mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
1560 lines
66 KiB
Swift
1560 lines
66 KiB
Swift
//===--- FloatingPointToString.swift -------------------------*- Swift -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2018-2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
//
|
|
// Converts floating-point types to "optimal" text formats.
|
|
//
|
|
// The "optimal" form is one with a minimum number of significant
|
|
// digits which will parse to exactly the original value. This form
|
|
// is ideal for JSON serialization and general printing where you
|
|
// don't have specific requirements on the number of significant
|
|
// digits.
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// For binary16, this code uses a simple approach that is normally
|
|
/// implemented with variable-length arithmetic. However, due to the
|
|
/// limited range of binary16, this can be implemented with only
|
|
/// 32-bit integer arithmetic.
|
|
///
|
|
/// For other formats, we use a modified form of the Grisu2
|
|
/// algorithm from Florian Loitsch; "Printing Floating-Point Numbers
|
|
/// Quickly and Accurately with Integers", 2010.
|
|
/// https://doi.org/10.1145/1806596.1806623
|
|
///
|
|
/// Some of the Grisu2 modifications were suggested by the "Errol
|
|
/// paper": Marc Andrysco, Ranjit Jhala, Sorin Lerner; "Printing
|
|
/// Floating-Point Numbers: A Faster, Always Correct Method", 2016.
|
|
/// https://doi.org/10.1145/2837614.2837654
|
|
/// In particular, the Errol paper explored the impact of higher-precision
|
|
/// fixed-width arithmetic on Grisu2 and showed a way to rapidly test
|
|
/// the correctness of such algorithms.
|
|
///
|
|
/// A few further improvements were inspired by the Ryu algorithm
|
|
/// from Ulf Anders; "Ryū: fast float-to-string conversion", 2018.
|
|
/// https://doi.org/10.1145/3296979.3192369
|
|
///
|
|
/// The full algorithm is extensively commented in the Float64 version
|
|
/// below; refer to that for details.
|
|
///
|
|
/// In summary, this implementation is:
|
|
///
|
|
/// * Fast. It uses only fixed-width integer arithmetic and has
|
|
/// constant memory requirements. For double-precision values on
|
|
/// 64-bit processors, it is competitive with Ryu. For double-precision
|
|
/// values on 32-bit processors, and higher-precision values on all
|
|
/// processors, it is considerably faster.
|
|
///
|
|
/// * Always Accurate. Converting the decimal form back to binary
|
|
/// will always yield exactly the same value. For the IEEE 754
|
|
/// formats, the round-trip will produce exactly the same bit
|
|
/// pattern in memory.
|
|
///
|
|
/// * Always Short. This always selects an accurate result with the
|
|
/// minimum number of significant digits.
|
|
///
|
|
/// * Always Close. Among all accurate, short results, this always
|
|
/// chooses the result that is closest to the exact floating-point
|
|
/// value. (In case of an exact tie, it rounds the last digit even.)
|
|
///
|
|
/// Beyond the requirements above, the precise text form has been
|
|
/// tuned to try to maximize readability:
|
|
/// * Always include a '.' or an 'e' so the result is obviously
|
|
/// a floating-point value
|
|
/// * Exponential form always has 1 digit before the decimal point
|
|
/// * When present, a '.' is never the first or last character
|
|
/// * There is a consecutive range of integer values that can be
|
|
/// represented in any particular type (-2^54...2^54 for double).
|
|
/// Never use exponential form for integral numbers in this range.
|
|
/// * Generally follow existing practice: Don't use use exponential
|
|
/// form for fractional values bigger than 10^-4; always write at
|
|
/// least 2 digits for an exponent.
|
|
/// * Apart from the above, we do prefer shorter output.
|
|
|
|
///
|
|
/// This Swift implementation was ported from an earlier C version;
|
|
/// the output is exactly the same in all cases.
|
|
/// A few notes on the Swift transcription:
|
|
/// * We use MutableSpan<UTF8.CodeUnit> and MutableRawSpan to
|
|
/// identify blocks of working memory.
|
|
/// * We use unsafe/unchecked operations extensively, supported
|
|
/// by several years of analysis and testing to ensure that
|
|
/// no unsafety actually occurs. For Float32, that testing
|
|
/// was exhaustive -- we verified all 4 billion possible Float32 values.
