibility for public symbols we define on ELF. ld.so
|
|
// doesn't support relative relocations at load time, which interferes with
|
|
// our metadata formats. Default visibility should suffice for other object
|
|
// formats.
|
|
llvm::GlobalValue::VisibilityTypes PublicDefinitionVisibility =
|
|
info.IsELFObject ? llvm::GlobalValue::ProtectedVisibility
|
|
: llvm::GlobalValue::DefaultVisibility;
|
|
llvm::GlobalValue::DLLStorageClassTypes ExportedStorage =
|
|
info.UseDLLStorage ? llvm::GlobalValue::DLLExportStorageClass
|
|
: llvm::GlobalValue::DefaultStorageClass;
|
|
llvm::GlobalValue::DLLStorageClassTypes ImportedStorage =
|
|
info.UseDLLStorage ? llvm::GlobalValue::DLLImportStorageClass
|
|
: llvm::GlobalValue::DefaultStorageClass;
|
|
|
|
switch (linkage) {
|
|
case SILLinkage::Public:
|
|
return std::make_tuple(llvm::GlobalValue::ExternalLinkage,
|
|
PublicDefinitionVisibility, ExportedStorage);
|
|
|
|
case SILLinkage::Shared:
|
|
case SILLinkage::SharedExternal:
|
|
return isDefinition ? RESULT(LinkOnceODR, Hidden, Default)
|
|
: RESULT(External, Hidden, Default);
|
|
|
|
case SILLinkage::Hidden:
|
|
case SILLinkage::PublicNonABI:
|
|
return RESULT(External, Hidden, Default);
|
|
|
|
case SILLinkage::Private: {
|
|
auto linkage = info.needLinkerToMergeDuplicateSymbols()
|
|
? llvm::GlobalValue::LinkOnceODRLinkage
|
|
: llvm::GlobalValue::InternalLinkage;
|
|
auto visibility = info.shouldAllPrivateDeclsBeVisibleFromOtherFiles()
|
|
? llvm::GlobalValue::HiddenVisibility
|
|
: llvm::GlobalValue::DefaultVisibility;
|
|
return std::make_tuple(linkage, visibility,
|
|
llvm::GlobalValue::DefaultStorageClass);
|
|
}
|
|
|
|
case SILLinkage::PublicExternal: {
|
|
if (isDefinition) {
|
|
return std::make_tuple(llvm::GlobalValue::AvailableExternallyLinkage,
|
|
llvm::GlobalValue::DefaultVisibility,
|
|
ExportedStorage);
|
|
}
|
|
|
|
auto linkage = isWeakImported ? llvm::GlobalValue::ExternalWeakLinkage
|
|
: llvm::GlobalValue::ExternalLinkage;
|
|
return std::make_tuple(linkage, llvm::GlobalValue::DefaultVisibility,
|
|
ImportedStorage);
|
|
}
|
|
|
|
case SILLinkage::HiddenExternal:
|
|
case SILLinkage::PrivateExternal:
|
|
return std::make_tuple(isDefinition
|
|
? llvm::GlobalValue::AvailableExternallyLinkage
|
|
: llvm::GlobalValue::ExternalLinkage,
|
|
llvm::GlobalValue::HiddenVisibility,
|
|
ImportedStorage);
|
|
|
|
}
|
|
|
|
llvm_unreachable("bad SIL linkage");
|
|
}
|
|
|
|
/// Given that we're going to define a global value but already have a
|
|
/// forward-declaration of it, update its linkage.
|
|
void irgen::updateLinkageForDefinition(IRGenModule &IGM,
|
|
llvm::GlobalValue *global,
|
|
const LinkEntity &entity) {
|
|
// TODO: there are probably cases where we can avoid redoing the
|
|
// entire linkage computation.
|
|
UniversalLinkageInfo linkInfo(IGM);
|
|
auto linkage =
|
|
getIRLinkage(linkInfo, entity.getLinkage(ForDefinition),
|
|
ForDefinition, entity.isWeakImported(IGM.getSwiftModule()));
|
|
global->setLinkage(std::get<0>(linkage));
|
|
global->setVisibility(std::get<1>(linkage));
|
|
global->setDLLStorageClass(std::get<2>(linkage));
|
|
|
|
// Everything externally visible is considered used in Swift.
|
|
// That mostly means we need to be good at not marking things external.
|
|
//
|
|
// Exclude "main", because it should naturally be used, and because adding it
|
|
// to llvm.used leaves a dangling use when the REPL attempts to discard
|
|
// intermediate mains.
|
|
if (LinkInfo::isUsed(std::get<0>(linkage), std::get<1>(linkage),
|
|
std::get<2>(linkage)) &&
|
|
global->getName() != SWIFT_ENTRY_POINT_FUNCTION)
|
|
IGM.addUsedGlobal(global);
|
|
}
|
|
|
|
LinkInfo LinkInfo::get(IRGenModule &IGM, const LinkEntity &entity,
|
|
ForDefinition_t isDefinition) {
|
|
return LinkInfo::get(IGM, IGM.getSwiftModule(), entity, isDefinition);
|
|
}
|
|
|
|
LinkInfo LinkInfo::get(const UniversalLinkageInfo &linkInfo,
|
|
ModuleDecl *swiftModule, const LinkEntity &entity,
|
|
ForDefinition_t isDefinition) {
|
|
LinkInfo result;
|
|
|
|
entity.mangle(result.Name);
|
|
|
|
std::tie(result.Linkage, result.Visibility, result.DLLStorageClass) =
|
|
getIRLinkage(linkInfo, entity.getLinkage(isDefinition),
|
|
isDefinition, entity.isWeakImported(swiftModule));
|
|
|
|
result.ForDefinition = isDefinition;
|
|
|
|
return result;
|
|
}
|
|
|
|
LinkInfo LinkInfo::get(const UniversalLinkageInfo &linkInfo,
|
|
StringRef name,
|
|
SILLinkage linkage,
|
|
ForDefinition_t isDefinition,
|
|
bool isWeakImported) {
|
|
LinkInfo result;
|
|
|
|
result.Name += name;
|
|
std::tie(result.Linkage, result.Visibility, result.DLLStorageClass) =
|
|
getIRLinkage(linkInfo, linkage,
|
|
isDefinition, isWeakImported);
|
|
result.ForDefinition = isDefinition;
|
|
return result;
|
|
}
|
|
|
|
static bool isPointerTo(llvm::Type *ptrTy, llvm::Type *objTy) {
|
|
return cast<llvm::PointerType>(ptrTy)->getElementType() == objTy;
|
|
}
|
|
|
|
/// Get or create an LLVM function with these linkage rules.
|
|
llvm::Function *irgen::createFunction(IRGenModule &IGM,
|
|
LinkInfo &linkInfo,
|
|
const Signature &signature,
|
|
llvm::Function *insertBefore,
|
|
OptimizationMode FuncOptMode) {
|
|
auto name = linkInfo.getName();
|
|
|
|
llvm::Function *existing = IGM.Module.getFunction(name);
|
|
if (existing) {
|
|
if (isPointerTo(existing->getType(), signature.getType()))
|
|
return cast<llvm::Function>(existing);
|
|
|
|
IGM.error(SourceLoc(),
|
|
"program too clever: function collides with existing symbol " +
|
|
name);
|
|
|
|
// Note that this will implicitly unique if the .unique name is also taken.
|
|
existing->setName(name + ".unique");
|
|
}
|
|
|
|
llvm::Function *fn =
|
|
llvm::Function::Create(signature.getType(), linkInfo.getLinkage(), name);
|
|
fn->setVisibility(linkInfo.getVisibility());
|
|
fn->setDLLStorageClass(linkInfo.getDLLStorage());
|
|
fn->setCallingConv(signature.getCallingConv());
|
|
|
|
if (insertBefore) {
|
|
IGM.Module.getFunctionList().insert(insertBefore->getIterator(), fn);
|
|
} else {
|
|
IGM.Module.getFunctionList().push_back(fn);
|
|
}
|
|
|
|
llvm::AttrBuilder initialAttrs;
|
|
IGM.constructInitialFnAttributes(initialAttrs, FuncOptMode);
|
|
// Merge initialAttrs with attrs.
|
|
auto updatedAttrs =
|
|
signature.getAttributes().addAttributes(IGM.getLLVMContext(),
|
|
llvm::AttributeList::FunctionIndex,
|
|
initialAttrs);
|
|
if (!updatedAttrs.isEmpty())
|
|
fn->setAttributes(updatedAttrs);
|
|
|
|
// Everything externally visible is considered used in Swift.
|
|
// That mostly means we need to be good at not marking things external.
|
|
//
|
|
// Exclude "main", because it should naturally be used, and because adding it
|
|
// to llvm.used leaves a dangling use when the REPL attempts to discard
|
|
// intermediate mains.
|
|
if (linkInfo.isUsed() && name != SWIFT_ENTRY_POINT_FUNCTION) {
|
|
IGM.addUsedGlobal(fn);
|
|
}
|
|
|
|
return fn;
|
|
}
|
|
|
|
bool LinkInfo::isUsed(llvm::GlobalValue::LinkageTypes Linkage,
|
|
llvm::GlobalValue::VisibilityTypes Visibility,
|
|
llvm::GlobalValue::DLLStorageClassTypes DLLStorage) {
|
|
// Everything externally visible is considered used in Swift.
|
|
// That mostly means we need to be good at not marking things external.
|
|
return Linkage == llvm::GlobalValue::ExternalLinkage &&
|
|
(Visibility == llvm::GlobalValue::DefaultVisibility ||
|
|
Visibility == llvm::GlobalValue::ProtectedVisibility) &&
|
|
(DLLStorage == llvm::GlobalValue::DefaultStorageClass ||
|
|
DLLStorage == llvm::GlobalValue::DLLExportStorageClass);
|
|
}
|
|
|
|
/// Get or create an LLVM global variable with these linkage rules.
|
|
llvm::GlobalVariable *swift::irgen::createVariable(
|
|
IRGenModule &IGM, LinkInfo &linkInfo, llvm::Type *storageType,
|
|
Alignment alignment, DebugTypeInfo DbgTy, Optional<SILLocation> DebugLoc,
|
|
StringRef DebugName) {
|
|
auto name = linkInfo.getName();
|
|
llvm::GlobalValue *existingValue = IGM.Module.getNamedGlobal(name);
|
|
if (existingValue) {
|
|
auto existingVar = dyn_cast<llvm::GlobalVariable>(existingValue);
|
|
if (existingVar && isPointerTo(existingVar->getType(), storageType))
|
|
return existingVar;
|
|
|
|
IGM.error(SourceLoc(),
|
|
"program too clever: variable collides with existing symbol " +
|
|
name);
|
|
|
|
// Note that this will implicitly unique if the .unique name is also taken.
|
|
existingValue->setName(name + ".unique");
|
|
}
|
|
|
|
auto var = new llvm::GlobalVariable(IGM.Module, storageType,
|
|
/*constant*/ false, linkInfo.getLinkage(),
|
|
/*initializer*/ nullptr, name);
|
|
var->setVisibility(linkInfo.getVisibility());
|
|
var->setDLLStorageClass(linkInfo.getDLLStorage());
|
|
var->setAlignment(alignment.getValue());
|
|
|
|
// Everything externally visible is considered used in Swift.
|
|
// That mostly means we need to be good at not marking things external.
|
|
if (linkInfo.isUsed()) {
|
|
IGM.addUsedGlobal(var);
|
|
}
|
|
|
|
if (IGM.DebugInfo && !DbgTy.isNull() && linkInfo.isForDefinition())
|
|
IGM.DebugInfo->emitGlobalVariableDeclaration(
|
|
var, DebugName.empty() ? name : DebugName, name, DbgTy,
|
|
var->hasInternalLinkage(), DebugLoc);
|
|
|
|
return var;
|
|
}
|
|
|
|
/// Emit a global declaration.
|
|
void IRGenModule::emitGlobalDecl(Decl *D) {
|
|
switch (D->getKind()) {
|
|
case DeclKind::Extension:
|
|
return emitExtension(cast<ExtensionDecl>(D));
|
|
|
|
case DeclKind::Protocol:
|
|
return emitProtocolDecl(cast<ProtocolDecl>(D));
|
|
|
|
case DeclKind::PatternBinding:
|
|
// The global initializations are in SIL.
|
|
return;
|
|
|
|
case DeclKind::Param:
|
|
llvm_unreachable("there are no global function parameters");
|
|
|
|
case DeclKind::Subscript:
|
|
llvm_unreachable("there are no global subscript operations");
|
|
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::EnumElement:
|
|
llvm_unreachable("there are no global enum elements");
|
|
|
|
case DeclKind::Constructor:
|
|
llvm_unreachable("there are no global constructor");
|
|
|
|
case DeclKind::Destructor:
|
|
llvm_unreachable("there are no global destructor");
|
|
|
|
case DeclKind::MissingMember:
|
|
llvm_unreachable("there are no global member placeholders");
|
|
|
|
case DeclKind::TypeAlias:
|
|
case DeclKind::GenericTypeParam:
|
|
case DeclKind::AssociatedType:
|
|
case DeclKind::IfConfig:
|
|
case DeclKind::PoundDiagnostic:
|
|
return;
|
|
|
|
case DeclKind::Enum:
|
|
return emitEnumDecl(cast<EnumDecl>(D));
|
|
|
|
case DeclKind::Struct:
|
|
return emitStructDecl(cast<StructDecl>(D));
|
|
|
|
case DeclKind::Class:
|
|
return emitClassDecl(cast<ClassDecl>(D));
|
|
|
|
// These declarations are only included in the debug info.
|
|
case DeclKind::Import:
|
|
if (DebugInfo)
|
|
DebugInfo->emitImport(cast<ImportDecl>(D));
|
|
return;
|
|
|
|
// We emit these as part of the PatternBindingDecl.
|
|
case DeclKind::Var:
|
|
return;
|
|
|
|
case DeclKind::Func:
|
|
case DeclKind::Accessor:
|
|
// Handled in SIL.
|
|
return;
|
|
|
|
case DeclKind::TopLevelCode:
|
|
// All the top-level code will be lowered separately.
|
|
return;
|
|
|
|
// Operator decls aren't needed for IRGen.
