Files
swift-mirror/stdlib/core/String.swift
Dave Abrahams b4c4b30f27 [stdlib] Don't leak CF dependency from core stdlib
Carefully track the functions that inject these dependencies, so all
functions that use them can be protected with

  @inline(never) @semantics("stdlib_binary_only")

To do this, we introduce a naming convention: the _stdlib_binary_ prefix
distinguishes functions dependent on external frameworks.  All callers
of such functions must adopt either the naming convention, or the
attributes above.

This change should unbreak the build.

Swift SVN r25020
2015-02-06 00:48:16 +00:00

1027 lines
31 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// An arbitrary Unicode string value.
///
/// Unicode-Correct
/// ===============
///
/// Swift strings are designed to be Unicode-correct. In particular,
/// the APIs make it easy to write code that works correctly, and does
/// not surprise end-users, regardless of where you venture in the
/// Unicode character space. For example,
///
/// * The `==` operator checks for `Unicode canonical equivalence
/// <http://www.unicode.org/glossary/#deterministic_comparison>`_,
/// so two different representations of the same string will always
/// compare equal.
///
/// * String elements are `Characters` (`extended grapheme clusters
/// <http://www.unicode.org/glossary/#extended_grapheme_cluster>`_),
/// a unit of text that is meaningful to most humans.
///
/// Locale-Insensitive
/// ==================
///
/// The fundamental operations on Swift strings are not sensitive to
/// locale settings. That's because, for example, the validity of a
/// `Dictionary<String, T>` in a running program depends on a given
/// string comparison having a single, stable result. Therefore,
/// Swift always uses the default, un-\ `tailored
/// <http://www.unicode.org/glossary/#tailorable>`_ Unicode algorithms
/// for basic string operations.
///
/// Importing `Foundation` endows swift strings with the full power of
/// the `NSString` API, which allows you to choose more complex
/// locale-sensitive operations explicitly.
///
/// Value Semantics
/// ===============
///
/// Each string variable, `let` binding, or stored property has an
/// independent value, so mutations to the string are not observable
/// through its copies::
///
/// var a = "foo"
/// var b = a
/// b[b.endIndex.predecessor()] = "x"
/// println("a=\(a), b=\(b)") // a=foo, b=fox
///
/// Strings use Copy-on-Write so that their data is only copied
/// lazily, upon mutation, when more than one string instance is using
/// the same buffer. Therefore, the first in any sequence of mutating
/// operations may cost `O(N)` time and space, where `N` is the length
/// of the string's (unspecified) underlying representation,.
///
/// Growth and Capacity
/// ===================
///
/// When a string's contiguous storage fills up, new storage must be
/// allocated and characters must be moved to the new storage.
/// `String` uses an exponential growth strategy that makes `append` a
/// constant time operation *when amortized over many invocations*.
///
/// Objective-C Bridge
/// ==================
///
/// `String` is bridged to Objective-C as `NSString`, and a `String`
/// that originated in Objective-C may store its characters in an
/// `NSString`. Since any arbitrary subclass of `NSSString` can
/// become a `String`, there are no guarantees about representation or
/// efficiency in this case. Since `NSString` is immutable, it is
/// just as though the storage was shared by some copy: the first in
/// any sequence of mutating operations causes elements to be copied
/// into unique, contiguous storage which may cost `O(N)` time and
/// space, where `N` is the length of the string representation (or
/// more, if the underlying `NSString` is has unusual performance
/// characteristics).
public struct String {
public init() {
_core = _StringCore()
}
public init(_ _core: _StringCore) {
self._core = _core
}
public var _core: _StringCore
}
extension String {
public static func _fromWellFormedCodeUnitSequence<
Encoding: UnicodeCodecType, Input: CollectionType
where Input.Generator.Element == Encoding.CodeUnit
>(
encoding: Encoding.Type, input: Input
) -> String {
return String._fromCodeUnitSequence(encoding, input: input)!