|
|
/// * The Swift code uses an idiom of building up to 8 ASCII characters
|
|
/// in a UInt64 and then writing the whole block to memory.
|
|
/// * The Swift version is slightly faster than the C version;
|
|
/// mostly thanks to various minor algorithmic tweaks that were
|
|
/// found during the translation process.
|
|
///
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Float16 is not currently supported on Intel macOS.
|
|
// (This will change once there's a fully-stable Float16
|
|
// ABI on that platform.)
|
|
#if !((os(macOS) || targetEnvironment(macCatalyst)) && arch(x86_64))
|
|
// Implement the legacy ABI on top of the new one
|
|
@_silgen_name("swift_float16ToString2")
|
|
internal func _float16ToStringImpl2(
|
|
_ textBuffer: UnsafeMutablePointer<UTF8.CodeUnit>,
|
|
_ bufferLength: UInt,
|
|
_ value: Float16,
|
|
_ debug: Bool) -> UInt64 {
|
|
// Code below works with raw memory.
|
|
var buffer = unsafe MutableSpan<UTF8.CodeUnit>(_unchecked: textBuffer,
|
|
count: Int(bufferLength))
|
|
let textRange = Float16ToASCII(value: value, buffer: &buffer)
|
|
let textLength = textRange.upperBound - textRange.lowerBound
|
|
|
|
// Move the text to the start of the buffer
|
|
if textRange.lowerBound != 0 {
|
|
unsafe _memmove(dest: textBuffer,
|
|
src: textBuffer + textRange.lowerBound,
|
|
size: UInt(truncatingIfNeeded: textLength))
|
|
}
|
|
return UInt64(truncatingIfNeeded: textLength)
|
|
}
|
|
#endif
|
|
|
|
@_silgen_name("swift_float32ToString2")
|
|
internal func _float32ToStringImpl2(
|
|
_ textBuffer: UnsafeMutablePointer<UTF8.CodeUnit>,
|
|
_ bufferLength: UInt,
|
|
_ value: Float32,
|
|
_ debug: Bool) -> UInt64 {
|
|
// Code below works with raw memory.
|
|
var buffer = unsafe MutableSpan<UTF8.CodeUnit>(_unchecked: textBuffer,
|
|
count: Int(bufferLength))
|
|
let textRange = Float32ToASCII(value: value, buffer: &buffer)
|
|
let textLength = textRange.upperBound - textRange.lowerBound
|
|
|
|
// Move the text to the start of the buffer
|
|
if textRange.lowerBound != 0 {
|
|
unsafe _memmove(dest: textBuffer,
|
|
src: textBuffer + textRange.lowerBound,
|
|
size: UInt(truncatingIfNeeded: textLength))
|
|
}
|
|
return UInt64(truncatingIfNeeded: textLength)
|
|
}
|
|
|
|
@_silgen_name("swift_float64ToString2")
|
|
internal func _float64ToStringImpl2(
|
|
_ textBuffer: UnsafeMutablePointer<UTF8.CodeUnit>,
|
|
_ bufferLength: UInt,
|
|
_ value: Float64,
|
|
_ debug: Bool) -> UInt64 {
|
|
// Code below works with raw memory.
