mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
findInnerTransitiveUsesForAddress was incorrectly returning true for
pointer escapes.
Introduce enum AddressUseKind { NonEscaping, PointerEscape, Unknown };
Clients need to handle each of these cases differently.
1609 lines
65 KiB
C++
1609 lines
65 KiB
C++
//===--- OwnershipOptUtils.cpp --------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
///
|
|
/// Ownership Utilities that rely on SILOptimizer functionality.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
|
|
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/LinearLifetimeChecker.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void cleanupOperandsBeforeDeletion(SILInstruction *oldValue,
|
|
InstModCallbacks &callbacks) {
|
|
SILBuilderWithScope builder(oldValue);
|
|
for (auto &op : oldValue->getAllOperands()) {
|
|
if (!op.isLifetimeEnding()) {
|
|
continue;
|
|
}
|
|
|
|
switch (op.get().getOwnershipKind()) {
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid ownership for value");
|
|
case OwnershipKind::Owned: {
|
|
auto *dvi = builder.createDestroyValue(oldValue->getLoc(), op.get());
|
|
callbacks.createdNewInst(dvi);
|
|
continue;
|
|
}
|
|
case OwnershipKind::Guaranteed: {
|
|
// Should only happen once we model destructures as true reborrows.
|
|
auto *ebi = builder.createEndBorrow(oldValue->getLoc(), op.get());
|
|
callbacks.createdNewInst(ebi);
|
|
continue;
|
|
}
|
|
case OwnershipKind::None:
|
|
continue;
|
|
case OwnershipKind::Unowned:
|
|
llvm_unreachable("Unowned object can never be consumed?!");
|
|
}
|
|
llvm_unreachable("Covered switch isn't covered");
|
|
}
|
|
}
|
|
|
|
static SILPhiArgument *
|
|
insertOwnedBaseValueAlongBranchEdge(BranchInst *bi, SILValue innerCopy,
|
|
InstModCallbacks &callbacks) {
|
|
auto *destBB = bi->getDestBB();
|
|
// We need to create the phi argument before calling addNewEdgeValueToBranch
|
|
// since it checks that the destination block has enough arguments for the
|
|
// argument.
|
|
auto *phiArg =
|
|
destBB->createPhiArgument(innerCopy->getType(), OwnershipKind::Owned);
|
|
InstructionDeleter deleter(callbacks);
|
|
addNewEdgeValueToBranch(bi, destBB, innerCopy, deleter);
|
|
|
|
// Grab our predecessor blocks, ignoring us, add to the branch edge an
|
|
// undef corresponding to our value.
|
|
//
|
|
// We gather all predecessor blocks in a separate array to avoid
|
|
// iterator invalidation issues as we mess with terminators.
|
|
SmallVector<SILBasicBlock *, 8> predecessorBlocks(
|
|
destBB->getPredecessorBlocks());
|
|
|
|
for (auto *predBlock : predecessorBlocks) {
|
|
if (predBlock == innerCopy->getParentBlock())
|
|
continue;
|
|
addNewEdgeValueToBranch(
|
|
predBlock->getTerminator(), destBB,
|
|
SILUndef::get(innerCopy->getType(), *destBB->getParent()), deleter);
|
|
}
|
|
|
|
return phiArg;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BorrowedLifetimeExtender
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Model an extended borrow scope, including transitive reborrows. This applies
|
|
/// to "local" borrow scopes (begin_borrow, load_borrow, & phi).
|
|
///
|
|
/// Allow extending the lifetime of an owned value that dominates this borrowed
|
|
/// value across that extended borrow scope. This handles uses of reborrows that
|
|
/// are not dominated by the owned value by generating phis and copying the
|
|
/// borrowed values the reach this borrow scope from non-dominated paths.
|
|
///
|
|
/// This produces somewhat canonical owned phis, although that isn't a
|
|
/// requirement for valid SIL. Given an owned value, a dominated borrowed value,
|
|
/// and a reborrow:
|
|
///
|
|
/// %ownedValue = ...
|
|
/// %borrowedValue = ...
|
|
/// %reborrow = phi(%borrowedValue, %otherBorrowedValue)
|
|
///
|
|
/// %otherBorrowedValue will always be copied even if %ownedValue also dominates
|
|
/// %otherBorrowedValue, as such:
|
|
///
|
|
/// %otherCopy = copy_value %borrowedValue
|
|
/// %newPhi = phi(%ownedValue, %otherCopy)
|
|
///
|
|
/// The immediate effect is to produce an unnecesssary copy, but it avoids
|
|
/// extending %ownedValue's liveness to new paths and hopefully simplifies
|
|
/// downstream optimization and debugging. Unnecessary copies could be
|
|
/// avoided with simple dominance check if it becomes desirable to do so.
|
|
struct BorrowedLifetimeExtender {
|
|
BorrowedValue borrowedValue;
|
|
|
|
// Owned value currently being extended over borrowedValue.
|
|
SILValue currentOwnedValue;
|
|
|
|
InstModCallbacks &callbacks;
|
|
|
|
llvm::SmallVector<PhiValue, 4> reborrowedPhis;
|
|
llvm::SmallDenseMap<PhiValue, PhiValue, 4> reborrowedToOwnedPhis;
|
|
|
|
/// Check that all reaching operands are handled. This can be removed once the
|
|
/// utility and OSSA representation are stable.
|
|
SWIFT_ASSERT_ONLY_DECL(llvm::SmallDenseSet<PhiOperand, 4> reborrowedOperands);
|
|
|
|
/// Initially map the reborrowed phi to an invalid value prior to creating the
|
|
/// owned phi.
|
|
void discoverReborrow(PhiValue reborrowedPhi) {
|
|
if (reborrowedToOwnedPhis.try_emplace(reborrowedPhi, PhiValue()).second) {
|
|
reborrowedPhis.push_back(reborrowedPhi);
|
|
}
|
|
}
|
|
|
|
/// Remap the reborrowed phi to an valid owned phi after creating it.
|
|
void mapOwnedPhi(PhiValue reborrowedPhi, PhiValue ownedPhi) {
|
|
reborrowedToOwnedPhis[reborrowedPhi] = ownedPhi;
|
|
}
|
|
|
|
/// Get the owned value associated with this reborrowed operand, or return an
|
|
/// invalid SILValue indicating that the borrowed lifetime does not reach this
|
|
/// operand.
|
|
SILValue getExtendedOwnedValue(PhiOperand reborrowedOper) {
|
|
// If this operand reborrows the original borrow, then the currentOwned phi
|
|
// reaches it directly.
|
|
SILValue borrowSource = reborrowedOper.getSource();
|
|
if (borrowSource == borrowedValue.value)
|
|
return currentOwnedValue;
|
|
|
|
// Check if the borrowed operand's source is already mapped to an owned phi.
|
|
auto reborrowedAndOwnedPhi = reborrowedToOwnedPhis.find(borrowSource);
|
|
if (reborrowedAndOwnedPhi != reborrowedToOwnedPhis.end()) {
|
|
// Return the already-mapped owned phi.
|
|
assert(reborrowedOperands.erase(reborrowedOper));
|
|
return reborrowedAndOwnedPhi->second;
|
|
}
|
|
// The owned value does not reach this reborrowed operand.
|
|
assert(
|
|
!reborrowedOperands.count(reborrowedOper)
|
|
&& "reachable borrowed phi operand must be mapped to an owned value");
|
|
return SILValue();
|
|
}
|
|
|
|
public:
|
|
/// Precondition: \p borrowedValue must introduce a local borrow scope
|
|
/// (begin_borrow, load_borrow, & phi).
|
|
BorrowedLifetimeExtender(BorrowedValue borrowedValue,
|
|
InstModCallbacks &callbacks)
|
|
: borrowedValue(borrowedValue), callbacks(callbacks) {
|
|
assert(borrowedValue.isLocalScope() && "expect a valid borrowed value");
|
|
}
|
|
|
|
/// Extend \p ownedValue over this extended borrow scope.
|
|
///
|
|
/// Precondition: \p ownedValue dominates this borrowed value.
|
|
void extendOverBorrowScopeAndConsume(SILValue ownedValue);
|
|
|
|
protected:
|
|
void analyzeExtendedScope();
|
|
|
|
SILValue createCopyAtEdge(PhiOperand reborrowOper);
|
|
|
|
void destroyAtScopeEnd(SILValue ownedValue, BorrowedValue pairedBorrow);
|
|
};
|
|
|
|
// Gather all transitive phi-reborrows and check that all the borrowed uses can
|
|
// be found with no escapes.
|
|
//
|
|
// Calls discoverReborrow to populate reborrowedPhis.
|
|
void BorrowedLifetimeExtender::analyzeExtendedScope() {
|
|
auto visitReborrow = [&](Operand *endScope) {
|
|
if (auto borrowingOper = BorrowingOperand(endScope)) {
|
|
assert(borrowingOper.isReborrow());
|
|
|
|
SWIFT_ASSERT_ONLY(reborrowedOperands.insert(endScope));
|
|
|
|
// TODO: if non-phi reborrows are added, handle multiple results.
|
|
discoverReborrow(borrowingOper.getBorrowIntroducingUserResult().value);
|
|
}
|
|
return true;
|
|
};
|
|
|
|
bool result = borrowedValue.visitLocalScopeEndingUses(visitReborrow);
|
|
assert(result && "visitReborrow always succeeds, escapes are irrelevant");
|
|
|
|
// Note: Iterate in the same manner as findExtendedTransitiveGuaranteedUses(),
|
|
// but using BorrowedLifetimeExtender's own reborrowedPhis.