}
public static func _fromCodeUnitSequence<
Encoding: UnicodeCodecType, Input: CollectionType
where Input.Generator.Element == Encoding.CodeUnit
>(
encoding: Encoding.Type, input: Input
) -> String? {
let (stringBufferOptional, _) =
_StringBuffer.fromCodeUnits(encoding, input: input,
repairIllFormedSequences: false)
if let stringBuffer = stringBufferOptional {
return String(_storage: stringBuffer)
} else {
return .None
}
}
public static func _fromCodeUnitSequenceWithRepair<
Encoding: UnicodeCodecType, Input: CollectionType
where Input.Generator.Element == Encoding.CodeUnit
>(
encoding: Encoding.Type, input: Input
) -> (String, hadError: Bool) {
let (stringBuffer, hadError) =
_StringBuffer.fromCodeUnits(encoding, input: input,
repairIllFormedSequences: true)
return (String(_storage: stringBuffer!), hadError)
}
}
extension String : _BuiltinUnicodeScalarLiteralConvertible {
@effects(readonly)
public init(_builtinUnicodeScalarLiteral value: Builtin.Int32) {
self = String._fromWellFormedCodeUnitSequence(
UTF32.self, input: CollectionOfOne(UInt32(value)))
}
}
extension String : UnicodeScalarLiteralConvertible {
/// Create an instance initialized to `value`.
public init(unicodeScalarLiteral value: String) {
self = value
}
}
extension String : _BuiltinExtendedGraphemeClusterLiteralConvertible {
@effects(readonly)
@semantics("string.makeUTF8")
public
init(
_builtinExtendedGraphemeClusterLiteral start: Builtin.RawPointer,
byteSize: Builtin.Word,
isASCII: Builtin.Int1) {
self = String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(
start: UnsafeMutablePointer<UTF8.CodeUnit>(start),
count: Int(byteSize)))
}
}
extension String : ExtendedGraphemeClusterLiteralConvertible {
/// Create an instance initialized to `value`.
public init(extendedGraphemeClusterLiteral value: String) {
self = value
}
}
extension String : _BuiltinUTF16StringLiteralConvertible {
@effects(readonly)
@semantics("string.makeUTF16")
public
init(
_builtinUTF16StringLiteral start: Builtin.RawPointer,
numberOfCodeUnits: Builtin.Word
) {
self = String(
_StringCore(
baseAddress: COpaquePointer(start),
count: Int(numberOfCodeUnits),
elementShift: 1,
hasCocoaBuffer: false,
owner: nil))
}
}
extension String : _BuiltinStringLiteralConvertible {
@effects(readonly)
@semantics("string.makeUTF8")
public
init(
_builtinStringLiteral start: Builtin.RawPointer,
byteSize: Builtin.Word,
isASCII: Builtin.Int1) {
if isASCII {
self = String(
_StringCore(
baseAddress: COpaquePointer(start),
count: Int(byteSize),
elementShift: 0,
hasCocoaBuffer: false,
owner: nil))
}
else {
self = String._fromWellFormedCodeUnitSequence(
UTF8.self,
input: UnsafeBufferPointer(
start: UnsafeMutablePointer<UTF8.CodeUnit>(start),
count: Int(byteSize)))
}
}
}
extension String : StringLiteralConvertible {
/// Create an instance initialized to `value`.
public init(stringLiteral value: String) {
self = value
}
}
extension String : DebugPrintable {
/// A textual representation of `self`, suitable for debugging.
public var debugDescription: String {
var result = "\""
for us in self.unicodeScalars {
result += us.escape(asASCII: false)
}
result += "\""
return result
}
}
extension String {
/// Return the number of code units occupied by this string
/// in the given encoding.
func _encodedLength<
Encoding: UnicodeCodecType
>(encoding: Encoding.Type) -> Int {
var codeUnitCount = 0
var output = SinkOf<Encoding.CodeUnit> { _ in ++codeUnitCount;() }
self._encode(encoding, output: &output)
return codeUnitCount
}
// FIXME: this function does not handle the case when a wrapped NSString
// contains unpaired surrogates. Fix this before exposing this function as a
// public API. But it is unclear if it is valid to have such an NSString in
// the first place. If it is not, we should not be crashing in an obscure
// way -- add a test for that.