|
|
var buffer = unsafe MutableSpan<UTF8.CodeUnit>(_unchecked: textBuffer,
|
|
count: Int(bufferLength))
|
|
let textRange = Float64ToASCII(value: value, buffer: &buffer)
|
|
let textLength = textRange.upperBound - textRange.lowerBound
|
|
|
|
// Move the text to the start of the buffer
|
|
if textRange.lowerBound != 0 {
|
|
unsafe _memmove(dest: textBuffer,
|
|
src: textBuffer + textRange.lowerBound,
|
|
size: UInt(truncatingIfNeeded: textLength))
|
|
}
|
|
return UInt64(truncatingIfNeeded: textLength)
|
|
}
|
|
|
|
#if !((os(macOS) || targetEnvironment(macCatalyst)) && arch(x86_64))
|
|
internal func Float16ToASCII(
|
|
value f: Float16,
|
|
buffer utf8Buffer: inout MutableSpan<UTF8.CodeUnit>) -> Range<Int>
|
|
{
|
|
if #available(macOS 9999, *) {
|
|
return _Float16ToASCII(value: f, buffer: &utf8Buffer)
|
|
} else {
|
|
return 0..<0
|
|
}
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate func _Float16ToASCII(
|
|
value f: Float16,
|
|
buffer utf8Buffer: inout MutableSpan<UTF8.CodeUnit>) -> Range<Int>
|
|
{
|
|
// We need a MutableRawSpan in order to use wide store/load operations
|
|
precondition(utf8Buffer.count >= 32)
|
|
var buffer = utf8Buffer.mutableBytes
|
|
|
|
// Step 1: Handle various input cases:
|
|
let binaryExponent: Int
|
|
let significand: Float16.RawSignificand
|
|
let exponentBias = (1 << (Float16.exponentBitCount - 1)) - 2; // 14
|
|
if (f.exponentBitPattern == 0x1f) { // NaN or Infinity
|
|
if (f.isInfinite) {
|
|
return infinity(buffer: &buffer, sign: f.sign)
|
|
} else { // f.isNaN
|
|
let quietBit = (f.significandBitPattern >> (Float16.significandBitCount - 1)) & 1;
|
|
let payloadMask = UInt16(1 &<< (Float16.significandBitCount - 2)) - 1
|
|
let payload16 = f.significandBitPattern & payloadMask
|
|
return nan_details(buffer: &buffer,
|
|
sign: f.sign,
|
|
quiet: quietBit == 0,
|
|
payloadHigh: 0,
|
|
payloadLow: UInt64(truncatingIfNeeded:payload16))
|
|
}
|
|
} else if (f.exponentBitPattern == 0) {
|
|
if (f.isZero) {
|
|
return zero(buffer: &buffer, sign: f.sign)
|
|
} else { // Subnormal
|
|
binaryExponent = 1 - exponentBias
|
|
significand = f.significandBitPattern &<< 2
|
|
}
|
|
} else { // normal
|
|
binaryExponent = Int(f.exponentBitPattern) &- exponentBias
|
|
let hiddenBit = Float16.RawSignificand(1) << Float16.significandBitCount
|
|
significand = (f.significandBitPattern &+ hiddenBit) &<< 2
|
|
}
|
|
|
|
// Step 2: Determine the exact target interval
|
|
let halfUlp: Float16.RawSignificand = 2
|
|
let quarterUlp = halfUlp >> 1
|
|
let upperMidpointExact = significand &+ halfUlp
|
|
let lowerMidpointExact = significand &- ((f.significandBitPattern == 0) ? quarterUlp : halfUlp)
|
|
|
|
var firstDigit = 1
|
|
var nextDigit = firstDigit
|
|
|
|
// Emit the text form differently depending on what range it's in.
|
|
// We use `storeBytes(of:toUncheckedByteOffset:as:)` for most of
|
|
// the output, but are careful to use the checked/safe form
|
|
// `storeBytes(of:toByteOffset:as:)` for the last byte so that we
|
|
// reliably crash if we overflow the provided buffer.
|
|
|
|
// Step 3: If it's < 10^-5, format as exponential form
|
|
if binaryExponent < -13 || (binaryExponent == -13 && significand < 0x1a38) {
|
|
var decimalExponent = -5
|
|
var u = (UInt32(upperMidpointExact) << (28 - 13 &+ binaryExponent)) &* 100000
|
|
var l = (UInt32(lowerMidpointExact) << (28 - 13 &+ binaryExponent)) &* 100000
|
|
var t = (UInt32(significand) << (28 - 13 &+ binaryExponent)) &* 100000
|
|
let mask = (UInt32(1) << 28) - 1
|
|
if t < ((1 << 28) / 10) {
|
|
u &*= 100
|
|
l &*= 100
|
|
t &*= 100
|
|
decimalExponent &-= 2
|
|
}
|
|
if t < (1 << 28) {
|
|
u &*= 10
|
|
l &*= 10
|
|
t &*= 10
|
|
decimalExponent &-= 1
|
|
}
|
|
let uDigit = u >> 28
|
|
if uDigit == (l >> 28) {
|
|