|
|
for (unsigned idx = 0; idx < reborrowedPhis.size(); ++idx) {
|
|
auto borrowedValue = BorrowedValue(reborrowedPhis[idx]);
|
|
result = borrowedValue.visitLocalScopeEndingUses(visitReborrow);
|
|
assert(result && "visitReborrow always succeeds, escapes are irrelevant");
|
|
}
|
|
}
|
|
|
|
// Insert a copy on this edge. This might not be necessary if the owned
|
|
// value dominates this path, but this avoids forcing the owned value to be
|
|
// live across new paths.
|
|
//
|
|
// TODO: consider copying the base of the borrowed value instead of the
|
|
// borrowed value directly. It's likely that the copy is used outside of the
|
|
// borrow scope, in which case, canonicalizeOSSA will create a copy outside
|
|
// the borrow scope anyway. However, we can't be sure that the base is the
|
|
// same type.
|
|
//
|
|
// TODO: consider reusing copies that dominate multiple reborrowed
|
|
// operands. Howeer, this requires copying in an earlier block and inserting
|
|
// post-dominating destroys, which may be better handled in an ownership phi
|
|
// canonicalization pass.
|
|
SILValue BorrowedLifetimeExtender::createCopyAtEdge(PhiOperand reborrowOper) {
|
|
auto *branch = reborrowOper.getBranch();
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(branch->getLoc());
|
|
auto *copy = SILBuilderWithScope(branch).createCopyValue(
|
|
loc, reborrowOper.getSource());
|
|
callbacks.createdNewInst(copy);
|
|
return copy;
|
|
}
|
|
|
|
// Destroy \p ownedValue at \p pairedBorrow's scope-ending uses, excluding
|
|
// reborrows.
|
|
//
|
|
// Precondition: ownedValue takes ownership of its value at the same point as
|
|
// pairedBorrow. e.g. an owned and guaranteed pair of phis.
|
|
void BorrowedLifetimeExtender::destroyAtScopeEnd(SILValue ownedValue,
|
|
BorrowedValue pairedBorrow) {
|
|
pairedBorrow.visitLocalScopeEndingUses([&](Operand *scopeEnd) {
|
|
if (scopeEnd->getOperandOwnership() == OperandOwnership::Reborrow)
|
|
return true;
|
|
|
|
auto *endInst = scopeEnd->getUser();
|
|
assert(!isa<TermInst>(endInst) && "branch must be a reborrow");
|
|
auto *destroyPt = &*std::next(endInst->getIterator());
|
|
auto *destroy = SILBuilderWithScope(destroyPt).createDestroyValue(
|
|
destroyPt->getLoc(), ownedValue);
|
|
callbacks.createdNewInst(destroy);
|
|
return true;
|
|
});
|
|
}
|
|
|
|
// Insert and map an owned phi for each reborrowed phi.
|
|
//
|
|
// For each reborrowed phi, insert a copy on each edge that does not originate
|
|
// from the extended borrowedValue.
|
|
//
|
|
// TODO: If non-phi reborrows are added, they would also need to be
|
|
// mapped to their owned counterpart. This means generating new owned
|
|
// struct/destructure instructions.
|
|
void BorrowedLifetimeExtender::
|
|
extendOverBorrowScopeAndConsume(SILValue ownedValue) {
|
|
currentOwnedValue = ownedValue;
|
|
|
|
// Populate the reborrowedPhis vector.
|
|
analyzeExtendedScope();
|
|
|
|
InstructionDeleter deleter(callbacks);
|
|
|
|
// Generate and map the phis with undef operands first, in case of recursion.
|
|
auto undef = SILUndef::get(ownedValue->getType(), *ownedValue->getFunction());
|
|
for (PhiValue reborrowedPhi : reborrowedPhis) {
|
|
auto *phiBlock = reborrowedPhi.phiBlock;
|
|
auto *ownedPhi = phiBlock->createPhiArgument(ownedValue->getType(),
|
|
OwnershipKind::Owned);
|
|
for (auto *predBlock : phiBlock->getPredecessorBlocks()) {
|
|
TermInst *ti = predBlock->getTerminator();
|
|
addNewEdgeValueToBranch(ti, phiBlock, undef, deleter);
|
|
}
|
|
mapOwnedPhi(reborrowedPhi, PhiValue(ownedPhi));
|
|
}
|
|
// Generate copies and set the phi operands.
|
|
for (PhiValue reborrowedPhi : reborrowedPhis) {
|
|
PhiValue ownedPhi = reborrowedToOwnedPhis[reborrowedPhi];
|
|
reborrowedPhi.getValue()->visitIncomingPhiOperands(
|
|
// For each reborrowed operand, get the owned value for that edge,
|
|
// and set the owned phi's operand.
|
|
[&](Operand *reborrowedOper) {
|
|
SILValue ownedVal = getExtendedOwnedValue(reborrowedOper);
|
|
if (!ownedVal) {
|
|
ownedVal = createCopyAtEdge(reborrowedOper);
|
|
}
|
|
BranchInst *branch = PhiOperand(reborrowedOper).getBranch();
|
|
branch->getOperandRef(ownedPhi.argIndex).set(ownedVal);
|
|
return true;
|
|
});
|
|
}
|
|
assert(reborrowedOperands.empty() && "not all phi operands are handled");
|
|
|
|
// Create destroys at the last uses.
|
|
destroyAtScopeEnd(ownedValue, borrowedValue);
|
|
for (PhiValue reborrowedPhi : reborrowedPhis) {
|
|
PhiValue ownedPhi = reborrowedToOwnedPhis[reborrowedPhi];
|
|
destroyAtScopeEnd(ownedPhi, BorrowedValue(reborrowedPhi));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ownership RAUW Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Determine whether it is valid to replace \p oldValue with \p newValue by
|
|
// directly checking ownership requirements. This does not determine whether
|
|
// the scope of the newValue can be fully extended.
|
|
static bool hasValidRAUWOwnership(SILValue oldValue, SILValue newValue) {
|
|
auto newOwnershipKind = newValue.getOwnershipKind();
|
|
|
|
// If our new kind is ValueOwnershipKind::None, then we are fine. We
|
|
// trivially support that. This check also ensures that we can always
|
|
// replace any value with a ValueOwnershipKind::None value.
|
|
if (newOwnershipKind == OwnershipKind::None)
|
|
return true;
|
|
|
|
// If our old ownership kind is ValueOwnershipKind::None and our new kind is
|
|
// not, we may need to do more work that has not been implemented yet. So
|
|
// bail.
|
|
//
|
|
// Due to our requirement that types line up, this can only occur given a
|
|
// non-trivial typed value with None ownership. This can only happen when
|
|
// oldValue is a trivial payloaded or no-payload non-trivially typed
|
|
// enum. That doesn't occur that often so we just bail on it today until we
|
|
// implement this functionality.
|
|
if (oldValue.getOwnershipKind() == OwnershipKind::None)
|
|
return false;
|
|
|
|
// First check if oldValue is SILUndef. If it is, then we know that:
|
|
//
|
|
// 1. SILUndef (and thus oldValue) must have OwnershipKind::None.
|
|
// 2. newValue is not OwnershipKind::None due to our check above.
|
|
//
|
|
// Thus we know that we would be replacing a value with OwnershipKind::None
|
|
// with a value with non-None ownership. This is a case we don't support, so
|
|
// we can bail now.
|
|
if (isa<SILUndef>(oldValue))
|
|
return false;
|
|
|
|
// Ok, we now know that we do not have SILUndef implying that we must be able
|
|
// to get a module from our value since we must have an argument or an
|
|
// instruction.
|
|
auto *m = oldValue->getModule();
|
|
assert(m);
|
|
|
|
// If we are in Raw SIL, just bail at this point. We do not support
|
|
// ownership fixups.
|
|
if (m->getStage() == SILStage::Raw)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Determine whether it is valid to replace \p oldValue with \p newValue and
|
|
// extend the lifetime of \p oldValue to cover the new uses.
|
|
//
|
|
// This updates the OwnershipFixupContext, populating transitiveBorrowedUses and
|
|
// recursiveReborrows.
|
|
static bool canFixUpOwnershipForRAUW(SILValue oldValue, SILValue newValue,
|
|
OwnershipFixupContext &context) {
|
|
if (!hasValidRAUWOwnership(oldValue, newValue))
|
|
return false;
|
|
|
|
if (oldValue.getOwnershipKind() != OwnershipKind::Guaranteed)
|
|
return true;
|
|
|
|
// Check that the old lifetime can be extended and record the necessary
|
|
// book-keeping in the OwnershipFixupContext.
|
|
context.clear();
|
|
|
|
// Note: The following code is the same logic as
|
|
// findExtendedTransitiveGuaranteedUses(), but it handles the reborrows
|
|
// itself to maintain book-keeping. This is intended to be moved into a
|
|
// different utility in a follow-up commit.
|
|
SmallSetVector<SILValue, 4> reborrows;
|
|
auto visitReborrow = [&](Operand *endScope) {
|
|
auto borrowingOper = BorrowingOperand(endScope);
|
|
assert(borrowingOper.isReborrow());
|
|
// TODO: if non-phi reborrows even exist, handle them using a separate
|
|
// SILValue list since we don't want to refer directly to phi SILValues.