// Related: <rdar://problem/17340917> Please document how NSString interacts
// with unpaired surrogates
func _encode<
Encoding: UnicodeCodecType,
Output: SinkType
where Encoding.CodeUnit == Output.Element
>(encoding: Encoding.Type, inout output: Output)
{
return _core.encode(encoding, output: &output)
}
}
#if _runtime(_ObjC)
/// Compare two strings using the Unicode collation algorithm in the
/// deterministic comparison mode. (The strings which are equivalent according
/// to their NFD form are considered equal. Strings which are equivalent
/// according to the plain Unicode collation algorithm are additionaly ordered
/// based on their NFD.)
///
/// See Unicode Technical Standard #10.
///
/// The behavior is equivalent to `NSString.compare()` with default options.
///
/// :returns:
/// * an unspecified value less than zero if `lhs < rhs`,
/// * zero if `lhs == rhs`,
/// * an unspecified value greater than zero if `lhs > rhs`.
@asmname("swift_stdlib_compareNSStringDeterministicUnicodeCollation")
public func _stdlib_compareNSStringDeterministicUnicodeCollation(
lhs: AnyObject, rhs: AnyObject
)-> Int32
#endif
extension String : Equatable {
}
public func ==(lhs: String, rhs: String) -> Bool {
if lhs._core.isASCII && rhs._core.isASCII {
if lhs._core.count != rhs._core.count {
return false
}
return memcmp(
UnsafeMutablePointer(lhs._core.startASCII),
UnsafeMutablePointer(rhs._core.startASCII),
UInt(rhs._core.count)) == 0
}
#if _runtime(_ObjC)
// Note: this operation should be consistent with equality comparison of
// Character.
return _stdlib_compareNSStringDeterministicUnicodeCollation(
lhs._bridgeToObjectiveCImpl(), rhs._bridgeToObjectiveCImpl()) == 0
#else
// FIXME: Actually implement. For now, all strings are unequal.
// rdar://problem/18878343
return false
#endif
}
extension String : Comparable {
}
extension String {
@inline(never) @semantics("stdlib_binary_only") // Hide the CF dependency
public // @testable
func _lessThanUTF16(rhs: String) -> Bool {
#if _runtime(_ObjC)
return _stdlib_compareNSStringDeterministicUnicodeCollation(
self._stdlib_binary_bridgeToObjectiveCImpl(),
rhs._stdlib_binary_bridgeToObjectiveCImpl()) < 0
#else
// FIXME: Actually implement. For now, all strings are unequal
// rdar://problem/18878343
return false
#endif
}
/// This is consistent with Foundation, but incorrect as defined by Unicode.
/// Unicode weights some ASCII punctuation in a different order than ASCII
/// value. Such as:
/// 0022 ; [*02FF.0020.0002] # QUOTATION MARK
/// 0023 ; [*038B.0020.0002] # NUMBER SIGN
/// 0025 ; [*038C.0020.0002] # PERCENT SIGN
/// 0026 ; [*0389.0020.0002] # AMPERSAND
/// 0027 ; [*02F8.0020.0002] # APOSTROPHE
/// precondition: both self and rhs are ASCII strings
public // @testable
func _lessThanASCII(rhs: String) -> Bool {
let compare = memcmp(
UnsafeMutablePointer(self._core.startASCII),
UnsafeMutablePointer(rhs._core.startASCII),
min(UInt(self._core.count), UInt(rhs._core.count)))
if compare == 0 {
return self._core.count < rhs._core.count
} else {
return compare < 0
}
}
}
public func <(lhs: String, rhs: String) -> Bool {
if lhs._core.isASCII && rhs._core.isASCII {
return lhs._lessThanASCII(rhs)
}
return lhs._lessThanUTF16(rhs)
}
// Support for copy-on-write
extension String {
/// Append the elements of `other` to `self`.
public mutating func extend(other: String) {
_core.append(other._core)
}
/// Append `x` to `self`.