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
case DeclKind::PrecedenceGroup:
|
|
return;
|
|
|
|
case DeclKind::Module:
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("bad decl kind!");
|
|
}
|
|
|
|
Address IRGenModule::getAddrOfSILGlobalVariable(SILGlobalVariable *var,
|
|
const TypeInfo &ti,
|
|
ForDefinition_t forDefinition) {
|
|
if (auto clangDecl = var->getClangDecl()) {
|
|
auto addr = getAddrOfClangGlobalDecl(cast<clang::VarDecl>(clangDecl),
|
|
forDefinition);
|
|
|
|
// If we're not emitting this to define it, make sure we cast it to the
|
|
// right type.
|
|
if (!forDefinition) {
|
|
auto ptrTy = ti.getStorageType()->getPointerTo();
|
|
addr = llvm::ConstantExpr::getBitCast(addr, ptrTy);
|
|
}
|
|
|
|
auto alignment =
|
|
Alignment(getClangASTContext().getDeclAlign(clangDecl).getQuantity());
|
|
return Address(addr, alignment);
|
|
}
|
|
|
|
LinkEntity entity = LinkEntity::forSILGlobalVariable(var);
|
|
ResilienceExpansion expansion = getResilienceExpansionForLayout(var);
|
|
|
|
llvm::Type *storageType;
|
|
Size fixedSize;
|
|
Alignment fixedAlignment;
|
|
|
|
if (var->isInitializedObject()) {
|
|
assert(ti.isFixedSize(expansion));
|
|
StructLayout *Layout = StaticObjectLayouts[var].get();
|
|
if (!Layout) {
|
|
// Create the layout (includes the llvm type) for the statically
|
|
// initialized object and store it for later.
|
|
ObjectInst *OI = cast<ObjectInst>(var->getStaticInitializerValue());
|
|
llvm::SmallVector<SILType, 16> TailTypes;
|
|
for (SILValue TailOp : OI->getTailElements()) {
|
|
TailTypes.push_back(TailOp->getType());
|
|
}
|
|
Layout = getClassLayoutWithTailElems(*this,
|
|
var->getLoweredType(), TailTypes);
|
|
StaticObjectLayouts[var] = std::unique_ptr<StructLayout>(Layout);
|
|
}
|
|
storageType = Layout->getType();
|
|
fixedSize = Layout->getSize();
|
|
fixedAlignment = Layout->getAlignment();
|
|
assert(fixedAlignment >= TargetInfo.HeapObjectAlignment);
|
|
} else if (ti.isFixedSize(expansion)) {
|
|
// Allocate static storage.
|
|
auto &fixedTI = cast<FixedTypeInfo>(ti);
|
|
storageType = fixedTI.getStorageType();
|
|
fixedSize = fixedTI.getFixedSize();
|
|
fixedAlignment = fixedTI.getFixedAlignment();
|
|
} else {
|
|
// Allocate a fixed-size buffer and possibly heap-allocate a payload at
|
|
// runtime if the runtime size of the type does not fit in the buffer.
|
|
storageType = getFixedBufferTy();
|
|
fixedSize = Size(DataLayout.getTypeAllocSize(storageType));
|
|
fixedAlignment = Alignment(DataLayout.getABITypeAlignment(storageType));
|
|
}
|
|
|
|
// Check whether we've created the global variable already.
|
|
// FIXME: We should integrate this into the LinkEntity cache more cleanly.
|
|
auto gvar = Module.getGlobalVariable(var->getName(), /*allowInternal*/ true);
|
|
if (gvar) {
|
|
if (forDefinition)
|
|
updateLinkageForDefinition(*this, gvar, entity);
|
|
} else {
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
llvm::Type *storageTypeWithContainer = storageType;
|
|
if (var->isInitializedObject()) {
|
|
// A statically initialized object must be placed into a container struct
|
|
// because the swift_initStaticObject needs a swift_once_t at offset -1:
|
|
// struct Container {
|
|
// swift_once_t token[fixedAlignment / sizeof(swift_once_t)];
|
|
// HeapObject object;
|
|
// };
|
|
std::string typeName = storageType->getStructName().str() + 'c';
|
|
assert(fixedAlignment >= getPointerAlignment());
|
|
unsigned numTokens = fixedAlignment.getValue() /
|
|
getPointerAlignment().getValue();
|
|
storageTypeWithContainer = llvm::StructType::create(getLLVMContext(),
|
|
{llvm::ArrayType::get(OnceTy, numTokens), storageType}, typeName);
|
|
gvar = createVariable(*this, link, storageTypeWithContainer,
|
|
fixedAlignment);
|
|
} else {
|
|
auto DbgTy = DebugTypeInfo::getGlobal(var, storageTypeWithContainer,
|
|
fixedSize, fixedAlignment);
|
|
if (var->getDecl()) {
|
|
// If we have the VarDecl, use it for more accurate debugging information.
|
|
gvar = createVariable(*this, link, storageTypeWithContainer,
|
|
fixedAlignment, DbgTy, SILLocation(var->getDecl()),
|
|
var->getDecl()->getName().str());
|
|
} else {
|
|
Optional<SILLocation> loc;
|
|
if (var->hasLocation())
|
|
loc = var->getLocation();
|
|
gvar = createVariable(*this, link, storageTypeWithContainer,
|
|
fixedAlignment, DbgTy, loc, var->getName());
|
|
}
|
|
}
|
|
/// Add a zero initializer.
|
|
if (forDefinition)
|
|
gvar->setInitializer(llvm::Constant::getNullValue(storageTypeWithContainer));
|
|
}
|
|
llvm::Constant *addr = gvar;
|
|
if (var->isInitializedObject()) {
|
|
// Project out the object from the container.
|
|
llvm::Constant *Indices[2] = {
|
|
llvm::ConstantExpr::getIntegerValue(Int32Ty, APInt(32, 0)),
|
|
llvm::ConstantExpr::getIntegerValue(Int32Ty, APInt(32, 1))
|
|
};
|
|
// Return the address of the initialized object itself (and not the address
|
|
// to a reference to it).
|
|
addr = llvm::ConstantExpr::getGetElementPtr(nullptr, gvar, Indices);
|
|
}
|
|
addr = llvm::ConstantExpr::getBitCast(addr, storageType->getPointerTo());
|
|
return Address(addr, Alignment(gvar->getAlignment()));
|
|
}
|
|
|
|
/// Return True if the function \p f is a 'readonly' function. Checking
|
|
/// for the SIL @effects(readonly) attribute is not enough because this
|
|
/// definition does not match the definition of the LLVM readonly function
|
|
/// attribute. In this function we do the actual check.
|
|
static bool isReadOnlyFunction(SILFunction *f) {
|
|
// Check if the function has any 'owned' parameters. Owned parameters may
|
|
// call the destructor of the object which could violate the readonly-ness
|
|
// of the function.
|
|
if (f->hasOwnedParameters() || f->hasIndirectFormalResults())
|
|
return false;
|
|
|
|
auto Eff = f->getEffectsKind();
|
|
|
|
// Swift's readonly does not automatically match LLVM's readonly.
|
|
// Swift SIL optimizer relies on @effects(readonly) to remove e.g.
|
|
// dead code remaining from initializers of strings or dictionaries
|
|
// of variables that are not used. But those initializers are often
|
|
// not really readonly in terms of LLVM IR. For example, the
|
|
// Dictionary.init() is marked as @effects(readonly) in Swift, but
|
|
// it does invoke reference-counting operations.
|
|
if (Eff == EffectsKind::ReadOnly || Eff == EffectsKind::ReadNone) {
|
|
// TODO: Analyze the body of function f and return true if it is
|
|
// really readonly.
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static clang::GlobalDecl getClangGlobalDeclForFunction(const clang::Decl *decl) {
|
|
if (auto ctor = dyn_cast<clang::CXXConstructorDecl>(decl))
|
|
return clang::GlobalDecl(ctor, clang::Ctor_Complete);
|
|
if (auto dtor = dyn_cast<clang::CXXDestructorDecl>(decl))
|
|
return clang::GlobalDecl(dtor, clang::Dtor_Complete);
|
|
return clang::GlobalDecl(cast<clang::FunctionDecl>(decl));
|
|
}
|
|
|
|
/// Find the entry point for a SIL function.
|
|
llvm::Function *IRGenModule::getAddrOfSILFunction(SILFunction *f,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity = LinkEntity::forSILFunction(f);
|
|
|
|
// Check whether we've created the function already.
|
|
// FIXME: We should integrate this into the LinkEntity cache more cleanly.
|
|
llvm::Function *fn = Module.getFunction(f->getName());
|
|
if (fn) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, fn, entity);
|
|
return fn;
|
|
}
|
|
|
|
// If it's a Clang declaration, ask Clang to generate the IR declaration.
|
|
// This might generate new functions, so we should do it before computing
|
|
// the insert-before point.
|
|
llvm::Constant *clangAddr = nullptr;
|
|
if (auto clangDecl = f->getClangDecl()) {
|
|
auto globalDecl = getClangGlobalDeclForFunction(clangDecl);
|
|
clangAddr = getAddrOfClangGlobalDecl(globalDecl, forDefinition);
|
|
}
|
|
|
|
bool isDefinition = f->isDefinition();
|
|
bool hasOrderNumber = isDefinition;
|
|
unsigned orderNumber = ~0U;
|
|
llvm::Function *insertBefore = nullptr;
|
|
|
|
// If the SIL function has a definition, we should have an order
|
|
// number for it; make sure to insert it in that position relative
|
|
// to other ordered functions.
|
|
if (hasOrderNumber) {
|
|
orderNumber = IRGen.getFunctionOrder(f);
|
|
if (auto emittedFunctionIterator
|
|
= EmittedFunctionsByOrder.findLeastUpperBound(orderNumber))
|
|
insertBefore = *emittedFunctionIterator;
|
|
}
|
|
|
|
// If it's a Clang declaration, check whether Clang gave us a declaration.
|
|
if (clangAddr) {
|
|
fn = dyn_cast<llvm::Function>(clangAddr->stripPointerCasts());
|
|
|
|
// If we have a function, move it to the appropriate position.
|
|
if (fn) {
|
|
if (hasOrderNumber) {
|
|
auto &fnList = Module.getFunctionList();
|
|
fnList.remove(fn);
|
|
fnList.insert(llvm::Module::iterator(insertBefore), fn);
|
|
|
|
EmittedFunctionsByOrder.insert(orderNumber, fn);
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
// Otherwise, if we have a lazy definition for it, be sure to queue that up.
|
|
} else if (isDefinition && !forDefinition && !f->isPossiblyUsedExternally() &&
|
|
!hasCodeCoverageInstrumentation(*f, getSILModule())) {
|
|
IRGen.addLazyFunction(f);
|
|
}
|
|
|
|
Signature signature = getSignature(f->getLoweredFunctionType());
|
|
auto &attrs = signature.getMutableAttributes();
|
|
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
|
|
if (f->getInlineStrategy() == NoInline) {
|
|
attrs = attrs.addAttribute(signature.getType()->getContext(),
|
|
llvm::AttributeList::FunctionIndex,
|
|
llvm::Attribute::NoInline);
|
|
}
|
|
if (isReadOnlyFunction(f)) {
|
|
attrs = attrs.addAttribute(signature.getType()->getContext(),
|
|
llvm::AttributeList::FunctionIndex,
|
|
llvm::Attribute::ReadOnly);
|
|
}
|
|
fn = createFunction(*this, link, signature, insertBefore,
|
|
f->getOptimizationMode());
|
|
|
|
// If we have an order number for this function, set it up as appropriate.
|
|
if (hasOrderNumber) {
|
|
EmittedFunctionsByOrder.insert(orderNumber, fn);
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
static llvm::GlobalVariable *createGOTEquivalent(IRGenModule &IGM,
|
|
llvm::Constant *global,
|
|
StringRef globalName) {
|
|
if (IGM.Triple.getObjectFormat() == llvm::Triple::COFF) {
|
|
if (cast<llvm::GlobalValue>(global)->hasDLLImportStorageClass()) {
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(IGM.Module, global->getType(),
|
|
/*Constant=*/true,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
nullptr, llvm::Twine("__imp_") + globalName);
|
|
GV->setExternallyInitialized(true);
|
|
return GV;
|
|
}
|
|
}
|
|
|
|
auto gotEquivalent = new llvm::GlobalVariable(IGM.Module,
|
|
global->getType(),
|
|
/*constant*/ true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
global,
|
|
llvm::Twine("got.") + globalName);
|
|
gotEquivalent->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
return gotEquivalent;
|
|
}
|
|
|
|
static llvm::Constant *getElementBitCast(llvm::Constant *ptr,
|
|
llvm::Type *newEltType) {
|
|
auto ptrType = cast<llvm::PointerType>(ptr->getType());
|
|
if (ptrType->getElementType() == newEltType) {
|
|
return ptr;
|
|
} else {
|
|
auto newPtrType = newEltType->getPointerTo(ptrType->getAddressSpace());
|
|
return llvm::ConstantExpr::getBitCast(ptr, newPtrType);
|
|
}
|
|
}
|
|
|
|
/// Return a reference to an object that's suitable for being used for
|
|
/// the given kind of reference.
|
|
///
|
|
/// Note that, if the requested reference kind is a relative reference.
|
|
/// the returned constant will not actually be a relative reference.
|
|
/// To form the actual relative reference, you must pass the returned
|
|
/// result to emitRelativeReference, passing the correct base-address
|
|
/// information.
|
|
ConstantReference
|
|
IRGenModule::getAddrOfLLVMVariable(LinkEntity entity, Alignment alignment,
|
|
ConstantInit definition,
|
|
llvm::Type *defaultType,
|
|
DebugTypeInfo debugType,
|
|
SymbolReferenceKind refKind) {
|
|
switch (refKind) {
|
|
case SymbolReferenceKind::Relative_Direct:
|
|
case SymbolReferenceKind::Far_Relative_Direct:
|
|
assert(!definition);
|
|
// FIXME: don't just fall through; force the creation of a weak
|
|
// definition so that we can emit a relative reference.