|
|
reborrows.insert(borrowingOper.getBorrowIntroducingUserResult().value);
|
|
context.recursiveReborrows.push_back(endScope);
|
|
};
|
|
if (!findTransitiveGuaranteedUses(oldValue, context.transitiveBorrowedUses,
|
|
visitReborrow))
|
|
return false;
|
|
|
|
for (unsigned idx = 0; idx < reborrows.size(); ++idx) {
|
|
bool result =
|
|
findTransitiveGuaranteedUses(reborrows[idx],
|
|
context.transitiveBorrowedUses,
|
|
visitReborrow);
|
|
// It is impossible to find a Pointer escape while traversing reborrows.
|
|
assert(result && "visiting reborrows always succeeds");
|
|
(void)result;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ownership Lifetime Extender
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct OwnershipLifetimeExtender {
|
|
OwnershipFixupContext &ctx;
|
|
|
|
/// Create a new copy of \p value assuming that our caller will clean up the
|
|
/// copy along all paths that go through consuming point. Operationally this
|
|
/// means that the API will insert compensating destroy_value on the copy
|
|
/// along all paths that do not go through consuming point.
|
|
///
|
|
/// DISCUSSION: If \p consumingPoint is an instruction that forwards \p value,
|
|
/// calling this and then RAUWing with \p value guarantee that \p value will
|
|
/// be consumed by the forwarding instruction's results consuming uses.
|
|
CopyValueInst *createPlusOneCopy(SILValue value,
|
|
SILInstruction *consumingPoint);
|
|
|
|
/// Create a new borrow scope for \p newValue that is cleaned up along all
|
|
/// paths that do not go through consuming point. The caller is expected to
|
|
/// consumg \p newValue at \p consumingPoint since we insert a destroy_value
|
|
/// right after wards.
|
|
BeginBorrowInst *createPlusOneBorrow(SILValue newValue,
|
|
SILInstruction *consumingPoint);
|
|
|
|
/// Create a copy of \p value that covers all of \p range and insert all
|
|
/// needed destroy_values. We assume that no uses in \p range consume \p
|
|
/// value.
|
|
CopyValueInst *createPlusZeroCopy(SILValue value, ArrayRef<Operand *> range) {
|
|
return createPlusZeroCopy<ArrayRef<Operand *>>(value, range);
|
|
}
|
|
|
|
/// Create a copy of \p value that covers all of \p range and insert all
|
|
/// needed destroy_values. We assume that all uses in \p range do not consume
|
|
/// \p value.
|
|
///
|
|
/// We return our copy_value to the user at +0 to show that they do not need
|
|
/// to insert cleanup destroys.
|
|
template <typename RangeTy>
|
|
CopyValueInst *createPlusZeroCopy(SILValue value, const RangeTy &range);
|
|
|
|
/// Create a new borrow scope for \p newValue that contains all uses in \p
|
|
/// useRange. We assume that \p useRange does not contain any lifetime ending
|
|
/// uses.
|
|
template <typename RangeTy>
|
|
BeginBorrowInst *createPlusZeroBorrow(SILValue newValue, RangeTy useRange);
|
|
|
|
/// Create a copy/borrow of \p value that covers all of \p range and insert
|
|
/// all needed destroy_values/end_borrow. We assume that no uses in \p range
|
|
/// consume \p value.
|
|
BeginBorrowInst *createPlusZeroBorrow(SILValue value,
|
|
ArrayRef<Operand *> range) {
|
|
return createPlusZeroBorrow<ArrayRef<Operand *>>(value, range);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Lifetime extend newValue over owned oldValue assuming that our copy will have
|
|
// its lifetime ended by oldValue's lifetime ending uses after RAUWing by our
|
|
// caller.
|
|
CopyValueInst *
|
|
OwnershipLifetimeExtender::createPlusOneCopy(SILValue value,
|
|
SILInstruction *consumingPoint) {
|
|
auto *copyPoint = value->getNextInstruction();
|
|
auto loc = copyPoint->getLoc();
|
|
auto *copy = SILBuilderWithScope(copyPoint).createCopyValue(loc, value);
|
|
|
|
auto &callbacks = ctx.callbacks;
|
|
callbacks.createdNewInst(copy);
|
|
|
|
auto *result = copy;
|
|
findJointPostDominatingSet(
|
|
copyPoint->getParent(), consumingPoint->getParent(),
|
|
// inputBlocksFoundDuringWalk.
|
|
[&](SILBasicBlock *loopBlock) {
|
|
// This must be consumingPoint->getParent() since we only have one
|
|
// consuming use. In this case, we know that this is the consuming
|
|
// point where we will need a control equivalent copy_value (and that
|
|
// destroy_value will be put for the out of loop value as appropriate.
|
|
assert(loopBlock == consumingPoint->getParent());
|
|
auto front = loopBlock->begin();
|
|
SILBuilderWithScope newBuilder(front);
|
|
|
|
// Create an extra copy when the consuming point is inside a
|
|
// loop and both copyPoint and the destroy points are outside the
|
|
// loop. This copy will be consumed in the same block. The original
|
|
// value will be destroyed on all paths exiting the loop.
|
|
//
|
|
// Since copyPoint dominates consumingPoint, it must be outside the
|
|
// loop. Otherwise backward traversal would have stopped at copyPoint.
|
|
result = newBuilder.createCopyValue(front->getLoc(), copy);
|
|
callbacks.createdNewInst(result);
|
|
},
|
|
// Input blocks in joint post dom set. We don't care about thse.
|
|
[&](SILBasicBlock *postDomBlock) {
|
|
auto front = postDomBlock->begin();
|
|
SILBuilderWithScope newBuilder(front);
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(front->getLoc());
|
|
auto *dvi = newBuilder.createDestroyValue(loc, copy);
|
|
callbacks.createdNewInst(dvi);
|
|
});
|
|
return result;
|
|
}
|
|
|
|
BeginBorrowInst *
|
|
OwnershipLifetimeExtender::createPlusOneBorrow(SILValue value,
|
|
SILInstruction *consumingPoint) {
|
|
auto *newValInsertPt = value->getDefiningInsertionPoint();
|
|
assert(newValInsertPt);
|
|
CopyValueInst *copy;
|
|
BeginBorrowInst *borrow;
|
|
if (!isa<SILArgument>(value)) {
|
|
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
|
|
copy = builder.createCopyValue(builder.getInsertionPointLoc(), value);
|
|
borrow = builder.createBeginBorrow(builder.getInsertionPointLoc(), copy);
|
|
});
|
|
} else {
|
|
SILBuilderWithScope builder(newValInsertPt);
|
|
copy = builder.createCopyValue(newValInsertPt->getLoc(), value);
|
|
borrow = builder.createBeginBorrow(newValInsertPt->getLoc(), copy);
|
|
}
|
|
|
|
auto &callbacks = ctx.callbacks;
|
|
callbacks.createdNewInst(copy);
|
|
callbacks.createdNewInst(borrow);
|
|
|
|
auto *result = borrow;
|
|
findJointPostDominatingSet(
|
|
newValInsertPt->getParent(), consumingPoint->getParent(),
|
|
// inputBlocksFoundDuringWalk.
|
|
[&](SILBasicBlock *loopBlock) {
|
|
// This must be consumingPoint->getParent() since we only have one
|
|
// consuming use. In this case, we know that this is the consuming
|
|
// point where we will need a control equivalent copy_value (and that
|
|
// destroy_value will be put for the out of loop value as appropriate.
|
|
assert(loopBlock == consumingPoint->getParent());
|
|
auto front = loopBlock->begin();
|
|
SILBuilderWithScope newBuilder(front);
|
|
result = newBuilder.createBeginBorrow(front->getLoc(), borrow);
|
|
callbacks.createdNewInst(result);
|
|
|
|
llvm_unreachable("Should never visit this!");
|
|
},
|
|
// Input blocks in joint post dom set. We don't care about thse.
|
|
[&](SILBasicBlock *postDomBlock) {
|
|
auto front = postDomBlock->begin();
|
|
SILBuilderWithScope newBuilder(front);
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(front->getLoc());
|
|
auto *ebi = newBuilder.createEndBorrow(loc, borrow);
|
|
callbacks.createdNewInst(ebi);
|
|
auto *dvi = newBuilder.createDestroyValue(loc, copy);
|
|
callbacks.createdNewInst(dvi);
|
|
});
|
|
return result;
|
|
}
|
|
|
|
// A copy_value that we lifetime extend with destroy_value over range. We assume
|
|
// all instructions passed into range do not consume value.