///
/// Complexity: amortized O(1).
public mutating func append(x: UnicodeScalar) {
_core.append(x)
}
var _utf16Count: Int {
return _core.count
}
public // SPI(Foundation)
init(_storage: _StringBuffer) {
_core = _StringCore(_storage)
}
}
#if _runtime(_ObjC)
@asmname("swift_stdlib_NSStringNFDHashValue")
func _stdlib_NSStringNFDHashValue(str: AnyObject) -> Int
@asmname("swift_stdlib_NSStringASCIIHashValue")
func _stdlib_NSStringASCIIHashValue(str: AnyObject) -> Int
#endif
extension String : Hashable {
/// The hash value.
///
/// **Axiom:** `x == y` implies `x.hashValue == y.hashValue`
///
/// **Note:** the hash value is not guaranteed to be stable across
/// different invocations of the same program. Do not persist the
/// hash value across program runs.
public var hashValue: Int {
// Mix random bits into NSString's hash so that clients don't rely on
// Swift.String.hashValue and NSString.hash being the same.
#if arch(i386) || arch(arm)
let hashOffset = Int(bitPattern: 0x88dd_cc21)
#else
let hashOffset = Int(bitPattern: 0x429b_1266_88dd_cc21)
#endif
#if _runtime(_ObjC)
// FIXME(performance): constructing a temporary NSString is extremely
// wasteful and inefficient.
let cocoaString = unsafeBitCast(
self._bridgeToObjectiveCImpl(), _NSStringCoreType.self)
// If we have an ASCII string, we do not need to normalize.
if self._core.isASCII {
return hashOffset ^ _stdlib_NSStringASCIIHashValue(cocoaString)
} else {
return hashOffset ^ _stdlib_NSStringNFDHashValue(cocoaString)
}
#else
// FIXME: Actually implement. For now, all strings have the same hash.
// rdar://problem/18878343
return hashOffset
#endif
}
}
extension String : StringInterpolationConvertible {
/// Create an instance by concatenating the elements of `strings`
@effects(readonly)
public
init(stringInterpolation strings: String...) {
self.init()
for str in strings {
self += str
}
}
/// Create an instance containing `expr`\ 's `print` representation
public
init<T>(stringInterpolationSegment expr: T) {
self = toString(expr)
}
}
@effects(readonly)
@semantics("string.concat")
public func +(var lhs: String, rhs: String) -> String {
if (lhs.isEmpty) {
return rhs
}
lhs._core.append(rhs._core)
return lhs
}
// String append
public func += (inout lhs: String, rhs: String) {
if lhs.isEmpty {
lhs = rhs
}
else {
lhs._core.append(rhs._core)
}
}
extension String {
/// Constructs a `String` in `resultStorage` containing the given UTF-8.
///
/// Low-level construction interface used by introspection
/// implementation in the runtime library.
@asmname("swift_stringFromUTF8InRawMemory")
public // COMPILER_INTRINSIC
static func _fromUTF8InRawMemory(
resultStorage: UnsafeMutablePointer<String>,
start: UnsafeMutablePointer<UTF8.CodeUnit>, utf8Count: Int
) {
resultStorage.initialize(
String._fromWellFormedCodeUnitSequence(UTF8.self,
input: UnsafeBufferPointer(start: start, count: utf8Count)))
}
}
/// String is a CollectionType of Character
extension String : CollectionType {
/// A character position in a `String`
public struct Index : BidirectionalIndexType, Comparable, Reflectable {
public // SPI(Foundation)
init(_base: UnicodeScalarView.Index) {
self._base = _base
self._lengthUTF16 = Index._measureExtendedGraphemeClusterForward(_base)
}
internal init(_base: UnicodeScalarView.Index, _lengthUTF16: Int) {
self._base = _base
self._lengthUTF16 = _lengthUTF16
}
/// Returns the next consecutive value after `self`.