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case SymbolReferenceKind::Absolute:
|
|
return { getAddrOfLLVMVariable(entity, alignment, definition,
|
|
defaultType, debugType),
|
|
ConstantReference::Direct };
|
|
|
|
|
|
case SymbolReferenceKind::Relative_Indirectable:
|
|
case SymbolReferenceKind::Far_Relative_Indirectable:
|
|
assert(!definition);
|
|
return getAddrOfLLVMVariableOrGOTEquivalent(entity, alignment, defaultType);
|
|
}
|
|
llvm_unreachable("bad reference kind");
|
|
}
|
|
|
|
/// A convenient wrapper around getAddrOfLLVMVariable which uses the
|
|
/// default type as the definition type.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfLLVMVariable(LinkEntity entity, Alignment alignment,
|
|
ForDefinition_t forDefinition,
|
|
llvm::Type *defaultType,
|
|
DebugTypeInfo debugType) {
|
|
auto definition =
|
|
(forDefinition ? ConstantInit::getDelayed(defaultType) : ConstantInit());
|
|
return getAddrOfLLVMVariable(entity, alignment, definition,
|
|
defaultType, debugType);
|
|
}
|
|
|
|
/// Get or create an llvm::GlobalVariable.
|
|
///
|
|
/// If a definition type is given, the result will always be an
|
|
/// llvm::GlobalVariable of that type. Otherwise, the result will
|
|
/// have type pointerToDefaultType and may involve bitcasts.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfLLVMVariable(LinkEntity entity, Alignment alignment,
|
|
ConstantInit definition,
|
|
llvm::Type *defaultType,
|
|
DebugTypeInfo DbgTy) {
|
|
// This function assumes that 'globals' only contains GlobalValue
|
|
// values for the entities that it will look up.
|
|
|
|
llvm::Type *definitionType = (definition ? definition.getType() : nullptr);
|
|
|
|
auto &entry = GlobalVars[entity];
|
|
if (entry) {
|
|
auto existing = cast<llvm::GlobalValue>(entry);
|
|
|
|
// If we're looking to define something, we may need to replace a
|
|
// forward declaration.
|
|
if (definitionType) {
|
|
assert(existing->isDeclaration() && "already defined");
|
|
assert(entry->getType()->getPointerElementType() == defaultType
|
|
|| entry->getType()->getPointerElementType() == definition.getType());
|
|
updateLinkageForDefinition(*this, existing, entity);
|
|
|
|
// If the existing entry is a variable of the right type,
|
|
// set the initializer on it and return.
|
|
if (auto var = dyn_cast<llvm::GlobalVariable>(existing)) {
|
|
if (definitionType == var->getValueType()) {
|
|
if (definition.hasInit())
|
|
definition.getInit().installInGlobal(var);
|
|
return var;
|
|
}
|
|
}
|
|
|
|
// Fall out to the case below, clearing the name so that
|
|
// createVariable doesn't detect a collision.
|
|
entry->setName("");
|
|
|
|
// Otherwise, we have a previous declaration or definition which
|
|
// we need to ensure has the right type.
|
|
} else {
|
|
return getElementBitCast(entry, defaultType);
|
|
}
|
|
}
|
|
|
|
ForDefinition_t forDefinition = (ForDefinition_t) (definitionType != nullptr);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
|
|
// Clang may have defined the variable already.
|
|
if (auto existing = Module.getNamedGlobal(link.getName()))
|
|
return getElementBitCast(existing, defaultType);
|
|
|
|
// If we're not defining the object now, forward declare it with the default
|
|
// type.
|
|
if (!definitionType) definitionType = defaultType;
|
|
|
|
// Create the variable.
|
|
auto var = createVariable(*this, link, definitionType, alignment, DbgTy);
|
|
|
|
// Install the concrete definition if we have one.
|
|
if (definition && definition.hasInit()) {
|
|
definition.getInit().installInGlobal(var);
|
|
}
|
|
|
|
// If we have an existing entry, destroy it, replacing it with the
|
|
// new variable.
|
|
if (entry) {
|
|
auto existing = cast<llvm::GlobalValue>(entry);
|
|
auto castVar = getElementBitCast(var, defaultType);
|
|
existing->replaceAllUsesWith(castVar);
|
|
existing->eraseFromParent();
|
|
}
|
|
|
|
// If there's also an existing GOT-equivalent entry, rewrite it too, since
|
|
// LLVM won't recognize a global with bitcasts in its initializers as GOT-
|
|
// equivalent. rdar://problem/22388190
|
|
auto foundGOTEntry = GlobalGOTEquivalents.find(entity);
|
|
if (foundGOTEntry != GlobalGOTEquivalents.end() && foundGOTEntry->second) {
|
|
auto existingGOTEquiv = cast<llvm::GlobalVariable>(foundGOTEntry->second);
|
|
|
|
// Make a new GOT equivalent referring to the new variable with its
|
|
// definition type.
|
|
auto newGOTEquiv = createGOTEquivalent(*this, var, var->getName());
|
|
auto castGOTEquiv = llvm::ConstantExpr::getBitCast(newGOTEquiv,
|
|
existingGOTEquiv->getType());
|
|
existingGOTEquiv->replaceAllUsesWith(castGOTEquiv);
|
|
existingGOTEquiv->eraseFromParent();
|
|
GlobalGOTEquivalents[entity] = newGOTEquiv;
|
|
}
|
|
|
|
// Cache and return.
|
|
entry = var;
|
|
return var;
|
|
}
|
|
|
|
/// Get or create a "GOT equivalent" llvm::GlobalVariable, if applicable.
|
|
///
|
|
/// Creates a private, unnamed constant containing the address of another
|
|
/// global variable. LLVM can replace relative references to this variable with
|
|
/// relative references to the GOT entry for the variable in the object file.
|
|
ConstantReference
|
|
IRGenModule::getAddrOfLLVMVariableOrGOTEquivalent(LinkEntity entity,
|
|
Alignment alignment,
|
|
llvm::Type *defaultType,
|
|
ConstantReference::Directness forceIndirectness) {
|
|
// Ensure the variable is at least forward-declared.
|
|
if (entity.isForeignTypeMetadataCandidate()) {
|
|
auto foreignCandidate
|
|
= getAddrOfForeignTypeMetadataCandidate(entity.getType());
|
|
(void)foreignCandidate;
|
|
} else {
|
|
getAddrOfLLVMVariable(entity, alignment, ConstantInit(),
|
|
defaultType, DebugTypeInfo());
|
|
}
|
|
|
|
// Guess whether a global entry is a definition from this TU. This isn't
|
|
// bulletproof, but at the point we emit conformance tables, we're far enough
|
|
// along that we should have emitted any metadata objects we were going to.
|
|
auto isDefinition = [&](llvm::Constant *global) -> bool {
|
|
// We only emit aliases for definitions. (An extern alias would be an
|
|
// extern global.)
|
|
if (isa<llvm::GlobalAlias>(global))
|
|
return true;
|
|
// Global vars are definitions if they have an initializer.
|
|
if (auto var = dyn_cast<llvm::GlobalVariable>(global))
|
|
return var->hasInitializer();
|
|
// Assume anything else isn't a definition.
|
|
return false;
|
|
};
|
|
|
|
// If the variable has already been defined in this TU,
|
|
// then it definitely doesn't need a GOT entry, and we can
|
|
// relative-reference it directly.
|
|
//
|
|
// TODO: If we know the target entry is going to be linked into the same
|
|
// binary, then we ought to be able to directly relative-reference the
|
|
// symbol. However, some platforms don't have the necessary relocations to
|
|
// represent a relative reference to an undefined symbol, so conservatively
|
|
// produce an indirect reference in this case. Also, some JIT modes
|
|
// incrementally add new definitions that refer back to existing ones
|
|
// relatively, so always use indirect references in this situation.
|
|
auto entry = GlobalVars[entity];
|
|
if (forceIndirectness == ConstantReference::Direct &&
|
|
!IRGen.Opts.UseJIT &&
|
|
(!entity.isAvailableExternally(*this) || isDefinition(entry))) {
|
|
// FIXME: Relative references to aliases break MC on 32-bit Mach-O
|
|
// platforms (rdar://problem/22450593 ), so substitute an alias with its
|
|
// aliasee to work around that.
|
|
if (auto alias = dyn_cast<llvm::GlobalAlias>(entry))
|
|
entry = alias->getAliasee();
|
|
return {entry, ConstantReference::Direct};
|
|
}
|
|
|
|
auto &gotEntry = GlobalGOTEquivalents[entity];
|
|
if (gotEntry) {
|
|
return {gotEntry, ConstantReference::Indirect};
|
|
}
|
|
|
|
// Look up the global variable.
|
|
auto global = cast<llvm::GlobalValue>(entry);
|
|
// Use it as the initializer for an anonymous constant. LLVM can treat this as
|
|
// equivalent to the global's GOT entry.
|
|
llvm::SmallString<64> name;
|
|
entity.mangle(name);
|
|
auto gotEquivalent = createGOTEquivalent(*this, global, name);
|
|
gotEntry = gotEquivalent;
|
|
return {gotEquivalent, ConstantReference::Indirect};
|
|
}
|
|
|
|
TypeEntityReference
|
|
IRGenModule::getTypeEntityReference(NominalTypeDecl *decl) {
|
|
TypeMetadataRecordKind kind;
|
|
Optional<LinkEntity> entity;
|
|
llvm::Type *defaultTy;
|
|
|
|
auto clas = dyn_cast<ClassDecl>(decl);
|
|
if (clas && !clas->isForeign() && !hasKnownSwiftMetadata(*this, clas)) {
|
|
// A reference to an Objective-C class object.
|
|
assert(clas->isObjC() && "Must have an Objective-C class here");
|
|
|
|
kind = TypeMetadataRecordKind::IndirectObjCClass;
|
|
defaultTy = TypeMetadataPtrTy;
|
|
entity = LinkEntity::forObjCClass(clas);
|
|
} else {
|
|
// A reference to a concrete type.
|
|
// TODO: consider using a symbolic reference (i.e. a symbol string
|
|
// to be looked up dynamically) for types defined outside the module.
|
|
kind = TypeMetadataRecordKind::DirectNominalTypeDescriptor;
|
|
entity = LinkEntity::forNominalTypeDescriptor(decl);
|
|
defaultTy = TypeContextDescriptorTy;
|
|
}
|
|
|
|
auto ref = getAddrOfLLVMVariableOrGOTEquivalent(
|
|
*entity, getPointerAlignment(), defaultTy);
|
|
|
|
// Adjust the flags now that we know whether the reference to this
|
|
// entity will be indirect.
|
|
if (ref.isIndirect() &&
|
|
kind == TypeMetadataRecordKind::DirectNominalTypeDescriptor) {
|
|
kind = TypeMetadataRecordKind::IndirectNominalTypeDescriptor;
|
|
}
|
|
|
|
return TypeEntityReference(kind, ref.getValue());
|
|
}
|
|
|
|
/// Form an LLVM constant for the relative distance between a reference
|
|
/// (appearing at gep (0, indices) of `base`) and `target`.
|
|
llvm::Constant *
|
|
IRGenModule::emitRelativeReference(ConstantReference target,
|
|
llvm::Constant *base,
|
|
ArrayRef<unsigned> baseIndices) {
|
|
llvm::Constant *relativeAddr =
|
|
emitDirectRelativeReference(target.getValue(), base, baseIndices);
|
|
|
|
// If the reference is indirect, flag it by setting the low bit.
|
|
// (All of the base, direct target, and GOT entry need to be pointer-aligned
|
|
// for this to be OK.)
|
|
if (target.isIndirect()) {
|
|
relativeAddr = llvm::ConstantExpr::getAdd(relativeAddr,
|
|
llvm::ConstantInt::get(RelativeAddressTy, 1));
|
|
}
|
|
|
|
return relativeAddr;
|
|
}
|
|
|
|
/// Form an LLVM constant for the relative distance between a reference
|
|
/// (appearing at gep (0, indices...) of `base`) and `target`. For now,
|
|
/// for this to succeed portably, both need to be globals defined in the
|
|
/// current translation unit.
|
|
llvm::Constant *
|
|
IRGenModule::emitDirectRelativeReference(llvm::Constant *target,
|
|
llvm::Constant *base,
|
|
ArrayRef<unsigned> baseIndices) {
|
|
// Convert the target to an integer.
|
|
auto targetAddr = llvm::ConstantExpr::getPtrToInt(target, SizeTy);
|
|
|
|
SmallVector<llvm::Constant*, 4> indices;
|
|
indices.push_back(llvm::ConstantInt::get(Int32Ty, 0));
|
|
for (unsigned baseIndex : baseIndices) {
|
|
indices.push_back(llvm::ConstantInt::get(Int32Ty, baseIndex));
|
|
};
|
|
|
|
// Drill down to the appropriate address in the base, then convert
|
|
// that to an integer.
|
|
auto baseElt = llvm::ConstantExpr::getInBoundsGetElementPtr(
|
|
base->getType()->getPointerElementType(), base, indices);
|
|
auto baseAddr = llvm::ConstantExpr::getPtrToInt(baseElt, SizeTy);
|
|
|
|
// The relative address is the difference between those.
|
|
auto relativeAddr = llvm::ConstantExpr::getSub(targetAddr, baseAddr);
|
|
|
|
// Relative addresses can be 32-bit even on 64-bit platforms.
|
|
if (SizeTy != RelativeAddressTy)
|
|
relativeAddr = llvm::ConstantExpr::getTrunc(relativeAddr,
|
|
RelativeAddressTy);
|
|
|
|
return relativeAddr;
|
|
}
|
|
|
|
/// Emit the protocol descriptors list and return it.
|
|
llvm::Constant *IRGenModule::emitSwiftProtocols() {
|
|
if (SwiftProtocols.empty())
|
|
return nullptr;
|
|
|
|
// Define the global variable for the protocol list.
|
|
ConstantInitBuilder builder(*this);
|
|
auto recordsArray = builder.beginArray(ProtocolRecordTy);
|
|
|
|
for (auto *protocol : SwiftProtocols) {
|
|
auto record = recordsArray.beginStruct(ProtocolRecordTy);
|
|
|
|
// Relative reference to the protocol descriptor.
|
|
auto descriptorRef = getAddrOfLLVMVariableOrGOTEquivalent(
|
|
LinkEntity::forProtocolDescriptor(protocol),
|
|
getPointerAlignment(), ProtocolDescriptorStructTy);
|
|
record.addRelativeAddress(descriptorRef);
|
|
|
|
record.finishAndAddTo(recordsArray);
|
|
}
|
|
|
|
// FIXME: This needs to be a linker-local symbol in order for Darwin ld to
|
|
// resolve relocations relative to it.
|
|
|
|
auto var = recordsArray.finishAndCreateGlobal(
|
|
"\x01l_protocols",
|
|
Alignment(4),
|
|
/*isConstant*/ true,
|
|
llvm::GlobalValue::PrivateLinkage);
|
|
|
|
StringRef sectionName;
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::MachO:
|
|
sectionName = "__TEXT, __swift5_protos, regular, no_dead_strip";
|
|
break;
|
|
case llvm::Triple::ELF:
|
|
sectionName = "swift5_protocols";
|
|
break;
|
|
case llvm::Triple::COFF:
|
|
sectionName = ".sw5prt$B";
|
|
break;
|
|
default:
|
|
llvm_unreachable("Don't know how to emit protocols for "
|
|
"the selected object format.");
|
|
}
|
|
|
|
var->setSection(sectionName);
|
|
addUsedGlobal(var);
|
|
return var;
|
|
}
|
|
|
|
namespace {
|
|
/// Builds a protocol conformance descriptor.