|
|
template <typename RangeTy>
|
|
CopyValueInst *
|
|
OwnershipLifetimeExtender::createPlusZeroCopy(SILValue value,
|
|
const RangeTy &range) {
|
|
auto *newValInsertPt = value->getDefiningInsertionPoint();
|
|
assert(newValInsertPt);
|
|
|
|
CopyValueInst *copy;
|
|
|
|
if (!isa<SILArgument>(value)) {
|
|
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
|
|
copy = builder.createCopyValue(builder.getInsertionPointLoc(), value);
|
|
});
|
|
} else {
|
|
SILBuilderWithScope builder(newValInsertPt);
|
|
copy = builder.createCopyValue(newValInsertPt->getLoc(), value);
|
|
}
|
|
|
|
auto &callbacks = ctx.callbacks;
|
|
callbacks.createdNewInst(copy);
|
|
|
|
auto opRange = makeUserRange(range);
|
|
ValueLifetimeAnalysis lifetimeAnalysis(copy, opRange);
|
|
ValueLifetimeAnalysis::Frontier frontier;
|
|
bool result = lifetimeAnalysis.computeFrontier(
|
|
frontier, ValueLifetimeAnalysis::DontModifyCFG, &ctx.deBlocks);
|
|
assert(result);
|
|
|
|
while (!frontier.empty()) {
|
|
auto *insertPt = frontier.pop_back_val();
|
|
SILBuilderWithScope frontierBuilder(insertPt);
|
|
auto *dvi = frontierBuilder.createDestroyValue(insertPt->getLoc(), copy);
|
|
callbacks.createdNewInst(dvi);
|
|
}
|
|
|
|
return copy;
|
|
}
|
|
|
|
template <typename RangeTy>
|
|
BeginBorrowInst *
|
|
OwnershipLifetimeExtender::createPlusZeroBorrow(SILValue newValue,
|
|
RangeTy useRange) {
|
|
auto *newValInsertPt = newValue->getDefiningInsertionPoint();
|
|
assert(newValInsertPt);
|
|
|
|
CopyValueInst *copy = nullptr;
|
|
BeginBorrowInst *borrow = nullptr;
|
|
if (!isa<SILArgument>(newValue)) {
|
|
SILBuilderWithScope::insertAfter(newValInsertPt, [&](SILBuilder &builder) {
|
|
auto loc = builder.getInsertionPointLoc();
|
|
copy = builder.createCopyValue(loc, newValue);
|
|
borrow = builder.createBeginBorrow(loc, copy);
|
|
});
|
|
} else {
|
|
SILBuilderWithScope builder(newValInsertPt);
|
|
auto loc = newValInsertPt->getLoc();
|
|
copy = builder.createCopyValue(loc, newValue);
|
|
borrow = builder.createBeginBorrow(loc, copy);
|
|
}
|
|
assert(copy && borrow);
|
|
|
|
auto opRange = makeUserRange(useRange);
|
|
ValueLifetimeAnalysis lifetimeAnalysis(copy, opRange);
|
|
ValueLifetimeAnalysis::Frontier frontier;
|
|
bool result = lifetimeAnalysis.computeFrontier(
|
|
frontier, ValueLifetimeAnalysis::DontModifyCFG, &ctx.deBlocks);
|
|
assert(result);
|
|
|
|
auto &callbacks = ctx.callbacks;
|
|
while (!frontier.empty()) {
|
|
auto *insertPt = frontier.pop_back_val();
|
|
SILBuilderWithScope frontierBuilder(insertPt);
|
|
// Use an auto-generated location here, because insertPt may have an
|
|
// incompatible LocationKind
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(insertPt->getLoc());
|
|
auto *ebi = frontierBuilder.createEndBorrow(loc, borrow);
|
|
auto *dvi = frontierBuilder.createDestroyValue(loc, copy);
|
|
callbacks.createdNewInst(ebi);
|
|
callbacks.createdNewInst(dvi);
|
|
}
|
|
return borrow;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Reborrow Elimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void eliminateReborrowsOfRecursiveBorrows(
|
|
ArrayRef<PhiOperand> transitiveReborrows,
|
|
SmallVectorImpl<Operand *> &usePoints, InstModCallbacks &callbacks) {
|
|
SmallVector<std::pair<SILPhiArgument *, SILPhiArgument *>, 8>
|
|
baseBorrowedValuePair;
|
|
// Ok, we have transitive reborrows.
|
|
for (auto it : transitiveReborrows) {
|
|
// We eliminate the reborrow by creating a new copy+borrow at the reborrow
|
|
// edge from the base value and using that for the reborrow instead of the
|
|
// actual value. We of course insert an end_borrow for our original incoming
|
|
// value.
|
|
auto *bi = cast<BranchInst>(it.predBlock->getTerminator());
|
|
auto &op = bi->getOperandRef(it.argIndex);
|
|
BorrowingOperand borrowingOperand(&op);
|
|
SILValue value = borrowingOperand->get();
|
|
SILBuilderWithScope reborrowBuilder(bi);
|
|
// Use an auto-generated location here, because the branch may have an
|
|
// incompatible LocationKind
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(bi->getLoc());
|
|
auto *innerCopy = reborrowBuilder.createCopyValue(loc, value);
|
|
auto *innerBorrow = reborrowBuilder.createBeginBorrow(loc, innerCopy);
|
|
auto *outerEndBorrow = reborrowBuilder.createEndBorrow(loc, value);
|
|
|
|
callbacks.createdNewInst(innerCopy);
|
|
callbacks.createdNewInst(innerBorrow);
|
|
callbacks.createdNewInst(outerEndBorrow);
|
|
|
|
// Then set our borrowing operand to take our innerBorrow instead of value
|
|
// (whose lifetime we just ended).
|
|
callbacks.setUseValue(*borrowingOperand, innerBorrow);
|
|
// Add our outer end borrow as a use point to make sure that we extend our
|
|
// base value to this point.
|
|
usePoints.push_back(&outerEndBorrow->getAllOperands()[0]);
|
|
|
|
// Then check if in our destination block, we have further reborrows. If we
|
|
// do, we need to recursively process them.
|
|
auto *borrowedArg =
|
|
const_cast<SILPhiArgument *>(bi->getArgForOperand(*borrowingOperand));
|
|
auto *baseArg =
|
|
insertOwnedBaseValueAlongBranchEdge(bi, innerCopy, callbacks);
|
|
baseBorrowedValuePair.emplace_back(baseArg, borrowedArg);
|
|
}
|
|
|
|
// Now recursively update all further reborrows...
|
|
while (!baseBorrowedValuePair.empty()) {
|
|
SILPhiArgument *baseArg;
|
|
SILPhiArgument *borrowedArg;
|
|
std::tie(baseArg, borrowedArg) = baseBorrowedValuePair.pop_back_val();
|
|
|
|
for (auto *use : borrowedArg->getConsumingUses()) {
|
|
// If our consuming use is an end of scope marker, we need to end
|
|
// the lifetime of our base arg.
|
|
if (isEndOfScopeMarker(use->getUser())) {
|
|
SILBuilderWithScope::insertAfter(use->getUser(), [&](SILBuilder &b) {
|
|
auto *dvi = b.createDestroyValue(b.getInsertionPointLoc(), baseArg);
|
|
callbacks.createdNewInst(dvi);
|
|
});
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a reborrow. For now our reborrows must be
|
|
// phis. Add our owned value as a new argument of that phi along our
|
|
// edge and undef along all other edges.
|
|
auto borrowingOp = BorrowingOperand(use);
|
|
auto *brInst = cast<BranchInst>(borrowingOp.op->getUser());
|
|
auto *newBorrowedPhi = brInst->getArgForOperand(*borrowingOp);
|
|
auto *newBasePhi =
|
|
insertOwnedBaseValueAlongBranchEdge(brInst, baseArg, callbacks);
|
|
baseBorrowedValuePair.emplace_back(newBasePhi, newBorrowedPhi);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
rewriteReborrows(SILValue newBorrowedValue,
|
|
ArrayRef<std::pair<SILBasicBlock *, unsigned>> foundReborrows,
|
|
InstModCallbacks &callbacks) {
|
|
// Each initial reborrow that we have is a use of oldValue, so we know
|
|
// that copy should be valid at the reborrow.
|
|
SmallVector<std::pair<SILPhiArgument *, SILPhiArgument *>, 8>
|
|
baseBorrowedValuePair;
|
|
for (auto it : foundReborrows) {
|
|
auto *bi = cast<BranchInst>(it.first->getTerminator());
|
|
auto &op = bi->getOperandRef(it.second);
|
|
BorrowingOperand reborrow(&op);
|
|
|
|
SILBuilderWithScope reborrowBuilder(bi);
|
|
// Use an auto-generated location here, because the branch may have an
|
|
// incompatible LocationKind
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(bi->getLoc());
|
|
auto *innerCopy = reborrowBuilder.createCopyValue(loc, newBorrowedValue);
|
|
auto *innerBorrow = reborrowBuilder.createBeginBorrow(loc, innerCopy);
|
|
auto *outerEndBorrow =
|
|
reborrowBuilder.createEndBorrow(loc, reborrow.op->get());
|
|
callbacks.createdNewInst(innerCopy);
|
|
callbacks.createdNewInst(innerBorrow);
|
|
callbacks.createdNewInst(outerEndBorrow);
|
|
|
|
callbacks.setUseValue(*reborrow, innerBorrow);
|
|
|
|
auto *borrowedArg =
|
|
const_cast<SILPhiArgument *>(bi->getArgForOperand(reborrow.op));
|
|
auto *baseArg =
|
|
insertOwnedBaseValueAlongBranchEdge(bi, innerCopy, callbacks);
|
|
baseBorrowedValuePair.emplace_back(baseArg, borrowedArg);
|
|
}
|
|
|
|
// Now, follow through all chains of reborrows.
|
|
while (!baseBorrowedValuePair.empty()) {
|
|
SILPhiArgument *baseArg;
|
|
SILPhiArgument *borrowedArg;
|
|
std::tie(baseArg, borrowedArg) = baseBorrowedValuePair.pop_back_val();
|
|
|
|
for (auto *use : borrowedArg->getConsumingUses()) {
|
|
// If our consuming use is an end of scope marker, we need to end
|
|
// the lifetime of our base arg.