// More than one digit, so write first digit, ".", then the rest
|
|
unsafe buffer.storeBytes(of: 0x30 + UInt8(truncatingIfNeeded: uDigit),
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
unsafe buffer.storeBytes(of: 0x2e,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
while true {
|
|
u = (u & mask) &* 10
|
|
l = (l & mask) &* 10
|
|
t = (t & mask) &* 10
|
|
let uDigit = u >> 28
|
|
if uDigit != (l >> 28) {
|
|
// Stop before emitting the last digit
|
|
break
|
|
}
|
|
unsafe buffer.storeBytes(of: 0x30 &+ UInt8(truncatingIfNeeded: uDigit),
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
}
|
|
}
|
|
let digit = 0x30 &+ (t &+ (1 &<< 27)) >> 28
|
|
unsafe buffer.storeBytes(of: UInt8(truncatingIfNeeded: digit),
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
unsafe buffer.storeBytes(of: 0x65, // "e"
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
unsafe buffer.storeBytes(of: 0x2d, // "-"
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
unsafe buffer.storeBytes(of: UInt8(truncatingIfNeeded: -decimalExponent / 10 &+ 0x30),
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
// Last write on this branch, so use a safe checked store
|
|
buffer.storeBytes(of: UInt8(truncatingIfNeeded: -decimalExponent % 10 &+ 0x30),
|
|
toByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
|
|
} else {
|
|
|
|
// Step 4: Greater than 10^-5, so use decimal format "123.45"
|
|
// (Note: Float16 is never big enough to need exponential for
|
|
// positive exponents)
|
|
// First, split into integer and fractional parts:
|
|
|
|
let intPart : Float16.RawSignificand
|
|
let fractionPart : Float16.RawSignificand
|
|
if binaryExponent < 13 {
|
|
intPart = significand >> (13 &- binaryExponent)
|
|
fractionPart = significand &- (intPart &<< (13 &- binaryExponent))
|
|
} else {
|
|
intPart = significand &<< (binaryExponent &- 13)
|
|
fractionPart = significand &- (intPart >> (binaryExponent &- 13))
|
|
}
|
|
|
|
// Step 5: Emit the integer part
|
|
let text = intToEightDigits(UInt32(intPart))
|
|
unsafe buffer.storeBytes(of: text,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt64.self)
|
|
nextDigit &+= 8
|
|
|
|
// Skip leading zeros
|
|
if intPart < 10 {
|
|
firstDigit &+= 7
|
|
} else if intPart < 100 {
|
|
firstDigit &+= 6
|
|
} else if intPart < 1000 {
|
|
firstDigit &+= 5
|
|
} else if intPart < 10000 {
|
|
firstDigit &+= 4
|
|
} else {
|
|
firstDigit &+= 3
|
|
}
|
|
|
|
// After the integer part comes a period...
|
|
unsafe buffer.storeBytes(of: 0x2e,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
|
|
if fractionPart == 0 {
|
|
// Step 6: No fraction, so ".0" and we're done
|
|
// Last write on this branch, so use a checked store
|
|
buffer.storeBytes(of: 0x30,
|
|
toByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
} else {
|
|
// Step 7: Emit the fractional part by repeatedly
|
|
// multiplying by 10 to produce successive digits:
|
|
var u = UInt32(upperMidpointExact) &<< (28 - 13 &+ binaryExponent)
|
|
var l = UInt32(lowerMidpointExact) &<< (28 - 13 &+ binaryExponent)
|
|
var t = UInt32(fractionPart) &<< (28 - 13 &+ binaryExponent)
|
|
let mask = (UInt32(1) << 28) - 1
|
|
var uDigit: UInt8 = 0
|
|
var lDigit: UInt8 = 0
|
|
while true {
|
|
u = (u & mask) &* 10
|
|
l = (l & mask) &* 10
|
|
uDigit = UInt8(truncatingIfNeeded: u >> 28)
|
|
lDigit = UInt8(truncatingIfNeeded: l >> 28)
|
|
if uDigit != lDigit {
|
|
t = (t & mask) &* 10
|
|
break
|
|
}
|
|
// This overflows, but we don't care at this point.
|
|
t &*= 10
|
|
unsafe buffer.storeBytes(of: 0x30 &+ uDigit,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
}
|
|
t &+= 1 << 27
|
|
if (t & mask) == 0 { // Exactly 1/2
|
|
t = (t >> 28) & ~1 // Round last digit even
|
|
// Rounding `t` even can end up moving `t` below
|
|
// `l`. Detect and correct for this possibility.