|
|
class ProtocolConformanceDescriptorBuilder {
|
|
IRGenModule &IGM;
|
|
ConstantStructBuilder &B;
|
|
const NormalProtocolConformance *Conformance;
|
|
ConformanceFlags Flags;
|
|
|
|
public:
|
|
ProtocolConformanceDescriptorBuilder(
|
|
IRGenModule &IGM,
|
|
ConstantStructBuilder &B,
|
|
const NormalProtocolConformance *conformance)
|
|
: IGM(IGM), B(B), Conformance(conformance) { }
|
|
|
|
void layout() {
|
|
addProtocol();
|
|
addConformingType();
|
|
addWitnessTable();
|
|
addFlags();
|
|
addContext();
|
|
addConditionalRequirements();
|
|
|
|
B.suggestType(IGM.ProtocolConformanceDescriptorTy);
|
|
}
|
|
|
|
void addProtocol() {
|
|
// Relative reference to the protocol descriptor.
|
|
auto protocol = Conformance->getProtocol();
|
|
auto descriptorRef = IGM.getAddrOfLLVMVariableOrGOTEquivalent(
|
|
LinkEntity::forProtocolDescriptor(protocol),
|
|
IGM.getPointerAlignment(), IGM.ProtocolDescriptorStructTy);
|
|
B.addRelativeAddress(descriptorRef);
|
|
}
|
|
|
|
void addConformingType() {
|
|
// Add a relative reference to the type, with the type reference
|
|
// kind stored in the flags.
|
|
auto ref =
|
|
IGM.getTypeEntityReference(Conformance->getType()->getAnyNominal());
|
|
B.addRelativeAddress(ref.getValue());
|
|
Flags = Flags.withTypeReferenceKind(ref.getKind());
|
|
}
|
|
|
|
void addWitnessTable() {
|
|
using ConformanceKind = ConformanceFlags::ConformanceKind;
|
|
|
|
// Figure out what kind of witness table we have.
|
|
auto proto = Conformance->getProtocol();
|
|
llvm::Constant *witnessTableVar;
|
|
if (!IGM.isResilient(proto, ResilienceExpansion::Maximal) &&
|
|
Conformance->getConditionalRequirements().empty()) {
|
|
Flags = Flags.withConformanceKind(ConformanceKind::WitnessTable);
|
|
|
|
// If the conformance is in this object's table, then the witness table
|
|
// should also be in this object file, so we can always directly
|
|
// reference it.
|
|
witnessTableVar = IGM.getAddrOfWitnessTable(Conformance);
|
|
} else {
|
|
if (Conformance->getConditionalRequirements().empty()) {
|
|
Flags = Flags.withConformanceKind(
|
|
ConformanceKind::WitnessTableAccessor);
|
|
} else {
|
|
Flags =
|
|
Flags.withConformanceKind(
|
|
ConformanceKind::ConditionalWitnessTableAccessor)
|
|
.withNumConditionalRequirements(
|
|
Conformance->getConditionalRequirements().size());
|
|
}
|
|
|
|
witnessTableVar = IGM.getAddrOfWitnessTableAccessFunction(
|
|
Conformance, ForDefinition);
|
|
}
|
|
|
|
// Relative reference to the witness table.
|
|
auto witnessTableRef =
|
|
ConstantReference(witnessTableVar, ConstantReference::Direct);
|
|
B.addRelativeAddress(witnessTableRef);
|
|
}
|
|
|
|
void addFlags() {
|
|
// Miscellaneous flags.
|
|
Flags = Flags.withIsRetroactive(Conformance->isRetroactive());
|
|
Flags =
|
|
Flags.withIsSynthesizedNonUnique(Conformance->isSynthesizedNonUnique());
|
|
|
|
// Add the flags.
|
|
B.addInt32(Flags.getIntValue());
|
|
}
|
|
|
|
void addContext() {
|
|
if (!Conformance->isRetroactive())
|
|
return;
|
|
|
|
auto moduleContext =
|
|
Conformance->getDeclContext()->getModuleScopeContext();
|
|
ConstantReference moduleContextRef =
|
|
IGM.getAddrOfParentContextDescriptor(moduleContext);
|
|
B.addRelativeAddress(moduleContextRef);
|
|
}
|
|
|
|
void addConditionalRequirements() {
|
|
if (Conformance->getConditionalRequirements().empty())
|
|
return;
|
|
|
|
auto nominal = Conformance->getType()->getAnyNominal();
|
|
irgen::addGenericRequirements(IGM, B,
|
|
nominal->getGenericSignatureOfContext(),
|
|
Conformance->getConditionalRequirements());
|
|
}
|
|
};
|
|
}
|
|
|
|
void IRGenModule::emitProtocolConformance(
|
|
const NormalProtocolConformance *conformance) {
|
|
// Emit additional metadata to be used by reflection.
|
|
emitAssociatedTypeMetadataRecord(conformance);
|
|
|
|
// Form the protocol conformance descriptor.
|
|
ConstantInitBuilder initBuilder(*this);
|
|
auto init = initBuilder.beginStruct();
|
|
ProtocolConformanceDescriptorBuilder builder(*this, init, conformance);
|
|
builder.layout();
|
|
|
|
auto var =
|
|
cast<llvm::GlobalVariable>(
|
|
getAddrOfProtocolConformanceDescriptor(conformance,
|
|
init.finishAndCreateFuture()));
|
|
var->setConstant(true);
|
|
}
|
|
|
|
void IRGenModule::addProtocolConformance(
|
|
const NormalProtocolConformance *conformance) {
|
|
// Add this protocol conformance.
|
|
ProtocolConformances.push_back(conformance);
|
|
}
|
|
|
|
/// Emit the protocol conformance list and return it.
|
|
llvm::Constant *IRGenModule::emitProtocolConformances() {
|
|
// Do nothing if the list is empty.
|
|
if (ProtocolConformances.empty())
|
|
return nullptr;
|
|
|
|
// Define the global variable for the conformance list.
|
|
|
|
ConstantInitBuilder builder(*this);
|
|
auto descriptorArray = builder.beginArray(RelativeAddressTy);
|
|
|
|
for (auto *conformance : ProtocolConformances) {
|
|
// Emit the protocol conformance now.
|
|
emitProtocolConformance(conformance);
|
|
|
|
auto entity = LinkEntity::forProtocolConformanceDescriptor(conformance);
|
|
auto descriptor =
|
|
getAddrOfLLVMVariable(entity, getPointerAlignment(), ConstantInit(),
|
|
ProtocolConformanceDescriptorTy, DebugTypeInfo());
|
|
descriptorArray.addRelativeAddress(descriptor);
|
|
}
|
|
|
|
// FIXME: This needs to be a linker-local symbol in order for Darwin ld to
|
|
// resolve relocations relative to it.
|
|
|
|
auto var = descriptorArray.finishAndCreateGlobal(
|
|
"\x01l_protocol_conformances",
|
|
Alignment(4),
|
|
/*isConstant*/ true,
|
|
llvm::GlobalValue::PrivateLinkage);
|
|
|
|
StringRef sectionName;
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::MachO:
|
|
sectionName = "__TEXT, __swift5_proto, regular, no_dead_strip";
|
|
break;
|
|
case llvm::Triple::ELF:
|
|
sectionName = "swift5_protocol_conformances";
|
|
break;
|
|
case llvm::Triple::COFF:
|
|
sectionName = ".sw5prtc$B";
|
|
break;
|
|
default:
|
|
llvm_unreachable("Don't know how to emit protocol conformances for "
|
|
"the selected object format.");
|
|
}
|
|
|
|
var->setSection(sectionName);
|
|
addUsedGlobal(var);
|
|
|
|
return var;
|
|
}
|
|
|
|
|
|
/// Emit type metadata for types that might not have explicit protocol conformances.
|
|
llvm::Constant *IRGenModule::emitTypeMetadataRecords() {
|
|
std::string sectionName;
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::MachO:
|
|
sectionName = "__TEXT, __swift5_types, regular, no_dead_strip";
|
|
break;
|
|
case llvm::Triple::ELF:
|
|
sectionName = "swift5_type_metadata";
|
|
break;
|
|
case llvm::Triple::COFF:
|
|
sectionName = ".sw5tymd$B";
|
|
break;
|
|
default:
|
|
llvm_unreachable("Don't know how to emit type metadata table for "
|
|
"the selected object format.");
|
|
}
|
|
|
|
// Do nothing if the list is empty.
|
|
if (RuntimeResolvableTypes.empty())
|
|
return nullptr;
|
|
|
|
// Define the global variable for the conformance list.
|
|
// We have to do this before defining the initializer since the entries will
|
|
// contain offsets relative to themselves.
|
|
auto arrayTy = llvm::ArrayType::get(TypeMetadataRecordTy,
|
|
RuntimeResolvableTypes.size());
|
|
|
|
// FIXME: This needs to be a linker-local symbol in order for Darwin ld to
|
|
// resolve relocations relative to it.
|
|
auto var = new llvm::GlobalVariable(Module, arrayTy,
|
|
/*isConstant*/ true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
/*initializer*/ nullptr,
|
|
"\x01l_type_metadata_table");
|
|
|
|
SmallVector<llvm::Constant *, 8> elts;
|
|
for (auto type : RuntimeResolvableTypes) {
|
|
auto ref = getTypeEntityReference(type);
|
|
|
|
// Form the relative address, with the type refernce kind in the low bits.
|
|
unsigned arrayIdx = elts.size();
|
|
llvm::Constant *relativeAddr =
|
|
emitDirectRelativeReference(ref.getValue(), var, { arrayIdx, 0 });
|
|
unsigned lowBits = static_cast<unsigned>(ref.getKind());
|
|
if (lowBits != 0) {
|
|
relativeAddr = llvm::ConstantExpr::getAdd(relativeAddr,
|
|
llvm::ConstantInt::get(RelativeAddressTy, lowBits));
|
|
}
|
|
|
|
llvm::Constant *recordFields[] = { relativeAddr };
|
|
auto record = llvm::ConstantStruct::get(TypeMetadataRecordTy,
|
|
recordFields);
|
|
elts.push_back(record);
|
|
}
|
|
|
|
auto initializer = llvm::ConstantArray::get(arrayTy, elts);
|
|
|
|
var->setInitializer(initializer);
|
|
var->setSection(sectionName);
|
|
var->setAlignment(4);
|
|
addUsedGlobal(var);
|
|
|
|
return var;
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::emitFieldDescriptors() {
|
|
std::string sectionName;
|
|
switch (TargetInfo.OutputObjectFormat) {
|
|
case llvm::Triple::MachO:
|
|
sectionName = "__TEXT, __swift5_fieldmd, regular, no_dead_strip";
|
|
break;
|
|
case llvm::Triple::ELF:
|
|
sectionName = "swift5_fieldmd";
|
|
break;
|
|
case llvm::Triple::COFF:
|
|
sectionName = ".swift5_fieldmd";
|
|
break;
|
|
default:
|
|
llvm_unreachable("Don't know how to emit field records table for "
|
|
"the selected object format.");
|
|
}
|
|
|
|
// Do nothing if the list is empty.
|
|
if (FieldDescriptors.empty())
|
|
return nullptr;
|
|
|
|
// Define the global variable for the field record list.
|
|
// We have to do this before defining the initializer since the entries will
|
|
// contain offsets relative to themselves.
|
|
auto arrayTy =
|
|
llvm::ArrayType::get(FieldDescriptorPtrTy, FieldDescriptors.size());
|
|
|
|
// FIXME: This needs to be a linker-local symbol in order for Darwin ld to
|
|
// resolve relocations relative to it.
|
|
auto var = new llvm::GlobalVariable(
|
|
Module, arrayTy,
|
|
/*isConstant*/ true, llvm::GlobalValue::PrivateLinkage,
|
|
/*initializer*/ nullptr, "\x01l_type_metadata_table");
|
|
|
|
SmallVector<llvm::Constant *, 8> elts;
|
|
for (auto *descriptor : FieldDescriptors)
|
|
elts.push_back(
|
|
llvm::ConstantExpr::getBitCast(descriptor, FieldDescriptorPtrTy));
|
|
|
|
var->setInitializer(llvm::ConstantArray::get(arrayTy, elts));
|
|
var->setSection(sectionName);
|
|
var->setAlignment(4);
|
|
addUsedGlobal(var);
|
|
return var;
|
|
}
|
|
|
|
/// Fetch a global reference to a reference to the given Objective-C class.
|
|
/// The result is of type ObjCClassPtrTy->getPointerTo().
|
|
Address IRGenModule::getAddrOfObjCClassRef(ClassDecl *theClass) {
|
|
assert(ObjCInterop && "getting address of ObjC class ref in no-interop mode");
|
|
|
|
Alignment alignment = getPointerAlignment();
|
|
|
|
LinkEntity entity = LinkEntity::forObjCClassRef(theClass);
|
|
auto DbgTy = DebugTypeInfo::getObjCClass(
|
|
theClass, ObjCClassPtrTy, getPointerSize(), getPointerAlignment());
|
|
auto addr = getAddrOfLLVMVariable(entity, alignment, ConstantInit(),
|
|
ObjCClassPtrTy, DbgTy);
|
|
|
|
// Define it lazily.
|
|
if (auto global = dyn_cast<llvm::GlobalVariable>(addr)) {
|
|
if (global->isDeclaration()) {
|
|
global->setSection(GetObjCSectionName("__objc_classrefs",
|
|
"regular,no_dead_strip"));
|
|
global->setLinkage(llvm::GlobalVariable::PrivateLinkage);
|
|
global->setExternallyInitialized(true);
|
|
global->setInitializer(getAddrOfObjCClass(theClass, NotForDefinition));
|
|
addCompilerUsedGlobal(global);
|
|
}
|
|
}
|
|
|
|
return Address(addr, alignment);
|
|
}
|
|
|
|
/// Fetch a global reference to the given Objective-C class. The
|
|
/// result is of type ObjCClassPtrTy.
|
|
llvm::Constant *IRGenModule::getAddrOfObjCClass(ClassDecl *theClass,
|
|
ForDefinition_t forDefinition) {
|
|
assert(ObjCInterop && "getting address of ObjC class in no-interop mode");
|
|
assert(!theClass->isForeign());
|
|
LinkEntity entity = LinkEntity::forObjCClass(theClass);
|
|
auto DbgTy = DebugTypeInfo::getObjCClass(
|
|
theClass, ObjCClassPtrTy, getPointerSize(), getPointerAlignment());
|
|
auto addr = getAddrOfLLVMVariable(entity, getPointerAlignment(),
|
|
forDefinition, ObjCClassStructTy, DbgTy);
|
|
return addr;
|
|
}
|
|
|
|
/// Fetch the declaration of a metaclass object. The result is always a
|
|
/// GlobalValue of ObjCClassPtrTy, and is either the Objective-C metaclass or
|
|
/// the Swift metaclass stub, depending on whether the class is published as an
|
|
/// ObjC class.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfMetaclassObject(ClassDecl *decl,
|
|
ForDefinition_t forDefinition) {
|
|
assert((!decl->isGenericContext() || decl->hasClangNode()) &&
|
|
"generic classes do not have a static metaclass object");
|
|
|
|
auto entity = decl->getMetaclassKind() == ClassDecl::MetaclassKind::ObjC
|
|
? LinkEntity::forObjCMetaclass(decl)
|
|
: LinkEntity::forSwiftMetaclassStub(decl);
|
|
|
|
auto DbgTy = DebugTypeInfo::getObjCClass(
|
|
decl, ObjCClassPtrTy, getPointerSize(), getPointerAlignment());
|
|
auto addr = getAddrOfLLVMVariable(entity, getPointerAlignment(),
|
|
forDefinition, ObjCClassStructTy, DbgTy);
|
|
return addr;
|
|
}
|
|
|
|
/// Fetch the type metadata access function for a non-generic type.