|
|
if (isEndOfScopeMarker(use->getUser())) {
|
|
SILBuilderWithScope::insertAfter(use->getUser(), [&](SILBuilder &b) {
|
|
auto *dvi = b.createDestroyValue(b.getInsertionPointLoc(), baseArg);
|
|
callbacks.createdNewInst(dvi);
|
|
});
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a reborrow. For now our reborrows must be
|
|
// phis. Add our owned value as a new argument of that phi along our
|
|
// edge and undef along all other edges.
|
|
auto borrowingOp = BorrowingOperand(use);
|
|
auto *brInst = cast<BranchInst>(borrowingOp.op->getUser());
|
|
auto *newBorrowedPhi = brInst->getArgForOperand(*borrowingOp);
|
|
auto *newBasePhi =
|
|
insertOwnedBaseValueAlongBranchEdge(brInst, baseArg, callbacks);
|
|
baseBorrowedValuePair.emplace_back(newBasePhi, newBorrowedPhi);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OwnershipRAUWUtility - RAUW + fix ownership
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Given an old value and a new value, lifetime extend new value as appropriate
|
|
/// so we can RAUW new value with old value and preserve ownership
|
|
/// invariants. We leave fixing up the lifetime of old value to our caller.
|
|
namespace {
|
|
|
|
struct OwnershipRAUWUtility {
|
|
SingleValueInstruction *oldValue;
|
|
SILValue newValue;
|
|
OwnershipFixupContext &ctx;
|
|
|
|
SILBasicBlock::iterator handleUnowned();
|
|
|
|
SILBasicBlock::iterator handleGuaranteed();
|
|
|
|
SILBasicBlock::iterator perform();
|
|
|
|
OwnershipLifetimeExtender getLifetimeExtender() { return {ctx}; }
|
|
|
|
const InstModCallbacks &getCallbacks() const { return ctx.callbacks; }
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
SILBasicBlock::iterator OwnershipRAUWUtility::handleUnowned() {
|
|
auto &callbacks = ctx.callbacks;
|
|
switch (newValue.getOwnershipKind()) {
|
|
case OwnershipKind::None:
|
|
llvm_unreachable("Should have been handled elsewhere");
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid for values");
|
|
case OwnershipKind::Unowned:
|
|
// An unowned value can always be RAUWed with another unowned value.
|
|
return replaceAllUsesAndErase(oldValue, newValue, callbacks);
|
|
case OwnershipKind::Guaranteed: {
|
|
// If we have an unowned value that we want to replace with a guaranteed
|
|
// value, we need to ensure that the guaranteed value is live at all use
|
|
// points of the unowned value. If so, just replace and continue.
|
|
//
|
|
// TODO: Implement this for more interesting cases.
|
|
if (isa<SILFunctionArgument>(newValue))
|
|
return replaceAllUsesAndErase(oldValue, newValue, callbacks);
|
|
|
|
// Otherwise, we need to lifetime extend the borrow over all of the use
|
|
// points. To do so, we copy the value, borrow it, and insert an unchecked
|
|
// ownership conversion to unowned at all uses that are terminator uses.
|
|
//
|
|
// We need to insert the conversion since if we have a non-argument
|
|
// guaranteed value since its scope will end before the terminator so we
|
|
// need to convert the value to unowned early.
|
|
//
|
|
// TODO: Do we need a separate array here?
|
|
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
|
|
for (auto *use : oldValueUses) {
|
|
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
|
|
if (ti->isFunctionExiting()) {
|
|
SILBuilderWithScope builder(ti);
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
ti->getLoc(), use->get(), OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
callbacks.setUseValue(use, newInst);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto extender = getLifetimeExtender();
|
|
SILValue borrow =
|
|
extender.createPlusZeroBorrow(newValue, oldValue->getUses());
|
|
SILBuilderWithScope builder(oldValue);
|
|
return replaceAllUsesAndErase(oldValue, borrow, callbacks);
|
|
}
|
|
case OwnershipKind::Owned: {
|
|
// If we have an unowned value that we want to replace with an owned value,
|
|
// we first check if the owned value is live over all use points of the old
|
|
// value. If so, just RAUW and continue.
|
|
//
|
|
// TODO: Implement this.
|
|
|
|
// Otherwise, insert a copy of the owned value and lifetime extend that over
|
|
// all uses of the value and then RAUW.
|
|
//
|
|
// NOTE: For terminator uses, we funnel the use through an
|
|
// unchecked_ownership_conversion to ensure that we can end the lifetime of
|
|
// our owned/guaranteed value before the terminator.
|
|
SmallVector<Operand *, 8> oldValueUses(oldValue->getUses());
|
|
for (auto *use : oldValueUses) {
|
|
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
|
|
if (ti->isFunctionExiting()) {
|
|
SILBuilderWithScope builder(ti);
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
ti->getLoc(), use->get(), OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
callbacks.setUseValue(use, newInst);
|
|
}
|
|
}
|
|
}
|
|
auto extender = getLifetimeExtender();
|
|
SILValue copy = extender.createPlusZeroCopy(newValue, oldValue->getUses());
|
|
SILBuilderWithScope builder(oldValue);
|
|
auto result = replaceAllUsesAndErase(oldValue, copy, callbacks);
|
|
return result;
|
|
}
|
|
}
|
|
llvm_unreachable("covered switch isn't covered?!");
|
|
}
|
|
|
|
SILBasicBlock::iterator OwnershipRAUWUtility::handleGuaranteed() {
|
|
// If we want to replace a guaranteed value with a value of some other
|
|
// ownership whose def dominates our guaranteed value. We first see if all
|
|
// uses of the old guaranteed value are within the lifetime of the new
|
|
// guaranteed value. If so, we can just RAUW and move on.
|
|
//
|
|
// TODO: Implement this.
|
|
//
|
|
// Otherwise, we need to actually modify the IR. We first always first
|
|
// lifetime extend newValue to oldValue's transitive uses to set our
|
|
// workspace.
|
|
|
|
// If we have any transitive reborrows on sub-borrows.
|
|
if (ctx.recursiveReborrows.size())
|
|
eliminateReborrowsOfRecursiveBorrows(ctx.recursiveReborrows,
|
|
ctx.transitiveBorrowedUses,
|
|
ctx.callbacks);
|
|
|
|
auto extender = getLifetimeExtender();
|
|
SILValue newBorrowedValue =
|
|
extender.createPlusZeroBorrow<ArrayRef<Operand *>>(
|
|
newValue, ctx.transitiveBorrowedUses);
|
|
|
|
// Now we need to handle reborrows by eliminating the reborrows from any
|
|
// borrowing operands that use old value as well as from oldvalue itself. We
|
|
// take advantage of a few properties of reborrows:
|
|
//
|
|
// 1. A reborrow has to be on a BorrowedValue. This ensures that the same
|
|
// base value is propagated through chains of reborrows. (In the future
|
|
// this may not be true when destructures are introduced as reborrow
|
|
// instructions).
|
|
//
|
|
// 2. Given that, we change each reborrows into new copy+borrow from the
|
|
// owned value that we perform at the reborrow use. What is nice about
|
|
// this formulation is that it ensures that we are always working with a
|
|
// non-dominating copy value, allowing us to force our borrowing value to
|
|
// need a base phi argument (the one of our choosing).
|
|
if (auto oldValueBorrowedVal = BorrowedValue(oldValue)) {
|
|
SmallVector<std::pair<SILBasicBlock *, unsigned>, 8> foundReborrows;
|
|
if (oldValueBorrowedVal.gatherReborrows(foundReborrows)) {
|
|
rewriteReborrows(newBorrowedValue, foundReborrows, ctx.callbacks);
|
|
}
|
|
}
|
|
|
|
// Then we need to look and see if our oldValue had any transitive uses that
|
|
|
|
// Ok, we now have eliminated any reborrows if we had any. That means that
|
|
// the uses of oldValue should be completely within the lifetime of our new
|
|
// borrow.
|
|
return replaceAllUsesAndErase(oldValue, newBorrowedValue, ctx.callbacks);
|
|
}
|
|
|
|
SILBasicBlock::iterator OwnershipRAUWUtility::perform() {
|
|
assert(oldValue->getFunction()->hasOwnership());
|
|
assert(hasValidRAUWOwnership(oldValue, newValue) &&
|
|
"Should have checked if can perform this operation before calling it?!");
|
|
// If our new value is just none, we can pass anything to do it so just RAUW
|
|
// and return.
|
|
//
|
|
// NOTE: This handles RAUWing with undef.
|
|
if (newValue.getOwnershipKind() == OwnershipKind::None)
|
|
return replaceAllUsesAndErase(oldValue, newValue, ctx.callbacks);
|
|
assert(SILValue(oldValue).getOwnershipKind() != OwnershipKind::None);
|
|
|
|
switch (SILValue(oldValue).getOwnershipKind()) {
|
|
case OwnershipKind::None:
|
|
// If our old value was none and our new value is not, we need to do
|
|
// something more complex that we do not support yet, so bail. We should
|
|
// have not called this function in such a case.
|
|
llvm_unreachable("Should have been handled elsewhere");
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid for values");
|
|
case OwnershipKind::Guaranteed: {
|
|
return handleGuaranteed();
|
|
}
|
|
case OwnershipKind::Owned: {
|
|
// If we have an owned value that we want to replace with a value with any
|
|
// other non-None ownership, we need to copy the other value for a
|
|
// lifetimeEnding RAUW, then RAUW the value, and insert a destroy_value on
|
|
// the original value.