///
/// Requires: the next value is representable.
public func successor() -> Index {
_precondition(_base != _base._viewEndIndex, "can not increment endIndex")
return Index(_base: _endBase)
}
/// Returns the previous consecutive value before `self`.
///
/// Requires: the previous value is representable.
public func predecessor() -> Index {
_precondition(_base != _base._viewStartIndex,
"can not decrement startIndex")
let predecessorLengthUTF16 =
Index._measureExtendedGraphemeClusterBackward(_base)
return Index(
_base: UnicodeScalarView.Index(
_utf16Index - predecessorLengthUTF16, _base._core))
}
let _base: UnicodeScalarView.Index
/// The length of this extended grapheme cluster in UTF-16 code units.
let _lengthUTF16: Int
/// The integer offset of this index in UTF-16 code units.
public var _utf16Index: Int {
return _base._position
}
/// The one past end index for this extended grapheme cluster in Unicode
/// scalars.
var _endBase: UnicodeScalarView.Index {
return UnicodeScalarView.Index(
_utf16Index + _lengthUTF16, _base._core)
}
/// Returns the length of the first extended grapheme cluster in UTF-16
/// code units.
static func _measureExtendedGraphemeClusterForward(
var start: UnicodeScalarView.Index
) -> Int {
let end = start._viewEndIndex
if start == end {
return 0
}
let startIndexUTF16 = start._position
let unicodeScalars = UnicodeScalarView(start._core)
let graphemeClusterBreakProperty =
_UnicodeGraphemeClusterBreakPropertyTrie()
let segmenter = _UnicodeExtendedGraphemeClusterSegmenter()
var gcb0 = graphemeClusterBreakProperty.getPropertyRawValue(
unicodeScalars[start].value)
++start
for ; start != end; ++start {
// FIXME(performance): consider removing this "fast path". A branch
// that is hard to predict could be worse for performance than a few
// loads from cache to fetch the property 'gcb1'.
if segmenter.isBoundaryAfter(gcb0) {
break
}
let gcb1 = graphemeClusterBreakProperty.getPropertyRawValue(
unicodeScalars[start].value)
if segmenter.isBoundary(gcb0, gcb1) {
break
}
gcb0 = gcb1
}
return start._position - startIndexUTF16
}
/// Returns the length of the previous extended grapheme cluster in UTF-16
/// code units.
static func _measureExtendedGraphemeClusterBackward(
end: UnicodeScalarView.Index
) -> Int {
var start = end._viewStartIndex
if start == end {
return 0
}
let endIndexUTF16 = end._position
let unicodeScalars = UnicodeScalarView(start._core)
let graphemeClusterBreakProperty =
_UnicodeGraphemeClusterBreakPropertyTrie()
let segmenter = _UnicodeExtendedGraphemeClusterSegmenter()
var graphemeClusterStart = end
--graphemeClusterStart
var gcb0 = graphemeClusterBreakProperty.getPropertyRawValue(
unicodeScalars[graphemeClusterStart].value)
var graphemeClusterStartUTF16 = graphemeClusterStart._position
while graphemeClusterStart != start {
--graphemeClusterStart
let gcb1 = graphemeClusterBreakProperty.getPropertyRawValue(
unicodeScalars[graphemeClusterStart].value)
if segmenter.isBoundary(gcb1, gcb0) {
break
}
gcb0 = gcb1
graphemeClusterStartUTF16 = graphemeClusterStart._position
}
return endIndexUTF16 - graphemeClusterStartUTF16
}
/// Returns a mirror that reflects `self`.
public func getMirror() -> MirrorType {
return _IndexMirror(self)
}
}
/// The position of the first `Character` if the `String` is
/// non-empty; identical to `endIndex` otherwise.
public var startIndex: Index {
return Index(_base: unicodeScalars.startIndex)
}
/// The `String`\ 's "past the end" position.