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfTypeMetadataAccessFunction(CanType type,
|
|
ForDefinition_t forDefinition) {
|
|
assert(!type->hasArchetype() && !type->hasTypeParameter());
|
|
NominalTypeDecl *Nominal = type->getNominalOrBoundGenericNominal();
|
|
IRGen.noteUseOfTypeMetadata(Nominal);
|
|
|
|
LinkEntity entity = LinkEntity::forTypeMetadataAccessFunction(type);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
auto fnType = llvm::FunctionType::get(TypeMetadataPtrTy, false);
|
|
Signature signature(fnType, llvm::AttributeList(), DefaultCC);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
/// Fetch the type metadata access function for the given generic type.
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfGenericTypeMetadataAccessFunction(
|
|
NominalTypeDecl *nominal,
|
|
ArrayRef<llvm::Type *> genericArgs,
|
|
ForDefinition_t forDefinition) {
|
|
assert(nominal->isGenericContext());
|
|
assert(!genericArgs.empty() ||
|
|
nominal->getGenericSignature()->areAllParamsConcrete());
|
|
IRGen.noteUseOfTypeMetadata(nominal);
|
|
|
|
auto type = nominal->getDeclaredType()->getCanonicalType();
|
|
assert(type->hasUnboundGenericType());
|
|
LinkEntity entity = LinkEntity::forTypeMetadataAccessFunction(type);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
// If we have more arguments than can be passed directly, the remaining
|
|
// arguments are packed into an array.
|
|
ArrayRef<llvm::Type *> paramTypes;
|
|
llvm::Type *paramTypesArray[NumDirectGenericTypeMetadataAccessFunctionArgs+1];
|
|
if (genericArgs.size() > NumDirectGenericTypeMetadataAccessFunctionArgs) {
|
|
// Copy direct parameter types.
|
|
for (unsigned i : range(NumDirectGenericTypeMetadataAccessFunctionArgs))
|
|
paramTypesArray[i] = genericArgs[i];
|
|
|
|
paramTypesArray[NumDirectGenericTypeMetadataAccessFunctionArgs] =
|
|
Int8PtrPtrTy;
|
|
paramTypes = paramTypesArray;
|
|
} else {
|
|
paramTypes = genericArgs;
|
|
}
|
|
|
|
auto fnType = llvm::FunctionType::get(TypeMetadataPtrTy, paramTypes, false);
|
|
Signature signature(fnType, llvm::AttributeList(), DefaultCC);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
/// Get or create a type metadata cache variable. These are an
|
|
/// implementation detail of type metadata access functions.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfTypeMetadataLazyCacheVariable(CanType type,
|
|
ForDefinition_t forDefinition) {
|
|
assert(!type->hasArchetype() && !type->hasTypeParameter());
|
|
LinkEntity entity = LinkEntity::forTypeMetadataLazyCacheVariable(type);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(), forDefinition,
|
|
TypeMetadataPtrTy, DebugTypeInfo());
|
|
}
|
|
|
|
/// Define the metadata for a type.
|
|
///
|
|
/// Some type metadata has information before the address point that the
|
|
/// public symbol for the metadata references. This function will rewrite any
|
|
/// existing external declaration to the address point as an alias into the
|
|
/// full metadata object.
|
|
llvm::GlobalValue *IRGenModule::defineTypeMetadata(CanType concreteType,
|
|
bool isIndirect,
|
|
bool isPattern,
|
|
bool isConstant,
|
|
ConstantInitFuture init,
|
|
llvm::StringRef section) {
|
|
assert(init);
|
|
assert(!isIndirect && "indirect type metadata not used yet");
|
|
|
|
if (isPattern) {
|
|
auto addr = getAddrOfTypeMetadataPattern(concreteType->getAnyNominal(),
|
|
isConstant, init, section);
|
|
|
|
return cast<llvm::GlobalValue>(addr);
|
|
}
|
|
|
|
/// For concrete metadata, we want to use the initializer on the
|
|
/// "full metadata", and define the "direct" address point as an alias.
|
|
TypeMetadataAddress addrKind;
|
|
llvm::Type *defaultVarTy;
|
|
unsigned adjustmentIndex;
|
|
Alignment alignment = getPointerAlignment();
|
|
|
|
if (concreteType->getClassOrBoundGenericClass()) {
|
|
addrKind = TypeMetadataAddress::FullMetadata;
|
|
defaultVarTy = FullHeapMetadataStructTy;
|
|
adjustmentIndex = MetadataAdjustmentIndex::Class;
|
|
} else {
|
|
addrKind = TypeMetadataAddress::FullMetadata;
|
|
defaultVarTy = FullTypeMetadataStructTy;
|
|
adjustmentIndex = MetadataAdjustmentIndex::ValueType;
|
|
}
|
|
|
|
auto entity = LinkEntity::forTypeMetadata(concreteType, addrKind);
|
|
|
|
auto DbgTy = DebugTypeInfo::getMetadata(MetatypeType::get(concreteType),
|
|
defaultVarTy->getPointerTo(), Size(0),
|
|
Alignment(1));
|
|
|
|
// Define the variable.
|
|
llvm::GlobalVariable *var = cast<llvm::GlobalVariable>(
|
|
getAddrOfLLVMVariable(entity, alignment, init, defaultVarTy, DbgTy));
|
|
|
|
var->setConstant(isConstant);
|
|
if (!section.empty())
|
|
var->setSection(section);
|
|
|
|
// Keep type metadata around for all types.
|
|
if (auto nominal = concreteType->getAnyNominal())
|
|
addRuntimeResolvableType(nominal);
|
|
|
|
// For concrete metadata, declare the alias to its address point.
|
|
auto directEntity = LinkEntity::forTypeMetadata(concreteType,
|
|
TypeMetadataAddress::AddressPoint);
|
|
|
|
llvm::Constant *addr = var;
|
|
// Do an adjustment if necessary.
|
|
if (adjustmentIndex) {
|
|
llvm::Constant *indices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, adjustmentIndex)
|
|
};
|
|
addr = llvm::ConstantExpr::getInBoundsGetElementPtr(/*Ty=*/nullptr,
|
|
addr, indices);
|
|
}
|
|
addr = llvm::ConstantExpr::getBitCast(addr, TypeMetadataPtrTy);
|
|
|
|
// Check for an existing forward declaration of the address point.
|
|
auto &directEntry = GlobalVars[directEntity];
|
|
llvm::GlobalValue *existingVal = nullptr;
|
|
if (directEntry) {
|
|
existingVal = cast<llvm::GlobalValue>(directEntry);
|
|
// Clear the existing value's name so we can steal it.
|
|
existingVal->setName("");
|
|
}
|
|
|
|
LinkInfo link = LinkInfo::get(*this, directEntity, ForDefinition);
|
|
auto *ptrTy = cast<llvm::PointerType>(addr->getType());
|
|
auto *alias = llvm::GlobalAlias::create(
|
|
ptrTy->getElementType(), ptrTy->getAddressSpace(), link.getLinkage(),
|
|
link.getName(), addr, &Module);
|
|
alias->setVisibility(link.getVisibility());
|
|
alias->setDLLStorageClass(link.getDLLStorage());
|
|
|
|
// The full metadata is used based on the visibility of the address point,
|
|
// not the metadata itself.
|
|
if (link.isUsed()) {
|
|
addUsedGlobal(var);
|
|
addUsedGlobal(alias);
|
|
}
|
|
|
|
// Replace an existing external declaration for the address point.
|
|
if (directEntry) {
|
|
auto existingVal = cast<llvm::GlobalValue>(directEntry);
|
|
|
|
// FIXME: MC breaks when emitting alias references on some platforms
|
|
// (rdar://problem/22450593 ). Work around this by referring to the aliasee
|
|
// instead.
|
|
llvm::Constant *aliasCast = alias->getAliasee();
|
|
aliasCast = llvm::ConstantExpr::getBitCast(aliasCast,
|
|
directEntry->getType());
|
|
existingVal->replaceAllUsesWith(aliasCast);
|
|
existingVal->eraseFromParent();
|
|
}
|
|
directEntry = alias;
|
|
|
|
return alias;
|
|
}
|
|
|
|
/// Fetch the declaration of the metadata (or metadata template) for a
|
|
/// type.
|
|
///
|
|
/// If the definition type is specified, the result will always be a
|
|
/// GlobalValue of the given type, which may not be at the
|
|
/// canonical address point for a type metadata.
|
|
///
|
|
/// If the definition type is not specified, then:
|
|
/// - if the metadata is indirect, then the result will not be adjusted
|
|
/// and it will have the type pointer-to-T, where T is the type
|
|
/// of a direct metadata;
|
|
/// - if the metadata is a pattern, then the result will not be
|
|
/// adjusted and it will have FullTypeMetadataPtrTy;
|
|
/// - otherwise it will be adjusted to the canonical address point
|
|
/// for a type metadata and it will have type TypeMetadataPtrTy.
|
|
llvm::Constant *IRGenModule::getAddrOfTypeMetadata(CanType concreteType) {
|
|
return getAddrOfTypeMetadata(concreteType,
|
|
SymbolReferenceKind::Absolute).getDirectValue();
|
|
}
|
|
|
|
ConstantReference IRGenModule::getAddrOfTypeMetadata(CanType concreteType,
|
|
SymbolReferenceKind refKind) {
|
|
assert(!isa<UnboundGenericType>(concreteType));
|
|
|
|
llvm::Type *defaultVarTy;
|
|
unsigned adjustmentIndex;
|
|
Alignment alignment = getPointerAlignment();
|
|
|
|
ClassDecl *ObjCClass = nullptr;
|
|
|
|
// Objective-C classes use the ObjC class object.
|
|
if (isa<ClassType>(concreteType) &&
|
|
!hasKnownSwiftMetadata(*this, cast<ClassType>(concreteType)->getDecl())) {
|
|
defaultVarTy = TypeMetadataStructTy;
|
|
adjustmentIndex = 0;
|
|
ObjCClass = cast<ClassType>(concreteType)->getDecl();
|
|
// The symbol for other nominal type metadata is generated at the address
|
|
// point.
|
|
} else if (isa<ClassType>(concreteType) ||
|
|
isa<BoundGenericClassType>(concreteType)) {
|
|
assert(!concreteType->getClassOrBoundGenericClass()->isForeign()
|
|
&& "metadata for foreign classes should be emitted as "
|
|
"foreign candidate");
|
|
defaultVarTy = TypeMetadataStructTy;
|
|
adjustmentIndex = 0;
|
|
} else if (auto nom = concreteType->getAnyNominal()) {
|
|
assert(!isa<ClangModuleUnit>(nom->getModuleScopeContext())
|
|
&& "metadata for foreign type should be emitted as "
|
|
"foreign candidate");
|
|
(void)nom;
|
|
|
|
defaultVarTy = TypeMetadataStructTy;
|
|
adjustmentIndex = 0;
|
|
} else {
|
|
// FIXME: Non-nominal metadata provided by the C++ runtime is exported
|
|
// with the address of the start of the full metadata object, since
|
|
// Clang doesn't provide an easy way to emit symbols aliasing into the
|
|
// middle of an object.
|
|
defaultVarTy = FullTypeMetadataStructTy;
|
|
adjustmentIndex = MetadataAdjustmentIndex::ValueType;
|
|
}
|
|
|
|
// If this is a use, and the type metadata is emitted lazily,
|
|
// trigger lazy emission of the metadata.
|
|
if (NominalTypeDecl *nominal = concreteType->getAnyNominal()) {
|
|
IRGen.noteUseOfTypeMetadata(nominal);
|
|
}
|
|
|
|
LinkEntity entity
|
|
= ObjCClass ? LinkEntity::forObjCClass(ObjCClass)
|
|
: LinkEntity::forTypeMetadata(concreteType,
|
|
TypeMetadataAddress::AddressPoint);
|
|
|
|
auto DbgTy =
|
|
ObjCClass
|
|
? DebugTypeInfo::getObjCClass(ObjCClass, ObjCClassPtrTy,
|
|
getPointerSize(), getPointerAlignment())
|
|
: DebugTypeInfo::getMetadata(MetatypeType::get(concreteType),
|
|
defaultVarTy->getPointerTo(), Size(0),
|
|
Alignment(1));
|
|
|
|
auto addr = getAddrOfLLVMVariable(entity, alignment, ConstantInit(),
|
|
defaultVarTy, DbgTy, refKind);
|
|
|
|
// FIXME: MC breaks when emitting alias references on some platforms
|
|
// (rdar://problem/22450593 ). Work around this by referring to the aliasee
|
|
// instead.
|
|
if (auto alias = dyn_cast<llvm::GlobalAlias>(addr.getValue()))
|
|
addr = ConstantReference(alias->getAliasee(), addr.isIndirect());
|
|
|
|
// Adjust if necessary.
|
|
if (adjustmentIndex) {
|
|
llvm::Constant *indices[] = {
|
|
llvm::ConstantInt::get(Int32Ty, 0),
|
|
llvm::ConstantInt::get(Int32Ty, adjustmentIndex)
|
|
};
|
|
addr = ConstantReference(
|
|
llvm::ConstantExpr::getInBoundsGetElementPtr(
|
|
/*Ty=*/nullptr, addr.getValue(), indices),
|
|
addr.isIndirect());
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfTypeMetadataPattern(NominalTypeDecl *D) {
|
|
return getAddrOfTypeMetadataPattern(D, false, ConstantInit(), "");
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfTypeMetadataPattern(NominalTypeDecl *D,
|
|
bool isConstant,
|
|
ConstantInit init,
|
|
StringRef section) {
|
|
if (!init)
|
|
IRGen.noteUseOfTypeMetadata(D);
|
|
|
|
auto alignment = getPointerAlignment();
|
|
LinkEntity entity = LinkEntity::forTypeMetadataPattern(D);
|
|
auto addr = getAddrOfLLVMVariable(entity, alignment, init,
|
|
Int8PtrTy, DebugTypeInfo());
|
|
|
|
if (init) {
|
|
auto var = cast<llvm::GlobalVariable>(addr);
|
|
var->setConstant(true);
|
|
if (!section.empty())
|
|
var->setSection(section);
|
|
|
|
// Keep type metadata around for all types.