|
|
auto extender = getLifetimeExtender();
|
|
SILValue copy = extender.createPlusOneCopy(newValue, oldValue);
|
|
cleanupOperandsBeforeDeletion(oldValue, ctx.callbacks);
|
|
auto result = replaceAllUsesAndErase(oldValue, copy, ctx.callbacks);
|
|
return result;
|
|
}
|
|
case OwnershipKind::Unowned: {
|
|
return handleUnowned();
|
|
}
|
|
}
|
|
llvm_unreachable("Covered switch isn't covered?!");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interior Pointer Operand Rebasing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SILBasicBlock::iterator
|
|
OwnershipRAUWHelper::replaceAddressUses(SingleValueInstruction *oldValue,
|
|
SILValue newValue) {
|
|
assert(oldValue->getType().isAddress() &&
|
|
oldValue->getType() == newValue->getType());
|
|
|
|
// If we are replacing addresses, see if we need to handle interior pointer
|
|
// fixups. If we don't have any extra info, then we know that we can just RAUW
|
|
// without any further work.
|
|
if (!ctx->extraAddressFixupInfo.base)
|
|
return replaceAllUsesAndErase(oldValue, newValue, ctx->callbacks);
|
|
|
|
// We are RAUWing two addresses and we found that:
|
|
//
|
|
// 1. newValue is an address associated with an interior pointer instruction.
|
|
// 2. oldValue has uses that are outside of newValue's borrow scope.
|
|
//
|
|
// So, we need to copy/borrow the base value of the interior pointer to
|
|
// lifetime extend the base value over the new uses. Then we clone the
|
|
// interior pointer instruction and change the clone to use our new borrowed
|
|
// value. Then we RAUW as appropriate.
|
|
OwnershipLifetimeExtender extender{*ctx};
|
|
auto base = ctx->extraAddressFixupInfo.base;
|
|
// FIXME: why does this use allAddressUsesFromOldValue instead of
|
|
// guaranteedUsePoints?
|
|
BeginBorrowInst *bbi = extender.createPlusZeroBorrow(
|
|
base.getReference(),
|
|
llvm::makeArrayRef(
|
|
ctx->extraAddressFixupInfo.allAddressUsesFromOldValue));
|
|
auto bbiNext = &*std::next(bbi->getIterator());
|
|
auto *refProjection = cast<SingleValueInstruction>(base.getBaseAddress());
|
|
auto *newBase = refProjection->clone(bbiNext);
|
|
ctx->callbacks.createdNewInst(newBase);
|
|
newBase->setOperand(0, bbi);
|
|
|
|
// Now that we have extended our lifetime as appropriate, we need to recreate
|
|
// the access path from newValue to refProjection but upon newBase.
|
|
//
|
|
// This cloner invocation must match the canCloneUseDefChain check in the
|
|
// constructor.
|
|
auto checkBase = [&](SILValue srcAddr) {
|
|
return (srcAddr == refProjection) ? SILValue(newBase) : SILValue();
|
|
};
|
|
SILValue clonedAddr =
|
|
cloneUseDefChain(newValue, /*insetPt*/ oldValue, checkBase);
|
|
assert(clonedAddr != newValue && "expect at least the base to be replaced");
|
|
|
|
// Now that we have an addr that is setup appropriately, RAUW!
|
|
return replaceAllUsesAndErase(oldValue, clonedAddr, ctx->callbacks);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OwnershipRAUWHelper
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OwnershipRAUWHelper::OwnershipRAUWHelper(OwnershipFixupContext &inputCtx,
|
|
SingleValueInstruction *inputOldValue,
|
|
SILValue inputNewValue)
|
|
: ctx(&inputCtx), oldValue(inputOldValue), newValue(inputNewValue) {
|
|
// If we are already not valid, just bail.
|
|
if (!isValid())
|
|
return;
|
|
|
|
// If we are not in ownership, we can always RAUW successfully so just bail
|
|
// and leave the object valid.
|
|
if (!oldValue->getFunction()->hasOwnership())
|
|
return;
|
|
|
|
// Otherwise, lets check if we can perform this RAUW operation. If we can't,
|
|
// set ctx to nullptr to invalidate the helper and return.
|
|
if (!canFixUpOwnershipForRAUW(oldValue, newValue, inputCtx)) {
|
|
invalidate();
|
|
return;
|
|
}
|
|
|
|
// If we have an object, at this point we are good to go so we can just
|
|
// return.
|
|
if (newValue->getType().isObject())
|
|
return;
|
|
|
|
// But if we have an address, we need to check if new value is from an
|
|
// interior pointer or not in a way that the pass understands. What we do is:
|
|
//
|
|
// 1. Early exit some cases that we know can never have interior pointers.
|
|
//
|
|
// 2. Compute the AccessPathWithBase of newValue. If we do not get back a
|
|
// valid such object, invalidate and then bail.
|
|
//
|
|
// 3. Then we check if the base address is the result of an interior pointer
|
|
// instruction. If we do not find one we bail.
|
|
//
|
|
// 4. Then grab the base value of the interior pointer operand. We only
|
|
// support cases where we have a single BorrowedValue as our base. This is
|
|
// a safe future proof assumption since one reborrows are on
|
|
// structs/tuple/destructures, a guaranteed value will always be associated
|
|
// with a single BorrowedValue, so this will never fail (and the code will
|
|
// probably be DCEed).
|
|
//
|
|
// 5. Then we compute an AccessPathWithBase for oldValue and then find its
|
|
// derived uses. If we fail, we bail.
|
|
//
|
|
// 6. At this point, we know that we can perform this RAUW. The only question
|
|
// is if we need to when we RAUW copy the interior pointer base value. We
|
|
// perform this check by making sure all of the old value's derived uses
|
|
// are within our BorrowedValue's scope. If so, we clear the extra state we
|
|
// were tracking (the interior pointer/oldValue's transitive uses), so we
|
|
// perform just a normal RAUW (without inserting the copy) when we RAUW.
|
|
//
|
|
// We can always RAUW an address with a pointer_to_address since if there
|
|
// were any interior pointer constraints on whatever address pointer came
|
|
// from, the address_to_pointer producing that value erases that
|
|
// information, so we can RAUW without worrying.
|
|
//
|
|
// NOTE: We also need to handle this here since a pointer_to_address is not a
|
|
// valid base value for an access path since it doesn't refer to any storage.
|
|
AddressOwnership addressOwnership(newValue);
|
|
if (!addressOwnership.hasLocalOwnershipLifetime())
|
|
return;
|
|
|
|
ctx->extraAddressFixupInfo.base = addressOwnership.base;
|
|
SILValue baseAddress = ctx->extraAddressFixupInfo.base.getBaseAddress();
|
|
|
|
// For now, just gather up uses
|
|
//
|
|
// FIXME: get rid of allAddressUsesFromOldValue. Shouldn't this already be
|
|
// included in guaranteedUsePoints?
|
|
auto &oldValueUses = ctx->extraAddressFixupInfo.allAddressUsesFromOldValue;
|
|
if (findTransitiveUsesForAddress(oldValue, &oldValueUses)
|
|
!= AddressUseKind::NonEscaping) {
|
|
invalidate();
|
|
return;
|
|
}
|
|
if (addressOwnership.areUsesWithinLifetime(oldValueUses, ctx->deBlocks)) {
|
|
// We do not need to copy the base value! Clear the extra info we have.
|
|
ctx->extraAddressFixupInfo.clear();
|
|
return;
|
|
}
|
|
// This cloner check must match the later cloner invocation in
|
|
// getReplacementAddress()
|
|
auto *baseInst = cast<SingleValueInstruction>(baseAddress);
|
|
auto checkBase = [&](SILValue srcAddr) {
|
|
return (srcAddr == baseInst) ? SILValue(baseInst) : SILValue();
|
|
};
|
|
if (!canCloneUseDefChain(newValue, checkBase)) {
|
|
invalidate();
|
|
return;
|
|
}
|
|
}
|
|
|
|
SILBasicBlock::iterator
|
|
OwnershipRAUWHelper::perform(SingleValueInstruction *maybeTransformedNewValue) {
|
|
assert(isValid() && "OwnershipRAUWHelper invalid?!");
|
|
|
|
SILValue actualNewValue = newValue;
|
|
if (maybeTransformedNewValue) {
|
|
// Temporary variable for rebasing
|
|
SILValue rewrittenNewValue = maybeTransformedNewValue;
|
|
// Everything about \n newValue that the constructor checks should also be
|
|
// true for rewrittenNewValue.
|
|
// FIXME: enable these...
|
|
// assert(rewrittenNewValue->getType() == newValue->getType());
|
|
// assert(rewrittenNewValue->getOwnershipKind()
|
|
// == newValue->getOwnershipKind());
|
|
// assert(rewrittenNewValue->getParentBlock() == newValue->getParentBlock());
|
|
assert(!newValue->getType().isAddress() ||
|
|
AddressOwnership(rewrittenNewValue) == AddressOwnership(newValue));
|
|
|
|
actualNewValue = maybeTransformedNewValue;
|
|
|
|
// TODO: newValue = rewrittenNewValue; (remove actualNewValue)
|
|
}
|
|
assert(newValue && "prepareReplacement can only be called once");
|
|
SWIFT_DEFER { newValue = SILValue(); };
|
|
|
|
if (!oldValue->getFunction()->hasOwnership())
|
|
return replaceAllUsesAndErase(oldValue, actualNewValue, ctx->callbacks);
|
|
|
|
// Make sure to always clear our context after we transform.