///
/// `endIndex` is not a valid argument to `subscript`, and is always
/// reachable from `startIndex` by zero or more applications of
/// `successor()`.
public var endIndex: Index {
return Index(_base: unicodeScalars.endIndex)
}
/// Access the `Character` at `position`.
///
/// Requires: `position` is a valid position in `self` and
/// `position != endIndex`.
public subscript(i: Index) -> Character {
return Character(String(unicodeScalars[i._base..<i._endBase]))
}
@availability(*, unavailable, message="cannot subscript String with an Int")
public subscript(i: Int) -> Character {
_fatalErrorMessage(
"fatal error",
"cannot subscript String with an Int",
__FILE__,
__LINE__
)
}
/// Return a *generator* over the `Characters` in this `String`.
///
/// Complexity: O(1)
public func generate() -> IndexingGenerator<String> {
return IndexingGenerator(self)
}
internal struct _IndexMirror : MirrorType {
var _value: Index
init(_ x: Index) {
_value = x
}
var value: Any { return _value }
var valueType: Any.Type { return (_value as Any).dynamicType }
var objectIdentifier: ObjectIdentifier? { return .None }
var disposition: MirrorDisposition { return .Aggregate }
var count: Int { return 0 }
subscript(i: Int) -> (String, MirrorType) {
_preconditionFailure("MirrorType access out of bounds")
}
var summary: String { return "\(_value._utf16Index)" }
var quickLookObject: QuickLookObject? { return .Some(.Int(Int64(_value._utf16Index))) }
}
}
public func == (lhs: String.Index, rhs: String.Index) -> Bool {
return lhs._base == rhs._base
}
public func < (lhs: String.Index, rhs: String.Index) -> Bool {
return lhs._base < rhs._base
}
extension String : Sliceable {
/// Access the characters in the given `subRange`
///
/// Complexity: O(1) unless bridging from Objective-C requires an
/// O(N) conversion.
public subscript(subRange: Range<Index>) -> String {
return String(
unicodeScalars[subRange.startIndex._base..<subRange.endIndex._base]._core)
}
@availability(*, unavailable, message="cannot subscript String with a range of Int")
public subscript(subRange: Range<Int>) -> String {
return ""
}
}
extension String : ExtensibleCollectionType {
/// Reserve enough space to store `n` ASCII characters.
///
/// Complexity: O(`n`)
public mutating func reserveCapacity(n: Int) {
_core.reserveCapacity(n)
}
/// Append `c` to `self`.
///
/// Complexity: amortized O(1).
public mutating func append(c: Character) {
switch c._representation {
case .Small(let _63bits):
let bytes = Character._smallValue(_63bits)
_core.extend(Character._SmallUTF16(bytes))
case .Large(let storage):
_core.append(_StringCore(_StringBuffer(storage)))
}
}
/// Append the elements of `newElements` to `self`.
public mutating func extend<
S : SequenceType
where S.Generator.Element == Character
>(newElements: S) {
reserveCapacity(_core.count + underestimateCount(newElements))
for c in newElements {
self.append(c)
}
}
/// Create an instance containing `characters`.
public init<
S : SequenceType
where S.Generator.Element == Character
>(_ characters: S) {
self = ""
self.extend(characters)
}
}
// Algorithms
extension String {
/// Interpose `self` between every pair of consecutive `elements`,
/// then concatenate the result. For example::
///
/// "-|-".join(["foo", "bar", "baz"]) // "foo-|-bar-|-baz"
public func join<
S : SequenceType where S.Generator.Element == String
>(elements: S) -> String{
return Swift.join(self, elements)
}
}
extension String : RangeReplaceableCollectionType {
/// Replace the given `subRange` of elements with `newElements`.
///
/// Invalidates all indices with respect to `self`.