|
|
addRuntimeResolvableType(D);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/// Returns the address of a class metadata base offset.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfClassMetadataBounds(ClassDecl *D,
|
|
ForDefinition_t forDefinition) {
|
|
// StoredClassMetadataBounds
|
|
auto layoutTy = llvm::StructType::get(getLLVMContext(), {
|
|
SizeTy, // Immediate members offset
|
|
Int32Ty, // Negative size in words
|
|
Int32Ty // Positive size in words
|
|
});
|
|
|
|
LinkEntity entity = LinkEntity::forClassMetadataBaseOffset(D);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(), forDefinition,
|
|
layoutTy, DebugTypeInfo());
|
|
}
|
|
|
|
/// Return the address of a generic type's metadata instantiation cache.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfTypeMetadataInstantiationCache(NominalTypeDecl *D,
|
|
ForDefinition_t forDefinition) {
|
|
auto entity = LinkEntity::forTypeMetadataInstantiationCache(D);
|
|
auto ty = llvm::ArrayType::get(Int8PtrTy, NumGenericMetadataPrivateDataWords);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(),
|
|
forDefinition, ty, DebugTypeInfo());
|
|
}
|
|
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfTypeMetadataInstantiationFunction(NominalTypeDecl *D,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity = LinkEntity::forTypeMetadataInstantiationFunction(D);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
llvm::Type *argTys[] = {TypeContextDescriptorPtrTy, Int8PtrPtrTy};
|
|
auto fnType = llvm::FunctionType::get(TypeMetadataPtrTy,
|
|
argTys, /*isVarArg*/ false);
|
|
Signature signature(fnType, llvm::AttributeList(), DefaultCC);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
/// Return the address of a nominal type descriptor.
|
|
llvm::Constant *IRGenModule::getAddrOfTypeContextDescriptor(NominalTypeDecl *D,
|
|
RequireMetadata_t requireMetadata,
|
|
ConstantInit definition) {
|
|
IRGen.noteUseOfTypeContextDescriptor(D, requireMetadata);
|
|
|
|
auto entity = LinkEntity::forNominalTypeDescriptor(D);
|
|
return getAddrOfLLVMVariable(entity, Alignment(4),
|
|
definition,
|
|
TypeContextDescriptorTy,
|
|
DebugTypeInfo());
|
|
}
|
|
|
|
/// Return the address of a property descriptor.
|
|
llvm::Constant *IRGenModule::getAddrOfPropertyDescriptor(AbstractStorageDecl *D,
|
|
ConstantInit definition) {
|
|
auto entity = LinkEntity::forPropertyDescriptor(D);
|
|
return getAddrOfLLVMVariable(entity, Alignment(4),
|
|
definition,
|
|
TypeContextDescriptorTy,
|
|
DebugTypeInfo());
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getAddrOfProtocolDescriptor(ProtocolDecl *D,
|
|
ConstantInit definition) {
|
|
if (D->isObjC()) {
|
|
assert(!definition &&
|
|
"cannot define an @objc protocol descriptor this way");
|
|
return getAddrOfObjCProtocolRecord(D, NotForDefinition);
|
|
}
|
|
|
|
auto entity = LinkEntity::forProtocolDescriptor(D);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(), definition,
|
|
ProtocolDescriptorStructTy, DebugTypeInfo());
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getAddrOfProtocolConformanceDescriptor(
|
|
const NormalProtocolConformance *conformance,
|
|
ConstantInit definition) {
|
|
auto entity = LinkEntity::forProtocolConformanceDescriptor(conformance);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(), definition,
|
|
ProtocolConformanceDescriptorTy,
|
|
DebugTypeInfo());
|
|
}
|
|
|
|
/// Fetch the declaration of the ivar initializer for the given class.
|
|
Optional<llvm::Function*> IRGenModule::getAddrOfIVarInitDestroy(
|
|
ClassDecl *cd,
|
|
bool isDestroyer,
|
|
bool isForeign,
|
|
ForDefinition_t forDefinition) {
|
|
auto silRef = SILDeclRef(cd,
|
|
isDestroyer
|
|
? SILDeclRef::Kind::IVarDestroyer
|
|
: SILDeclRef::Kind::IVarInitializer)
|
|
.asForeign(isForeign);
|
|
|
|
// Find the SILFunction for the ivar initializer or destroyer.
|
|
if (auto silFn = getSILModule().lookUpFunction(silRef)) {
|
|
return getAddrOfSILFunction(silFn, forDefinition);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
/// Returns the address of a value-witness function.
|
|
llvm::Function *IRGenModule::getAddrOfValueWitness(CanType abstractType,
|
|
ValueWitness index,
|
|
ForDefinition_t forDefinition) {
|
|
// We shouldn't emit value witness symbols for generic type instances.
|
|
assert(!isa<BoundGenericType>(abstractType) &&
|
|
"emitting value witness for generic type instance?!");
|
|
|
|
LinkEntity entity = LinkEntity::forValueWitness(abstractType, index);
|
|
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
auto signature = getValueWitnessSignature(index);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
/// Returns the address of a value-witness table. If a definition
|
|
/// type is provided, the table is created with that type; the return
|
|
/// value will be an llvm::GlobalValue. Otherwise, the result will
|
|
/// have type WitnessTablePtrTy.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfValueWitnessTable(CanType concreteType,
|
|
ConstantInit definition) {
|
|
LinkEntity entity = LinkEntity::forValueWitnessTable(concreteType);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(), definition,
|
|
WitnessTableTy, DebugTypeInfo());
|
|
}
|
|
|
|
static Address getAddrOfSimpleVariable(IRGenModule &IGM,
|
|
llvm::DenseMap<LinkEntity, llvm::Constant*> &cache,
|
|
LinkEntity entity,
|
|
llvm::Type *type,
|
|
Alignment alignment,
|
|
ForDefinition_t forDefinition) {
|
|
// Check whether it's already cached.
|
|
llvm::Constant *&entry = cache[entity];
|
|
if (entry) {
|
|
auto existing = cast<llvm::GlobalValue>(entry);
|
|
assert(alignment == Alignment(existing->getAlignment()));
|
|
if (forDefinition) updateLinkageForDefinition(IGM, existing, entity);
|
|
return Address(entry, alignment);
|
|
}
|
|
|
|
// Otherwise, we need to create it.
|
|
LinkInfo link = LinkInfo::get(IGM, entity, forDefinition);
|
|
auto addr = createVariable(IGM, link, type, alignment);
|
|
addr->setConstant(true);
|
|
|
|
entry = addr;
|
|
return Address(addr, alignment);
|
|
}
|
|
|
|
/// getAddrOfFieldOffset - Get the address of the global variable
|
|
/// which contains an offset to apply to either an object (if direct)
|
|
/// or a metadata object in order to find an offset to apply to an
|
|
/// object (if indirect).
|
|
///
|
|
/// The result is always a GlobalValue.
|
|
Address IRGenModule::getAddrOfFieldOffset(VarDecl *var,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity = LinkEntity::forFieldOffset(var);
|
|
return getAddrOfSimpleVariable(*this, GlobalVars, entity,
|
|
SizeTy, getPointerAlignment(),
|
|
forDefinition);
|
|
}
|
|
|
|
void IRGenModule::emitNestedTypeDecls(DeclRange members) {
|
|
for (Decl *member : members) {
|
|
switch (member->getKind()) {
|
|
case DeclKind::Import:
|
|
case DeclKind::TopLevelCode:
|
|
case DeclKind::Protocol:
|
|
case DeclKind::Extension:
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
case DeclKind::Param:
|
|
case DeclKind::Module:
|
|
case DeclKind::PrecedenceGroup:
|
|
llvm_unreachable("decl not allowed in type context");
|
|
|
|
case DeclKind::IfConfig:
|
|
case DeclKind::PoundDiagnostic:
|
|
continue;
|
|
|
|
case DeclKind::Var:
|
|
case DeclKind::Subscript:
|
|
case DeclKind::PatternBinding:
|
|
case DeclKind::Func:
|
|
case DeclKind::Accessor:
|
|
case DeclKind::Constructor:
|
|
case DeclKind::Destructor:
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::EnumElement:
|
|
case DeclKind::MissingMember:
|
|
// Skip non-type members.
|
|
continue;
|
|
|
|
case DeclKind::AssociatedType:
|
|
case DeclKind::GenericTypeParam:
|
|
// Do nothing.
|
|
continue;
|
|
|
|
case DeclKind::TypeAlias:
|
|
// Do nothing.
|
|
continue;
|
|
|
|
case DeclKind::Enum:
|
|
emitEnumDecl(cast<EnumDecl>(member));
|
|
continue;
|
|
case DeclKind::Struct:
|
|
emitStructDecl(cast<StructDecl>(member));
|
|
continue;
|
|
case DeclKind::Class:
|
|
emitClassDecl(cast<ClassDecl>(member));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool shouldEmitCategory(IRGenModule &IGM, ExtensionDecl *ext) {
|
|
for (auto conformance : ext->getLocalConformances()) {
|
|
if (conformance->getProtocol()->isObjC())
|
|
return true;
|
|
}
|
|
|
|
for (auto member : ext->getMembers()) {
|
|
if (auto func = dyn_cast<FuncDecl>(member)) {
|
|
if (requiresObjCMethodDescriptor(func))
|
|
return true;
|
|
} else if (auto constructor = dyn_cast<ConstructorDecl>(member)) {
|
|
if (requiresObjCMethodDescriptor(constructor))
|
|
return true;
|
|
} else if (auto var = dyn_cast<VarDecl>(member)) {
|
|
if (requiresObjCPropertyDescriptor(IGM, var))
|
|
return true;
|
|
} else if (auto subscript = dyn_cast<SubscriptDecl>(member)) {
|
|
if (requiresObjCSubscriptDescriptor(IGM, subscript))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void IRGenModule::emitExtension(ExtensionDecl *ext) {
|
|
emitNestedTypeDecls(ext->getMembers());
|
|
|
|
// Generate a category if the extension either introduces a
|
|
// conformance to an ObjC protocol or introduces a method
|
|
// that requires an Objective-C entry point.
|
|
ClassDecl *origClass = ext->getExtendedType()->getClassOrBoundGenericClass();
|
|
if (!origClass)
|
|
return;
|
|
|
|
if (shouldEmitCategory(*this, ext)) {
|
|
assert(origClass && !origClass->isForeign() &&
|
|
"foreign types cannot have categories emitted");
|
|
llvm::Constant *category = emitCategoryData(*this, ext);
|
|
category = llvm::ConstantExpr::getBitCast(category, Int8PtrTy);
|
|
ObjCCategories.push_back(category);
|
|
ObjCCategoryDecls.push_back(ext);
|
|
}
|
|
}
|
|
|
|
|
|
/// Create an allocation on the stack.
|
|
Address IRGenFunction::createAlloca(llvm::Type *type,
|
|
Alignment alignment,
|
|
const llvm::Twine &name) {
|
|
llvm::AllocaInst *alloca =
|
|
new llvm::AllocaInst(type, IGM.DataLayout.getAllocaAddrSpace(), name,
|
|
AllocaIP);
|
|
alloca->setAlignment(alignment.getValue());
|
|
return Address(alloca, alignment);
|
|
}
|
|
|
|
/// Create an allocation of an array on the stack.
|
|
Address IRGenFunction::createAlloca(llvm::Type *type,
|
|
llvm::Value *ArraySize,
|
|
Alignment alignment,
|
|
const llvm::Twine &name) {
|
|
llvm::AllocaInst *alloca =
|
|
new llvm::AllocaInst(type, IGM.DataLayout.getAllocaAddrSpace(), ArraySize,
|
|
alignment.getValue(), name, AllocaIP);
|
|
return Address(alloca, alignment);
|
|
}
|
|
|
|
/// Allocate a fixed-size buffer on the stack.
|
|
Address IRGenFunction::createFixedSizeBufferAlloca(const llvm::Twine &name) {
|
|
return createAlloca(IGM.getFixedBufferTy(),
|
|
getFixedBufferAlignment(IGM),
|
|
name);
|
|
}
|
|
|
|
/// Get or create a global string constant.
|
|
///
|
|
/// \returns an i8* with a null terminator; note that embedded nulls
|
|
/// are okay
|
|
///
|
|
/// FIXME: willBeRelativelyAddressed is only needed to work around an ld64 bug
|
|
/// resolving relative references to coalesceable symbols.
|
|
/// It should be removed when fixed. rdar://problem/22674524
|
|
llvm::Constant *IRGenModule::getAddrOfGlobalString(StringRef data,
|
|
bool willBeRelativelyAddressed) {
|
|
// Check whether this string already exists.
|
|
auto &entry = GlobalStrings[data];
|
|
if (entry.second) {
|
|
// FIXME: Clear unnamed_addr if the global will be relative referenced
|
|
// to work around an ld64 bug. rdar://problem/22674524
|
|
if (willBeRelativelyAddressed)
|
|
entry.first->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
|
|
return entry.second;
|
|
}
|
|
|
|
entry = createStringConstant(data, willBeRelativelyAddressed);
|
|
return entry.second;
|
|
}
|
|
|
|
/// Get or create a global UTF-16 string constant.
|
|
///
|
|
/// \returns an i16* with a null terminator; note that embedded nulls
|
|
/// are okay
|
|
llvm::Constant *IRGenModule::getAddrOfGlobalUTF16String(StringRef utf8) {
|
|
// Check whether this string already exists.
|
|
auto &entry = GlobalUTF16Strings[utf8];
|
|
if (entry) return entry;
|
|
|
|
// If not, first transcode it to UTF16.
|
|
SmallVector<llvm::UTF16, 128> buffer(utf8.size() + 1); // +1 for ending nulls.
|
|
const llvm::UTF8 *fromPtr = (const llvm::UTF8 *) utf8.data();
|
|
llvm::UTF16 *toPtr = &buffer[0];
|
|
(void) ConvertUTF8toUTF16(&fromPtr, fromPtr + utf8.size(),
|
|
&toPtr, toPtr + utf8.size(),
|
|
llvm::strictConversion);
|
|
|
|
// The length of the transcoded string in UTF-8 code points.
|
|
size_t utf16Length = toPtr - &buffer[0];
|
|
|
|
// Null-terminate the UTF-16 string.