|
|
// Exhaustive testing shows that the only input value
|
|
// affected by this is 0.015625 == 2^-6, which
|
|
// incorrectly prints as "0.01562" without this fix.
|
|
if t < lDigit || (t == lDigit && l > 0) {
|
|
t += 1
|
|
}
|
|
} else {
|
|
t >>= 28
|
|
}
|
|
// Last write on this branch, so use a checked store
|
|
buffer.storeBytes(of: UInt8(truncatingIfNeeded: 0x30 + t),
|
|
toByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
}
|
|
}
|
|
if f.sign == .minus {
|
|
buffer.storeBytes(of: 0x2d,
|
|
toByteOffset: firstDigit &- 1,
|
|
as: UInt8.self) // "-"
|
|
firstDigit &-= 1
|
|
}
|
|
return firstDigit..<nextDigit
|
|
}
|
|
#endif
|
|
|
|
|
|
internal func Float32ToASCII(
|
|
value f: Float32,
|
|
buffer utf8Buffer: inout MutableSpan<UTF8.CodeUnit>) -> Range<Int>
|
|
{
|
|
if #available(macOS 9999, *) {
|
|
return _Float32ToASCII(value: f, buffer: &utf8Buffer)
|
|
} else {
|
|
return 0..<0
|
|
}
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate func _Float32ToASCII(
|
|
value f: Float32,
|
|
buffer utf8Buffer: inout MutableSpan<UTF8.CodeUnit>) -> Range<Int>
|
|
{
|
|
// Note: The algorithm here is the same as for Float64, only
|
|
// with narrower arithmetic. Refer to `_Float64ToASCII` for
|
|
// more detailed comments and explanation.
|
|
|
|
// We need a MutableRawSpan in order to use wide store/load operations
|
|
precondition(utf8Buffer.count >= 32)
|
|
var buffer = utf8Buffer.mutableBytes
|
|
|
|
// Step 1: Handle the special cases, decompose the input
|
|
|
|
let binaryExponent: Int
|
|
let significand: Float.RawSignificand
|
|
let exponentBias = (1 << (Float.exponentBitCount - 1)) - 2; // 126
|
|
if (f.exponentBitPattern == 0xff) {
|
|
if (f.isInfinite) {
|
|
return infinity(buffer: &buffer, sign: f.sign)
|
|
} else { // f.isNaN
|
|
let quietBit = (f.significandBitPattern >> (Float.significandBitCount - 1)) & 1
|
|
let payloadMask = UInt32(1 << (Float.significandBitCount - 2)) - 1
|
|
let payload32 = f.significandBitPattern & payloadMask
|
|
return nan_details(buffer: &buffer,
|
|
sign: f.sign,
|
|
quiet: quietBit == 0,
|
|
payloadHigh: 0,
|
|
payloadLow: UInt64(truncatingIfNeeded:payload32))
|
|
}
|
|
} else if (f.exponentBitPattern == 0) {
|
|
if (f.isZero) {
|
|
return zero(buffer: &buffer, sign: f.sign)
|
|
} else { // f.isSubnormal
|
|
binaryExponent = 1 - exponentBias
|
|
significand = f.significandBitPattern &<< Float.exponentBitCount
|
|
}
|
|
} else {
|
|
binaryExponent = Int(f.exponentBitPattern) &- exponentBias
|
|
significand = (f.significandBitPattern &+ (1 << Float.significandBitCount)) &<< Float.exponentBitCount
|
|
}
|
|
|
|
// Step 2: Determine the exact unscaled target interval
|
|
|
|
let halfUlp: Float.RawSignificand = 1 << (Float.exponentBitCount - 1)
|
|
let quarterUlp = halfUlp >> 1
|
|
let upperMidpointExact = significand &+ halfUlp
|
|
let lowerMidpointExact = significand &- ((f.significandBitPattern == 0) ? quarterUlp : halfUlp)
|
|
let isOddSignificand = ((f.significandBitPattern & 1) != 0)
|
|
|
|
// Step 3: Estimate the base 10 exponent
|
|
|
|
var base10Exponent = decimalExponentFor2ToThe(binaryExponent)
|
|
|
|
// Step 4: Compute power-of-10 scale factor
|
|
|
|
var powerOfTenRoundedDown: UInt64 = 0
|
|
var powerOfTenRoundedUp: UInt64 = 0
|
|
|
|
let bulkFirstDigits = 1
|
|
let powerOfTenExponent = intervalContainingPowerOf10_Binary32(
|
|
-base10Exponent &+ bulkFirstDigits &- 1,
|
|
&powerOfTenRoundedDown, &powerOfTenRoundedUp)
|
|
let extraBits = binaryExponent &+ powerOfTenExponent
|
|
|
|
// Step 5: Scale the interval (with rounding)
|
|
|
|
// Experimentally, 11 is as large as we can go here without introducing errors.