///
/// Complexity: O(\ `count(subRange)`\ ) if `subRange.endIndex
/// == self.endIndex` and `isEmpty(newElements)`\ , O(N) otherwise.
public mutating func replaceRange<
C: CollectionType where C.Generator.Element == Character
>(
subRange: Range<Index>, with newElements: C
) {
_core.replaceRange(
subRange.startIndex._base._position
..< subRange.endIndex._base._position,
with:
_lazyConcatenate(lazy(newElements).map { $0.utf16 })
)
}
/// Insert `newElement` at index `i`.
///
/// Invalidates all indices with respect to `self`.
///
/// Complexity: O(\ `count(self)`\ ).
public mutating func insert(newElement: Character, atIndex i: Index) {
Swift.insert(&self, newElement, atIndex: i)
}
/// Insert `newElements` at index `i`
///
/// Invalidates all indices with respect to `self`.
///
/// Complexity: O(\ `count(self) + count(newElements)`\ ).
public mutating func splice<
S : CollectionType where S.Generator.Element == Character
>(newElements: S, atIndex i: Index) {
Swift.splice(&self, newElements, atIndex: i)
}
/// Remove and return the element at index `i`
///
/// Invalidates all indices with respect to `self`.
///
/// Complexity: O(\ `count(self)`\ ).
public mutating func removeAtIndex(i: Index) -> Character {
return Swift.removeAtIndex(&self, i)
}
/// Remove the indicated `subRange` of characters
///
/// Invalidates all indices with respect to `self`.
///
/// Complexity: O(\ `count(self)`\ ).
public mutating func removeRange(subRange: Range<Index>) {
Swift.removeRange(&self, subRange)
}
/// Remove all characters.
///
/// Invalidates all indices with respect to `self`.
///
/// :param: `keepCapacity`, if `true`, prevents the release of
//// allocated storage, which can be a useful optimization
/// when `self` is going to be grown again.
public mutating func removeAll(keepCapacity: Bool = false) {
Swift.removeAll(&self, keepCapacity: keepCapacity)
}
}
#if _runtime(_ObjC)
@asmname("swift_stdlib_NSStringLowercaseString")
func _stdlib_NSStringLowercaseString(str: AnyObject) -> _CocoaStringType
@asmname("swift_stdlib_NSStringUppercaseString")
func _stdlib_NSStringUppercaseString(str: AnyObject) -> _CocoaStringType
#endif
// Unicode algorithms
extension String {
// FIXME: implement case folding without relying on Foundation.
// <rdar://problem/17550602> [unicode] Implement case folding
/// A "table" for which ASCII characters need to be upper cased.
/// To determine which bit corresponds to which ASCII character, subtract 1
/// from the ASCII value of that character and divide by 2. The bit is set iff
/// that character is a lower case character.
internal var _asciiLowerCaseTable: UInt64 {
@inline(__always)
get {
return 0b0001_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000
}
}
/// The same table for upper case characters.
internal var _asciiUpperCaseTable: UInt64 {
@inline(__always)
get {
return 0b0000_0000_0000_0000_0001_1111_1111_1111_0000_0000_0000_0000_0000_0000_0000_0000
}
}
public var lowercaseString: String {
if self._core.isASCII {
let length = self._core.count
let source = self._core.startASCII
var buffer = _StringBuffer(
capacity: length, initialSize: length, elementWidth: 1)
var dest = UnsafeMutablePointer<UInt8>(buffer.start)
for i in 0..<length {
// For each character in the string, we lookup if it should be shifted
// in our ascii table, then we return 0x20 if it should, 0x0 if not.