|
|
SWIFT_DEFER { ctx->clear(); };
|
|
|
|
if (oldValue->getType().isAddress())
|
|
return replaceAddressUses(oldValue, actualNewValue);
|
|
|
|
OwnershipRAUWUtility utility{oldValue, actualNewValue, *ctx};
|
|
return utility.perform();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Use Replacement
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Given a use and a new value, lifetime extend new value as appropriate so we
|
|
/// can replace use->get() with newValue and preserve ownership invariants. We
|
|
/// assume that old value will be left alone and not deleted so we insert
|
|
/// compensating cleanups.
|
|
struct SingleUseReplacementUtility {
|
|
Operand *use;
|
|
SILValue newValue;
|
|
OwnershipFixupContext &ctx;
|
|
|
|
SILBasicBlock::iterator handleUnowned();
|
|
SILBasicBlock::iterator handleOwned();
|
|
SILBasicBlock::iterator handleGuaranteed();
|
|
|
|
SILBasicBlock::iterator perform();
|
|
|
|
OwnershipLifetimeExtender getLifetimeExtender() { return {ctx}; }
|
|
|
|
const InstModCallbacks &getCallbacks() const { return ctx.callbacks; }
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
SILBasicBlock::iterator SingleUseReplacementUtility::handleUnowned() {
|
|
auto &callbacks = ctx.callbacks;
|
|
switch (newValue.getOwnershipKind()) {
|
|
case OwnershipKind::None:
|
|
llvm_unreachable("Should have been handled elsewhere");
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid for values");
|
|
case OwnershipKind::Unowned:
|
|
// An unowned value can always be RAUWed with another unowned value.
|
|
return replaceSingleUse(use, newValue, callbacks);
|
|
case OwnershipKind::Guaranteed: {
|
|
// If we have an unowned value use that we want to replace with a guaranteed
|
|
// value, we need to ensure that the guaranteed value is live at that use
|
|
// point. If we know that is always true, just perform the replace.
|
|
//
|
|
// FIXME: Expand the cases here.
|
|
if (isa<SILFunctionArgument>(newValue))
|
|
return replaceSingleUse(use, newValue, callbacks);
|
|
|
|
// Otherwise, we need to lifetime extend newValue to the use. If the actual
|
|
// use is a terminator, we need to insert an unchecked_ownership_conversion
|
|
// since our value can not be live at the terminator itself.
|
|
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
|
|
if (ti->isFunctionExiting()) {
|
|
SILBuilderWithScope builder(ti);
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
ti->getLoc(), use->get(), OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
callbacks.setUseValue(use, newInst);
|
|
}
|
|
}
|
|
|
|
auto extender = getLifetimeExtender();
|
|
SILValue borrow = extender.createPlusZeroBorrow(newValue, {use});
|
|
return replaceSingleUse(use, borrow, callbacks);
|
|
}
|
|
case OwnershipKind::Owned: {
|
|
// If we have an unowned value use that we want to replace with an owned
|
|
// value use. we first check if the owned value is live over all use points
|
|
// of the old value. If so, just RAUW and continue.
|
|
//
|
|
// TODO: Implement this.
|
|
|
|
// Otherwise, insert a copy of the owned value and lifetime extend that over
|
|
// the use.
|
|
//
|
|
// NOTE: For terminator uses, we funnel the use through an
|
|
// unchecked_ownership_conversion to ensure that we can end the lifetime of
|
|
// our owned/guaranteed value before the terminator.
|
|
if (auto *ti = dyn_cast<TermInst>(use->getUser())) {
|
|
if (ti->isFunctionExiting()) {
|
|
SILBuilderWithScope builder(ti);
|
|
auto *newInst = builder.createUncheckedOwnershipConversion(
|
|
ti->getLoc(), use->get(), OwnershipKind::Unowned);
|
|
callbacks.createdNewInst(newInst);
|
|
callbacks.setUseValue(use, newInst);
|
|
}
|
|
}
|
|
|
|
auto extender = getLifetimeExtender();
|
|
SILValue copy = extender.createPlusZeroCopy(newValue, {use});
|
|
return replaceSingleUse(use, copy, callbacks);
|
|
}
|
|
}
|
|
llvm_unreachable("covered switch isn't covered?!");
|
|
}
|
|
|
|
SILBasicBlock::iterator SingleUseReplacementUtility::handleGuaranteed() {
|
|
// Ok, our use is guaranteed and our new value may not be guaranteed.
|
|
auto extender = getLifetimeExtender();
|
|
|
|
// If our original use was a lifetime ending use...
|
|
if (use->isLifetimeEnding()) {
|
|
// And additionally was a reborrow, we will have placed it in recursive
|
|
// reborrows. In this case the RAUW
|
|
if (ctx.recursiveReborrows.size()) {
|
|
eliminateReborrowsOfRecursiveBorrows(
|
|
ctx.recursiveReborrows, ctx.transitiveBorrowedUses, ctx.callbacks);
|
|
// By eliminate the reborrows our lifetime ending use was already
|
|
// handled. Now, we need to lifetime extend the borrow over all of the
|
|
// end_lifetime after we eliminate the reborrow. These will be the
|
|
// transitive borrowed uses.
|
|
SILValue borrow = extender.createPlusZeroBorrow(
|
|
newValue, llvm::makeArrayRef(ctx.transitiveBorrowedUses));
|
|
|
|
// Then replace use->get() with this borrow.
|
|
return replaceSingleUse(use, borrow, ctx.callbacks);
|
|
} else {
|
|
// If we didn't have a reborrow and still had a lifetime ending use,
|
|
// handle it.
|
|
SILValue borrow = extender.createPlusOneBorrow(newValue, use->getUser());
|
|
// Then replace use->get() with this copy. We will insert compensating end
|
|
// scope instructions on use->get() if we need to.
|
|
return replaceSingleUse(use, borrow, ctx.callbacks);
|
|
}
|
|
}
|
|
|
|
// If we don't have a lifetime ending use, just create a +0 copy and set the
|
|
// use. All destroys will be placed for us.
|
|
SILValue copy =
|
|
extender.createPlusZeroBorrow<ArrayRef<Operand *>>(newValue, {use});
|
|
|
|
// Then replace use->get() with this copy. We will insert compensating end
|
|
// scope instructions on use->get() if we need to.
|
|
return replaceSingleUse(use, copy, ctx.callbacks);
|
|
}
|
|
|
|
SILBasicBlock::iterator SingleUseReplacementUtility::handleOwned() {
|
|
// Ok, our old value is owned and our new value may not be owned. First
|
|
// lifetime extend newValue to use->getUser() inserting destroy_values along
|
|
// any paths that do not go through use->getUser().
|
|
auto extender = getLifetimeExtender();
|
|
|
|
if (use->isLifetimeEnding()) {
|
|
// If our use is a lifetime ending use, then create a plus one copy and
|
|
// RAUW.
|
|
SILValue copy = extender.createPlusOneCopy(newValue, use->getUser());
|
|
// Then replace use->get() with this copy. We will insert compensating end
|
|
// scope instructions on use->get() if we need to.
|
|
return replaceSingleUse(use, copy, ctx.callbacks);
|
|
}
|
|
|
|
// If we don't have a lifetime ending use, just create a +0 copy and set the
|
|
// use. All destroys will be placed for us.
|
|
SILValue copy =
|
|
extender.createPlusZeroCopy<ArrayRef<Operand *>>(newValue, {use});
|
|
|
|
// Then replace use->get() with this copy. We will insert compensating end
|
|
// scope instructions on use->get() if we need to.
|
|
return replaceSingleUse(use, copy, ctx.callbacks);
|
|
}
|
|
|
|
SILBasicBlock::iterator SingleUseReplacementUtility::perform() {
|
|
auto oldValue = use->get();
|
|
assert(oldValue->getFunction()->hasOwnership());
|
|
|
|
// If our new value is just none, we can pass anything to do it so just RAUW
|
|
// and return.
|
|
//
|
|
// NOTE: This handles RAUWing with undef.
|
|
if (newValue.getOwnershipKind() == OwnershipKind::None)
|
|
return replaceSingleUse(use, newValue, ctx.callbacks);
|
|
|
|
assert(SILValue(oldValue).getOwnershipKind() != OwnershipKind::None);
|
|
|
|
switch (SILValue(oldValue).getOwnershipKind()) {
|
|
case OwnershipKind::None:
|
|
// If our old value was none and our new value is not, we need to do
|
|
// something more complex that we do not support yet, so bail. We should
|
|
// have not called this function in such a case.
|
|
llvm_unreachable("Should have been handled elsewhere");
|
|
case OwnershipKind::Any:
|
|
llvm_unreachable("Invalid for values");
|
|
case OwnershipKind::Guaranteed:
|
|
return handleGuaranteed();
|
|
case OwnershipKind::Owned:
|
|
return handleOwned();
|
|
case OwnershipKind::Unowned:
|
|
return handleUnowned();
|
|
}
|
|
llvm_unreachable("Covered switch isn't covered?!");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OwnershipReplaceSingleUseHelper
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OwnershipReplaceSingleUseHelper::OwnershipReplaceSingleUseHelper(
|
|
OwnershipFixupContext &inputCtx, Operand *inputUse, SILValue inputNewValue)
|
|
: ctx(&inputCtx), use(inputUse), newValue(inputNewValue) {
|
|
// If we are already not valid, just bail.