|
|
*toPtr = 0;
|
|
ArrayRef<llvm::UTF16> utf16(&buffer[0], utf16Length + 1);
|
|
|
|
auto init = llvm::ConstantDataArray::get(LLVMContext, utf16);
|
|
auto global = new llvm::GlobalVariable(Module, init->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
init);
|
|
global->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
// Drill down to make an i16*.
|
|
auto zero = llvm::ConstantInt::get(SizeTy, 0);
|
|
llvm::Constant *indices[] = { zero, zero };
|
|
auto address = llvm::ConstantExpr::getInBoundsGetElementPtr(
|
|
global->getValueType(), global, indices);
|
|
|
|
// Cache and return.
|
|
entry = address;
|
|
return address;
|
|
}
|
|
|
|
static llvm::Constant *getMetatypeDeclarationFor(IRGenModule &IGM,
|
|
StringRef name) {
|
|
auto *storageType = IGM.ObjCClassStructTy;
|
|
|
|
// We may have defined the variable already.
|
|
if (auto existing = IGM.Module.getNamedGlobal(name))
|
|
return getElementBitCast(existing, storageType);
|
|
|
|
auto linkage = llvm::GlobalValue::ExternalLinkage;
|
|
auto visibility = llvm::GlobalValue::DefaultVisibility;
|
|
auto storageClass = llvm::GlobalValue::DefaultStorageClass;
|
|
|
|
auto var = new llvm::GlobalVariable(IGM.Module, storageType,
|
|
/*constant*/ false, linkage,
|
|
/*initializer*/ nullptr, name);
|
|
var->setVisibility(visibility);
|
|
var->setDLLStorageClass(storageClass);
|
|
var->setAlignment(IGM.getPointerAlignment().getValue());
|
|
|
|
return var;
|
|
}
|
|
#define STRINGIFY_IMPL(x) #x
|
|
#define REALLY_STRINGIFY( x) STRINGIFY_IMPL(x)
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfGlobalConstantString(StringRef utf8) {
|
|
auto &entry = GlobalConstantStrings[utf8];
|
|
if (entry)
|
|
return entry;
|
|
|
|
// If not, create it. This implicitly adds a trailing null.
|
|
auto data = llvm::ConstantDataArray::getString(LLVMContext, utf8);
|
|
auto *dataTy = data->getType();
|
|
|
|
llvm::Type *constantStringTy[] = {
|
|
RefCountedStructTy,
|
|
Int32Ty,
|
|
Int32Ty,
|
|
Int8Ty,
|
|
dataTy
|
|
};
|
|
auto *ConstantStringTy =
|
|
llvm::StructType::get(getLLVMContext(), constantStringTy,
|
|
/*packed*/ false);
|
|
|
|
auto metaclass = getMetatypeDeclarationFor(
|
|
*this, REALLY_STRINGIFY(CLASS_METADATA_SYM(s20_Latin1StringStorage)));
|
|
|
|
metaclass = llvm::ConstantExpr::getBitCast(metaclass, TypeMetadataPtrTy);
|
|
|
|
// Get a reference count of two.
|
|
auto *refCountInit = llvm::ConstantInt::get(
|
|
IntPtrTy,
|
|
InlineRefCountBits(1 /* "extra" strong ref count*/, 1 /* unowned count */)
|
|
.getBitsValue());
|
|
|
|
auto *count = llvm::ConstantInt::get(Int32Ty, utf8.size());
|
|
// Capacity is length plus one because of the implicitly added '\0'
|
|
// character.
|
|
auto *capacity = llvm::ConstantInt::get(Int32Ty, utf8.size() + 1);
|
|
auto *flags = llvm::ConstantInt::get(Int8Ty, 0);
|
|
|
|
llvm::Constant *heapObjectHeaderFields[] = {
|
|
metaclass, refCountInit
|
|
};
|
|
|
|
auto *initRefCountStruct = llvm::ConstantStruct::get(
|
|
RefCountedStructTy, makeArrayRef(heapObjectHeaderFields));
|
|
|
|
llvm::Constant *fields[] = {
|
|
initRefCountStruct, count, capacity, flags, data};
|
|
auto *init =
|
|
llvm::ConstantStruct::get(ConstantStringTy, makeArrayRef(fields));
|
|
|
|
auto global = new llvm::GlobalVariable(Module, init->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
init);
|
|
global->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
// Cache string entry.
|
|
entry = global;
|
|
|
|
return global;
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfGlobalUTF16ConstantString(StringRef utf8) {
|
|
auto &entry = GlobalConstantUTF16Strings[utf8];
|
|
if (entry)
|
|
return entry;
|
|
|
|
// If not, first transcode it to UTF16.
|
|
SmallVector<llvm::UTF16, 128> buffer(utf8.size() + 1); // +1 for ending nulls.
|
|
const llvm::UTF8 *fromPtr = (const llvm::UTF8 *) utf8.data();
|
|
llvm::UTF16 *toPtr = &buffer[0];
|
|
(void) ConvertUTF8toUTF16(&fromPtr, fromPtr + utf8.size(),
|
|
&toPtr, toPtr + utf8.size(),
|
|
llvm::strictConversion);
|
|
|
|
// The length of the transcoded string in UTF-8 code points.
|
|
size_t utf16Length = toPtr - &buffer[0];
|
|
|
|
// Null-terminate the UTF-16 string.
|
|
*toPtr = 0;
|
|
ArrayRef<llvm::UTF16> utf16(&buffer[0], utf16Length + 1);
|
|
|
|
auto *data = llvm::ConstantDataArray::get(LLVMContext, utf16);
|
|
auto *dataTy = data->getType();
|
|
|
|
llvm::Type *constantUTFStringTy[] = {
|
|
RefCountedStructTy,
|
|
Int32Ty,
|
|
Int32Ty,
|
|
Int8Ty,
|
|
Int8Ty, // For 16-byte alignment.
|
|
dataTy
|
|
};
|
|
auto *ConstantUTFStringTy =
|
|
llvm::StructType::get(getLLVMContext(), constantUTFStringTy,
|
|
/*packed*/ false);
|
|
|
|
auto metaclass = getMetatypeDeclarationFor(
|
|
*this, REALLY_STRINGIFY(CLASS_METADATA_SYM(s19_UTF16StringStorage)));
|
|
|
|
metaclass = llvm::ConstantExpr::getBitCast(metaclass, TypeMetadataPtrTy);
|
|
|
|
// Get a reference count of two.
|
|
auto *refCountInit = llvm::ConstantInt::get(
|
|
IntPtrTy,
|
|
InlineRefCountBits(1 /* "extra" strong ref count*/, 1 /* unowned count */)
|
|
.getBitsValue());
|
|
|
|
auto *count = llvm::ConstantInt::get(Int32Ty, utf16Length);
|
|
auto *capacity = llvm::ConstantInt::get(Int32Ty, utf16Length + 1);
|
|
auto *flags = llvm::ConstantInt::get(Int8Ty, 0);
|
|
auto *padding = llvm::ConstantInt::get(Int8Ty, 0);
|
|
|
|
llvm::Constant *heapObjectHeaderFields[] = {
|
|
metaclass, refCountInit
|
|
};
|
|
|
|
auto *initRefCountStruct = llvm::ConstantStruct::get(
|
|
RefCountedStructTy, makeArrayRef(heapObjectHeaderFields));
|
|
|
|
llvm::Constant *fields[] = {
|
|
initRefCountStruct, count, capacity, flags, padding, data};
|
|
auto *init =
|
|
llvm::ConstantStruct::get(ConstantUTFStringTy, makeArrayRef(fields));
|
|
|
|
auto global = new llvm::GlobalVariable(Module, init->getType(), true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
init);
|
|
global->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
|
|
// Cache string entry.
|
|
entry = global;
|
|
|
|
return global;
|
|
}
|
|
|
|
/// Do we have to use resilient access patterns when working with this
|
|
/// declaration?
|
|
///
|
|
/// IRGen is primarily concerned with resilient handling of the following:
|
|
/// - For structs, a struct's size might change
|
|
/// - For enums, new cases can be added
|
|
/// - For classes, the superclass might change the size or number
|
|
/// of stored properties
|
|
bool IRGenModule::isResilient(NominalTypeDecl *D, ResilienceExpansion expansion) {
|
|
return D->isResilient(getSwiftModule(), expansion);
|
|
}
|
|
|
|
// The most general resilience expansion where the given declaration is visible.
|
|
ResilienceExpansion
|
|
IRGenModule::getResilienceExpansionForAccess(NominalTypeDecl *decl) {
|
|
if (decl->getModuleContext() == getSwiftModule() &&
|
|
decl->getEffectiveAccess() < AccessLevel::Public)
|
|
return ResilienceExpansion::Maximal;
|
|
return ResilienceExpansion::Minimal;
|
|
}
|
|
|
|
// The most general resilience expansion which has knowledge of the declaration's
|
|
// layout. Calling isResilient() with this scope will always return false.
|
|
ResilienceExpansion
|
|
IRGenModule::getResilienceExpansionForLayout(NominalTypeDecl *decl) {
|
|
if (isResilient(decl, ResilienceExpansion::Minimal))
|
|
return ResilienceExpansion::Maximal;
|
|
|
|
return getResilienceExpansionForAccess(decl);
|
|
}
|
|
|
|
// The most general resilience expansion which has knowledge of the global
|
|
// variable's layout.
|
|
ResilienceExpansion
|
|
IRGenModule::getResilienceExpansionForLayout(SILGlobalVariable *global) {
|
|
if (hasPublicVisibility(global->getLinkage()))
|
|
return ResilienceExpansion::Minimal;
|
|
return ResilienceExpansion::Maximal;
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::
|
|
getAddrOfGenericWitnessTableCache(const NormalProtocolConformance *conf,
|
|
ForDefinition_t forDefinition) {
|
|
auto entity = LinkEntity::forGenericProtocolWitnessTableCache(conf);
|
|
auto expectedTy = getGenericWitnessTableCacheTy();
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(), forDefinition,
|
|
expectedTy, DebugTypeInfo());
|
|
}
|
|
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfGenericWitnessTableInstantiationFunction(
|
|
const NormalProtocolConformance *conf) {
|
|
auto forDefinition = ForDefinition;
|
|
|
|
LinkEntity entity =
|
|
LinkEntity::forGenericProtocolWitnessTableInstantiationFunction(conf);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
auto fnType = llvm::FunctionType::get(
|
|
VoidTy, {WitnessTablePtrTy, TypeMetadataPtrTy, Int8PtrPtrTy},
|
|
/*varargs*/ false);
|
|
Signature signature(fnType, llvm::AttributeList(), DefaultCC);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
llvm::StructType *IRGenModule::getGenericWitnessTableCacheTy() {
|
|
if (auto ty = GenericWitnessTableCacheTy) return ty;
|
|
|
|
GenericWitnessTableCacheTy = llvm::StructType::create(getLLVMContext(),
|
|
{
|
|
// WitnessTableSizeInWords
|
|
Int16Ty,
|
|
// WitnessTablePrivateSizeInWords
|
|
Int16Ty,
|
|
// Protocol
|
|
RelativeAddressTy,
|
|
// Pattern
|
|
RelativeAddressTy,
|
|
// Instantiator
|
|
RelativeAddressTy,
|
|
// PrivateData
|
|
RelativeAddressTy
|
|
}, "swift.generic_witness_table_cache");
|
|
return GenericWitnessTableCacheTy;
|
|
}
|
|
|
|
/// Fetch the witness table access function for a protocol conformance.
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfWitnessTableAccessFunction(
|
|
const NormalProtocolConformance *conf,
|
|
ForDefinition_t forDefinition) {
|
|
IRGen.addLazyWitnessTable(conf);
|
|
|
|
LinkEntity entity = LinkEntity::forProtocolWitnessTableAccessFunction(conf);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
llvm::FunctionType *fnType;
|
|
if (conf->witnessTableAccessorRequiresArguments()) {
|
|
// conditional requirements are passed indirectly, as an array of witness
|
|
// tables.
|
|
fnType = llvm::FunctionType::get(
|
|
WitnessTablePtrTy, {TypeMetadataPtrTy, WitnessTablePtrPtrTy, SizeTy},
|
|
false);
|
|
} else {
|
|
fnType = llvm::FunctionType::get(WitnessTablePtrTy, false);
|
|
}
|
|
|
|
Signature signature(fnType, llvm::AttributeList(), DefaultCC);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
/// Fetch the lazy witness table access function for a protocol conformance.
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfWitnessTableLazyAccessFunction(
|
|
const NormalProtocolConformance *conf,
|
|
CanType conformingType,
|
|
ForDefinition_t forDefinition) {
|
|
LinkEntity entity =
|
|
LinkEntity::forProtocolWitnessTableLazyAccessFunction(conf, conformingType);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
llvm::FunctionType *fnType
|
|
= llvm::FunctionType::get(WitnessTablePtrTy, false);
|
|
|
|
Signature signature(fnType, llvm::AttributeList(), DefaultCC);
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
/// Get or create a witness table cache variable. These are an
|
|
/// implementation detail of witness table lazy access functions.