// This code is equivalent to:
// switch source[i] {
// case let x where (x >= 0x41 && x <= 0x5a):
// dest[i] = x &+ 0x20
// case let x:
// dest[i] = x
// }
let value = source[i]
let isUpper =
_asciiUpperCaseTable >>
UInt64(((value &- 1) & 0b0111_1111) >> 1)
let add = (isUpper & 0x1) << 5
// Since we are left with either 0x0 or 0x20, we can safely truncate to
// a UInt8 and add to our ASCII value (this will not overflow numbers in
// the ASCII range).
dest[i] = value &+ UInt8(truncatingBitPattern: add)
}
return String(_storage: buffer)
}
#if _runtime(_ObjC)
return _cocoaStringToSwiftString_NonASCII(
_stdlib_NSStringLowercaseString(self._bridgeToObjectiveCImpl()))
#else
// FIXME: Actually implement. For now, don't change case.
// rdar://problem/18878343
return self
#endif
}
public var uppercaseString: String {
if self._core.isASCII {
let length = self._core.count
let source = self._core.startASCII
var buffer = _StringBuffer(
capacity: length, initialSize: length, elementWidth: 1)
var dest = UnsafeMutablePointer<UInt8>(buffer.start)
for i in 0..<length {
// See the comment above in lowercaseString.
let value = source[i]
let isLower =
_asciiLowerCaseTable >>
UInt64(((value &- 1) & 0b0111_1111) >> 1)
let add = (isLower & 0x1) << 5
dest[i] = value &- UInt8(truncatingBitPattern: add)
}
return String(_storage: buffer)
}
#if _runtime(_ObjC)
return _cocoaStringToSwiftString_NonASCII(
_stdlib_NSStringUppercaseString(self._bridgeToObjectiveCImpl()))
#else
// FIXME: Actually implement. For now, don't change case.
// rdar://problem/18878343
return self
#endif
}
}
// Index conversions
extension String.Index {
/// Construct the position in `characters` that corresponds exactly to
/// `unicodeScalarIndex`. If no such position exists, the result is `nil`.
///
/// Requires: `unicodeScalarIndex` is an element of
/// `indices(characters.unicodeScalars)`.
public init?(
_ unicodeScalarIndex: String.UnicodeScalarIndex,
within characters: String
) {
if !unicodeScalarIndex._isOnGraphemeClusterBoundary {
return nil
}
self.init(_base: unicodeScalarIndex)
}
/// Construct the position in `characters` that corresponds exactly to
/// `utf16Index`. If no such position exists, the result is `nil`.
///
/// Requires: `utf16Index` is an element of
/// `indices(characters.utf16)`.
public init?(
_ utf16Index: String.UTF16Index,
within characters: String
) {
if let me = utf16Index.samePositionIn(
characters.unicodeScalars
)?.samePositionIn(characters) {
self = me
}
else {
return nil
}
}
/// Construct the position in `characters` that corresponds exactly to
/// `utf8Index`. If no such position exists, the result is `nil`.
///
/// Requires: `utf8Index` is an element of
/// `indices(characters.utf8)`.
public init?(
_ utf8Index: String.UTF8Index,
within characters: String
) {
if let me = utf8Index.samePositionIn(
characters.unicodeScalars
)?.samePositionIn(characters) {
self = me
}
else {
return nil
}
}
/// Return the position in `utf8` that corresponds exactly
/// to `self`.
///
/// Requires: `self` is an element of `indices(String(utf8))`.
public func samePositionIn(
utf8: String.UTF8View
) -> String.UTF8View.Index {
return String.UTF8View.Index(self, within: utf8)
}
/// Return the position in `utf16` that corresponds exactly
/// to `self`.
///
/// Requires: `self` is an element of `indices(String(utf16))`.
public func samePositionIn(
utf16: String.UTF16View
) -> String.UTF16View.Index {
return String.UTF16View.Index(self, within: utf16)
}
/// Return the position in `unicodeScalars` that corresponds exactly
/// to `self`.
///
/// Requires: `self` is an element of `indices(String(unicodeScalars))`.
public func samePositionIn(
unicodeScalars: String.UnicodeScalarView
) -> String.UnicodeScalarView.Index {
return String.UnicodeScalarView.Index(self, within: unicodeScalars)
}
}