|
|
if (!isValid())
|
|
return;
|
|
|
|
// If we do not have ownership, we are already done.
|
|
if (!inputUse->getUser()->getFunction()->hasOwnership())
|
|
return;
|
|
|
|
// If we have an address, bail. We don't support this.
|
|
if (newValue->getType().isAddress()) {
|
|
invalidate();
|
|
return;
|
|
}
|
|
|
|
// Otherwise, lets check if we can perform this RAUW operation. If we can't,
|
|
// set ctx to nullptr to invalidate the helper and return.
|
|
if (!hasValidRAUWOwnership(use->get(), newValue)) {
|
|
invalidate();
|
|
return;
|
|
}
|
|
|
|
// Then see if our use is a lifetime ending use of a guaranteed value that is
|
|
// a reborrow.
|
|
if (auto reborrowOperand = BorrowingOperand(use)) {
|
|
if (reborrowOperand.isReborrow()) {
|
|
// Check that the old lifetime can be extended and record the necessary
|
|
// book-keeping in the OwnershipFixupContext.
|
|
ctx->recursiveReborrows.push_back(use);
|
|
}
|
|
}
|
|
}
|
|
|
|
SILBasicBlock::iterator OwnershipReplaceSingleUseHelper::perform() {
|
|
assert(isValid() && "OwnershipReplaceSingleUseHelper invalid?!");
|
|
|
|
if (!use->getUser()->getFunction()->hasOwnership())
|
|
return replaceSingleUse(use, newValue, ctx->callbacks);
|
|
|
|
// Make sure to always clear our context after we transform.
|
|
SWIFT_DEFER { ctx->clear(); };
|
|
SingleUseReplacementUtility utility{use, newValue, *ctx};
|
|
return utility.perform();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// createBorrowScopeForPhiOperands
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Given a phi that has been newly created or converted from terminator
|
|
/// results, check for inner guaranteed operands (which do not introduce a
|
|
/// borrow scope). This is invalid OSSA because the phi is a reborrow, and all
|
|
/// borrow-scope-ending instructions must directly use the BorrowedValue that
|
|
/// introduces the scope.
|
|
///
|
|
/// Create nested borrow scopes for its operands.
|
|
///
|
|
/// Transitively follow its phi uses.
|
|
///
|
|
/// Create end_borrows at all points that cover the inner uses.
|
|
///
|
|
/// The client must check canCloneTerminator() first to make sure that the
|
|
/// search for transitive uses does not encouter a PointerEscape.
|
|
class GuaranteedPhiBorrowFixup {
|
|
// A phi in mustConvertPhis has already been determined to be part of this
|
|
// new nested borrow scope.
|
|
SmallSetVector<SILPhiArgument *, 8> mustConvertPhis;
|
|
|
|
// Phi operands that are already within the new nested borrow scope.
|
|
llvm::SmallDenseSet<PhiOperand, 8> nestedPhiOperands;
|
|
|
|
public:
|
|
/// Return true if an extended nested borrow scope was created.
|
|
bool createExtendedNestedBorrowScope(SILPhiArgument *newPhi);
|
|
|
|
protected:
|
|
bool phiOperandNeedsBorrow(Operand *operand) {
|
|
SILValue inVal = operand->get();
|
|
if (inVal.getOwnershipKind() != OwnershipKind::Guaranteed) {
|
|
assert(inVal.getOwnershipKind() == OwnershipKind::None);
|
|
return false;
|
|
}
|
|
// This operand needs a nested borrow if inVal is not a BorrowedValue.
|
|
return !bool(BorrowedValue(inVal));
|
|
}
|
|
|
|
void borrowPhiOperand(Operand *oper) {
|
|
// Begin the borrow just before the branch.
|
|
SILInstruction *borrowPoint = oper->getUser();
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(borrowPoint->getLoc());
|
|
auto *borrow =
|
|
SILBuilderWithScope(borrowPoint).createBeginBorrow(loc, oper->get());
|
|
oper->set(borrow);
|
|
}
|
|
|
|
EndBorrowInst *createEndBorrow(SILValue guaranteedValue,
|
|
SILBasicBlock::iterator borrowPoint) {
|
|
auto loc = borrowPoint->getLoc();
|
|
return SILBuilderWithScope(borrowPoint)
|
|
.createEndBorrow(loc, guaranteedValue);
|
|
}
|
|
|
|
void insertEndBorrowsAndFindPhis(SILPhiArgument *phi);
|
|
};
|
|
|
|
void GuaranteedPhiBorrowFixup::insertEndBorrowsAndFindPhis(
|
|
SILPhiArgument *phi) {
|
|
// Scope ending instructions are only needed for nontrivial results.
|
|
if (phi->getOwnershipKind() != OwnershipKind::Guaranteed) {
|
|
assert(phi->getOwnershipKind() == OwnershipKind::None);
|
|
return;
|
|
}
|
|
SmallVector<Operand *, 16> usePoints;
|
|
bool result = findInnerTransitiveGuaranteedUses(phi, &usePoints);
|
|
assert(result && "should be checked by canCloneTerminator");
|
|
(void)result;
|
|
|
|
// Add usePoints to a set for phi membership checking.
|
|
//
|
|
// FIXME: consider integrating with ValueLifetimeBoundary instead.
|
|
SmallPtrSet<Operand *, 16> useSet(usePoints.begin(), usePoints.end());
|
|
|
|
auto phiUsers = llvm::map_range(usePoints, ValueBase::UseToUser());
|
|
ValueLifetimeAnalysis lifetimeAnalysis(phi, phiUsers);
|
|
ValueLifetimeBoundary boundary;
|
|
lifetimeAnalysis.computeLifetimeBoundary(boundary);
|
|
|
|
for (auto *boundaryEdge : boundary.boundaryEdges) {
|
|
createEndBorrow(phi, boundaryEdge->begin());
|
|
}
|
|
|
|
for (SILInstruction *lastUser : boundary.lastUsers) {
|
|
// If the last use is a branch, transitively process the phi.
|
|
if (isa<BranchInst>(lastUser)) {
|
|
for (Operand &oper : lastUser->getAllOperands()) {
|
|
if (!useSet.count(&oper))
|
|
continue;
|
|
|
|
PhiOperand phiOper(&oper);
|
|
nestedPhiOperands.insert(phiOper);
|
|
mustConvertPhis.insert(phiOper.getValue());
|
|
continue;
|
|
}
|
|
}
|
|
// If the last user is a terminator, add the successors as boundary edges.
|
|
if (isa<TermInst>(lastUser)) {
|
|
for (auto *succBB : lastUser->getParent()->getSuccessorBlocks()) {
|
|
// succBB cannot already be in boundaryEdges. It has a
|
|
// single predecessor with liveness ending at the terminator, which
|
|
// means it was not live into any successor blocks.
|
|
createEndBorrow(phi, succBB->begin());
|
|
}
|
|
continue;
|
|
}
|
|
// Otherwise, just plop down an end_borrow after the last use.
|
|
createEndBorrow(phi, std::next(lastUser->getIterator()));
|
|
}
|
|
};
|
|
|
|
// For each phi that transitively uses an inner guaranteed value, create nested
|
|
// borrow scopes so that it is a well-formed reborrow.
|
|
bool GuaranteedPhiBorrowFixup::
|
|
createExtendedNestedBorrowScope(SILPhiArgument *newPhi) {
|
|
// Determine if this new phi needs a nested borrow scope. If so, seed the
|
|
// Visit phi operands, returning false as soon as one needs a borrow.
|
|
if (!newPhi->visitIncomingPhiOperands(
|
|
[&](Operand *op) { return !phiOperandNeedsBorrow(op); })) {
|
|
mustConvertPhis.insert(newPhi);
|
|
}
|
|
if (mustConvertPhis.empty())
|
|
return false;
|
|
|
|
// mustConvertPhis grows in this loop.
|
|
for (unsigned mustConvertIdx = 0; mustConvertIdx < mustConvertPhis.size();
|
|
++mustConvertIdx) {
|
|
SILPhiArgument *phi = mustConvertPhis[mustConvertIdx];
|
|
insertEndBorrowsAndFindPhis(phi);
|
|
}
|
|
// To handle recursive phis, first discover all phis before attempting to
|
|
// borrow any phi operands.
|
|
for (SILPhiArgument *phi : mustConvertPhis) {
|
|
phi->visitIncomingPhiOperands([&](Operand *op) {
|
|
if (!nestedPhiOperands.count(op))
|
|
borrowPhiOperand(op);
|
|
return true;
|
|
});
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Note: \p newPhi itself might not have Guaranteed ownership. A phi that
|
|
// converts Guaranteed to None ownership still needs nested borrows.
|
|
//
|
|
// Note: This may be called on partially invalid OSSA form, where multiple
|
|
// newly created phis do not yet have a borrow scope. The implementation
|
|
// assumes that this API will eventually be called for all such new phis until
|
|
// OSSA is fully valid.
|
|
bool swift::createBorrowScopeForPhiOperands(SILPhiArgument *newPhi) {
|
|
return GuaranteedPhiBorrowFixup().createExtendedNestedBorrowScope(newPhi);
|
|
}
|