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfWitnessTableLazyCacheVariable(
|
|
const NormalProtocolConformance *conf,
|
|
CanType conformingType,
|
|
ForDefinition_t forDefinition) {
|
|
assert(!conformingType->hasArchetype());
|
|
LinkEntity entity =
|
|
LinkEntity::forProtocolWitnessTableLazyCacheVariable(conf, conformingType);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(),
|
|
forDefinition, WitnessTablePtrTy,
|
|
DebugTypeInfo());
|
|
}
|
|
|
|
/// Look up the address of a witness table.
|
|
///
|
|
/// TODO: This needs to take a flag for the access mode of the witness table,
|
|
/// which may be direct, lazy, or a runtime instantiation template.
|
|
/// TODO: Use name from witness table here to lookup witness table instead of
|
|
/// recomputing it.
|
|
llvm::Constant*
|
|
IRGenModule::getAddrOfWitnessTable(const NormalProtocolConformance *conf,
|
|
ConstantInit definition) {
|
|
IRGen.addLazyWitnessTable(conf);
|
|
|
|
auto entity = LinkEntity::forDirectProtocolWitnessTable(conf);
|
|
return getAddrOfLLVMVariable(entity, getPointerAlignment(), definition,
|
|
WitnessTableTy, DebugTypeInfo());
|
|
}
|
|
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfAssociatedTypeMetadataAccessFunction(
|
|
const NormalProtocolConformance *conformance,
|
|
AssociatedType association) {
|
|
auto forDefinition = ForDefinition;
|
|
|
|
LinkEntity entity =
|
|
LinkEntity::forAssociatedTypeMetadataAccessFunction(conformance,
|
|
association);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
auto signature = getAssociatedTypeMetadataAccessFunctionSignature();
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfAssociatedTypeWitnessTableAccessFunction(
|
|
const NormalProtocolConformance *conformance,
|
|
const AssociatedConformance &association) {
|
|
auto forDefinition = ForDefinition;
|
|
|
|
LinkEntity entity =
|
|
LinkEntity::forAssociatedTypeWitnessTableAccessFunction(conformance,
|
|
association);
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) {
|
|
if (forDefinition) updateLinkageForDefinition(*this, entry, entity);
|
|
return entry;
|
|
}
|
|
|
|
auto signature = getAssociatedTypeWitnessTableAccessFunctionSignature();
|
|
LinkInfo link = LinkInfo::get(*this, entity, forDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
llvm::Function *
|
|
IRGenModule::getAddrOfContinuationPrototype(CanSILFunctionType fnType) {
|
|
LinkEntity entity = LinkEntity::forCoroutineContinuationPrototype(fnType);
|
|
|
|
llvm::Function *&entry = GlobalFuncs[entity];
|
|
if (entry) return entry;
|
|
|
|
auto signature = Signature::forCoroutineContinuation(*this, fnType);
|
|
LinkInfo link = LinkInfo::get(*this, entity, NotForDefinition);
|
|
entry = createFunction(*this, link, signature);
|
|
return entry;
|
|
}
|
|
|
|
/// Should we be defining the given helper function?
|
|
static llvm::Function *shouldDefineHelper(IRGenModule &IGM,
|
|
llvm::Constant *fn,
|
|
bool setIsNoInline) {
|
|
auto *def = dyn_cast<llvm::Function>(fn);
|
|
if (!def) return nullptr;
|
|
if (!def->empty()) return nullptr;
|
|
|
|
def->setLinkage(llvm::Function::LinkOnceODRLinkage);
|
|
def->setVisibility(llvm::Function::HiddenVisibility);
|
|
def->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
|
|
def->setDoesNotThrow();
|
|
def->setCallingConv(IGM.DefaultCC);
|
|
if (setIsNoInline)
|
|
def->addFnAttr(llvm::Attribute::NoInline);
|
|
return def;
|
|
}
|
|
|
|
/// Get or create a helper function with the given name and type, lazily
|
|
/// using the given generation function to fill in its body.
|
|
///
|
|
/// The helper function will be shared between translation units within the
|
|
/// current linkage unit, so choose the name carefully to ensure that it
|
|
/// does not collide with any other helper function. In general, it should
|
|
/// be a Swift-specific C reserved name; that is, it should start with
|
|
// "__swift".
|
|
llvm::Constant *
|
|
IRGenModule::getOrCreateHelperFunction(StringRef fnName, llvm::Type *resultTy,
|
|
ArrayRef<llvm::Type*> paramTys,
|
|
llvm::function_ref<void(IRGenFunction &IGF)> generate,
|
|
bool setIsNoInline) {
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(resultTy, paramTys, false);
|
|
|
|
llvm::Constant *fn = Module.getOrInsertFunction(fnName, fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(*this, fn, setIsNoInline)) {
|
|
IRGenFunction IGF(*this, def);
|
|
if (DebugInfo)
|
|
DebugInfo->emitArtificialFunction(IGF, def);
|
|
generate(IGF);
|
|
}
|
|
|
|
return fn;
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getOrCreateRetainFunction(const TypeInfo &objectTI,
|
|
Type t,
|
|
llvm::Type *llvmType) {
|
|
auto *loadableTI = dyn_cast<LoadableTypeInfo>(&objectTI);
|
|
assert(loadableTI && "Should only be called on Loadable types");
|
|
IRGenMangler mangler;
|
|
std::string funcName = mangler.mangleOutlinedRetainFunction(t);
|
|
llvm::Type *argTys[] = {llvmType};
|
|
return getOrCreateHelperFunction(
|
|
funcName, llvmType, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address addr(&*it++, loadableTI->getFixedAlignment());
|
|
Explosion loaded;
|
|
loadableTI->loadAsTake(IGF, addr, loaded);
|
|
Explosion out;
|
|
loadableTI->copy(IGF, loaded, out, irgen::Atomicity::Atomic);
|
|
(void)out.claimAll();
|
|
IGF.Builder.CreateRet(addr.getAddress());
|
|
},
|
|
true /*setIsNoInline*/);
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getOrCreateReleaseFunction(const TypeInfo &objectTI, Type t,
|
|
llvm::Type *llvmType) {
|
|
auto *loadableTI = dyn_cast<LoadableTypeInfo>(&objectTI);
|
|
assert(loadableTI && "Should only be called on Loadable types");
|
|
IRGenMangler mangler;
|
|
std::string funcName = mangler.mangleOutlinedReleaseFunction(t);
|
|
llvm::Type *argTys[] = {llvmType};
|
|
return getOrCreateHelperFunction(
|
|
funcName, llvmType, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address addr(&*it++, loadableTI->getFixedAlignment());
|
|
Explosion loaded;
|
|
loadableTI->loadAsTake(IGF, addr, loaded);
|
|
loadableTI->consume(IGF, loaded, irgen::Atomicity::Atomic);
|
|
IGF.Builder.CreateRet(addr.getAddress());
|
|
},
|
|
true /*setIsNoInline*/);
|
|
}
|
|
|
|
void IRGenModule::generateCallToOutlinedCopyAddr(
|
|
IRGenFunction &IGF, const TypeInfo &objectTI, Address dest, Address src,
|
|
SILType T, const OutlinedCopyAddrFunction MethodToCall,
|
|
const llvm::MapVector<CanType, llvm::Value *> *typeToMetadataVec) {
|
|
llvm::SmallVector<llvm::Value *, 4> argsVec;
|
|
argsVec.push_back(src.getAddress());
|
|
argsVec.push_back(dest.getAddress());
|
|
if (typeToMetadataVec) {
|
|
for (auto &typeDataPair : *typeToMetadataVec) {
|
|
auto *metadata = typeDataPair.second;
|
|
assert(metadata && metadata->getType() == IGF.IGM.TypeMetadataPtrTy &&
|
|
"Expeceted TypeMetadataPtrTy");
|
|
argsVec.push_back(metadata);
|
|
}
|
|
}
|
|
llvm::Type *llvmType = dest->getType();
|
|
auto *outlinedF =
|
|
(this->*MethodToCall)(objectTI, llvmType, T, typeToMetadataVec);
|
|
llvm::Function *fn = dyn_cast<llvm::Function>(outlinedF);
|
|
assert(fn && "Expected llvm::Function");
|
|
fn->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
llvm::CallInst *call = IGF.Builder.CreateCall(outlinedF, argsVec);
|
|
call->setCallingConv(DefaultCC);
|
|
}
|
|
|
|
void IRGenModule::generateCallToOutlinedDestroy(
|
|
IRGenFunction &IGF, const TypeInfo &objectTI, Address addr, SILType T,
|
|
const llvm::MapVector<CanType, llvm::Value *> *typeToMetadataVec) {
|
|
IRGenMangler mangler;
|
|
CanType canType = T.getSwiftRValueType();
|
|
std::string funcName = mangler.mangleOutlinedDestroyFunction(canType, this);
|
|
|
|
llvm::SmallVector<llvm::Type *, 4> argsTysVec;
|
|
llvm::SmallVector<llvm::Value *, 4> argsVec;
|
|
llvm::Type *llvmType = addr.getType();
|
|
argsTysVec.push_back(llvmType);
|
|
argsVec.push_back(addr.getAddress());
|
|
if (typeToMetadataVec) {
|
|
for (auto &typeDataPair : *typeToMetadataVec) {
|
|
auto *metadata = typeDataPair.second;
|
|
assert(metadata && metadata->getType() == IGF.IGM.TypeMetadataPtrTy &&
|
|
"Expeceted TypeMetadataPtrTy");
|
|
argsTysVec.push_back(metadata->getType());
|
|
argsVec.push_back(metadata);
|
|
}
|
|
}
|
|
|
|
auto *outlinedF = getOrCreateHelperFunction(
|
|
funcName, llvmType, argsTysVec,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address addr(&*it++, objectTI.getBestKnownAlignment());
|
|
if (typeToMetadataVec) {
|
|
for (auto &typeDataPair : *typeToMetadataVec) {
|
|
llvm::Value *arg = &*it++;
|
|
CanType abstractType = typeDataPair.first;
|
|
getArgAsLocalSelfTypeMetadata(IGF, arg, abstractType);
|
|
}
|
|
}
|
|
objectTI.destroy(IGF, addr, T, true);
|
|
IGF.Builder.CreateRet(addr.getAddress());
|
|
},
|
|
true /*setIsNoInline*/);
|
|
|
|
if (T.hasArchetype()) {
|
|
llvm::Function *fn = dyn_cast<llvm::Function>(outlinedF);
|
|
assert(fn && "Expected llvm::Function");
|
|
fn->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
}
|
|
|
|
llvm::CallInst *call = IGF.Builder.CreateCall(outlinedF, argsVec);
|
|
call->setCallingConv(DefaultCC);
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getOrCreateOutlinedCopyAddrHelperFunction(
|
|
const TypeInfo &objectTI, llvm::Type *llvmType, SILType addrTy,
|
|
std::string funcName,
|
|
llvm::function_ref<void(const TypeInfo &objectTI, IRGenFunction &IGF,
|
|
Address dest, Address src, SILType T)>
|
|
Generate,
|
|
const llvm::MapVector<CanType, llvm::Value *> *typeToMetadataVec) {
|
|
llvm::SmallVector<llvm::Type *, 4> argsTysVec;
|
|
argsTysVec.push_back(llvmType);
|
|
argsTysVec.push_back(llvmType);
|
|
if (typeToMetadataVec) {
|
|
for (auto &typeDataPair : *typeToMetadataVec) {
|
|
auto *metadata = typeDataPair.second;
|
|
argsTysVec.push_back(metadata->getType());
|
|
}
|
|
}
|
|
return getOrCreateHelperFunction(
|
|
funcName, llvmType, argsTysVec,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address src(&*it++, objectTI.getBestKnownAlignment());
|
|
Address dest(&*it++, objectTI.getBestKnownAlignment());
|
|
if (typeToMetadataVec) {
|
|
for (auto &typeDataPair : *typeToMetadataVec) {
|
|
llvm::Value *arg = &*it++;
|
|
CanType abstractType = typeDataPair.first;
|
|
getArgAsLocalSelfTypeMetadata(IGF, arg, abstractType);
|
|
}
|
|
}
|
|
Generate(objectTI, IGF, dest, src, addrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
},
|
|
true /*setIsNoInline*/);
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getOrCreateOutlinedInitializeWithTakeFunction(
|
|
const TypeInfo &objectTI, llvm::Type *llvmType, SILType addrTy,
|
|
const llvm::MapVector<CanType, llvm::Value *> *typeToMetadataVec) {
|
|
IRGenMangler mangler;
|
|
CanType canType = addrTy.getSwiftRValueType();
|
|
std::string funcName =
|
|
mangler.mangleOutlinedInitializeWithTakeFunction(canType, this);
|
|
auto GenFunc = [](const TypeInfo &objectTI, IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) {
|
|
objectTI.initializeWithTake(IGF, dest, src, T, true);
|
|
};
|
|
return getOrCreateOutlinedCopyAddrHelperFunction(
|
|
objectTI, llvmType, addrTy, funcName, GenFunc, typeToMetadataVec);
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getOrCreateOutlinedInitializeWithCopyFunction(
|
|
const TypeInfo &objectTI, llvm::Type *llvmType, SILType addrTy,
|
|
const llvm::MapVector<CanType, llvm::Value *> *typeToMetadataVec) {
|
|
IRGenMangler mangler;
|
|
CanType canType = addrTy.getObjectType().getSwiftRValueType();
|
|
std::string funcName =
|
|
mangler.mangleOutlinedInitializeWithCopyFunction(canType, this);
|
|
auto GenFunc = [](const TypeInfo &objectTI, IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) {
|
|
objectTI.initializeWithCopy(IGF, dest, src, T, true);
|
|
};
|
|
return getOrCreateOutlinedCopyAddrHelperFunction(
|
|
objectTI, llvmType, addrTy, funcName, GenFunc, typeToMetadataVec);
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getOrCreateOutlinedAssignWithTakeFunction(
|
|
const TypeInfo &objectTI, llvm::Type *llvmType, SILType addrTy,
|
|
const llvm::MapVector<CanType, llvm::Value *> *typeToMetadataVec) {
|
|
IRGenMangler mangler;
|
|
CanType canType = addrTy.getObjectType().getSwiftRValueType();
|
|
std::string funcName =
|
|
mangler.mangleOutlinedAssignWithTakeFunction(canType, this);
|
|
auto GenFunc = [](const TypeInfo &objectTI, IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) {
|
|
objectTI.assignWithTake(IGF, dest, src, T, true);
|
|
};
|
|
return getOrCreateOutlinedCopyAddrHelperFunction(
|
|
objectTI, llvmType, addrTy, funcName, GenFunc, typeToMetadataVec);
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::getOrCreateOutlinedAssignWithCopyFunction(
|
|
const TypeInfo &objectTI, llvm::Type *llvmType, SILType addrTy,
|
|
const llvm::MapVector<CanType, llvm::Value *> *typeToMetadataVec) {
|
|
IRGenMangler mangler;
|
|
CanType canType = addrTy.getObjectType().getSwiftRValueType();
|
|
std::string funcName =
|
|
mangler.mangleOutlinedAssignWithCopyFunction(canType, this);
|
|
auto GenFunc = [](const TypeInfo &objectTI, IRGenFunction &IGF, Address dest,
|
|
Address src, SILType T) {
|
|
objectTI.assignWithCopy(IGF, dest, src, T, true);
|
|
};
|
|
return getOrCreateOutlinedCopyAddrHelperFunction(
|
|
objectTI, llvmType, addrTy, funcName, GenFunc, typeToMetadataVec);
|
|
}
|
|
|
|
// IRGen is only multi-threaded during LLVM part
|
|
// We don't need to be thread safe even
|
|
// We are working on the primary module *before* LLVM
|
|
unsigned IRGenModule::getCanTypeID(const CanType type) {
|
|
if (this != IRGen.getPrimaryIGM()) {
|
|
return IRGen.getPrimaryIGM()->getCanTypeID(type);
|
|
}
|
|
auto it = typeToUniqueID.find(type.getPointer());
|
|
if (it != typeToUniqueID.end()) {
|
|
return it->second;
|
|
}
|
|
++currUniqueID;
|
|
typeToUniqueID[type.getPointer()] = currUniqueID;
|
|
return currUniqueID;
|
|
}
|