|
|
// We need 7 to generate 2 digits at a time below.
|
|
// 11 should allow us to generate 3 digits at a time, but
|
|
// that doesn't seem to be any faster.
|
|
let integerBits = 11
|
|
let fractionBits = 64 - integerBits
|
|
var u: UInt64
|
|
var l: UInt64
|
|
if isOddSignificand {
|
|
// Narrow the interval (odd significand)
|
|
let u1 = multiply64x32RoundingDown(powerOfTenRoundedDown, upperMidpointExact)
|
|
u = u1 >> (integerBits - extraBits)
|
|
let l1 = multiply64x32RoundingUp(powerOfTenRoundedUp, lowerMidpointExact)
|
|
let bias = UInt64((1 &<< (integerBits &- extraBits)) &- 1)
|
|
l = (l1 &+ bias) >> (integerBits &- extraBits)
|
|
} else {
|
|
// Widen the interval (even significand)
|
|
let u1 = multiply64x32RoundingUp(powerOfTenRoundedUp, upperMidpointExact)
|
|
let bias = UInt64((1 &<< (integerBits &- extraBits)) &- 1)
|
|
u = (u1 &+ bias) >> (integerBits &- extraBits)
|
|
let l1 = multiply64x32RoundingDown(powerOfTenRoundedDown, lowerMidpointExact)
|
|
l = l1 >> (integerBits &- extraBits)
|
|
}
|
|
|
|
// Step 6: Align first digit, adjust exponent
|
|
|
|
while u < (1 &<< fractionBits) {
|
|
base10Exponent &-= 1
|
|
l &*= 10
|
|
u &*= 10
|
|
}
|
|
|
|
// Step 7: Generate decimal digits into the destination buffer
|
|
|
|
var t = u
|
|
var delta = u &- l
|
|
let fractionMask: UInt64 = (1 << fractionBits) - 1
|
|
|
|
// Write 8 leading zeros to the beginning of the buffer:
|
|
unsafe buffer.storeBytes(of: 0x3030303030303030,
|
|
toUncheckedByteOffset: 0,
|
|
as: UInt64.self)
|
|
|
|
// Overwrite the first digit at index 7:
|
|
let firstDigit = 7
|
|
let digit = (t >> fractionBits) &+ 0x30
|
|
t &= fractionMask
|
|
unsafe buffer.storeBytes(of: UInt8(truncatingIfNeeded: digit),
|
|
toUncheckedByteOffset: firstDigit,
|
|
as: UInt8.self)
|
|
var nextDigit = firstDigit &+ 1
|
|
|
|
// Generate 2 digits at a time...
|
|
while (delta &* 10) < ((t &* 10) & fractionMask) {
|
|
delta &*= 100
|
|
t &*= 100
|
|
let d12 = Int(truncatingIfNeeded: t >> fractionBits)
|
|
let text = unsafe asciiDigitTable[unchecked: d12]
|
|
unsafe buffer.storeBytes(of: text,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt16.self)
|
|
nextDigit &+= 2
|
|
t &= fractionMask
|
|
}
|
|
|
|
// ... and a final single digit, if necessary
|
|
if delta < t {
|
|
delta &*= 10
|
|
t &*= 10
|
|
let text = 0x30 + UInt8(truncatingIfNeeded: t >> fractionBits)
|
|
unsafe buffer.storeBytes(of: text,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
t &= fractionMask
|
|
}
|
|
|
|
// Adjust the final digit to be closer to the original value
|
|
let isBoundary = (f.significandBitPattern == 0)
|
|
if delta > t &+ (1 &<< fractionBits) {
|
|
let skew: UInt64
|
|
if isBoundary {
|
|
skew = delta &- delta / 3 &- t
|
|
} else {
|
|
skew = delta / 2 &- t
|
|
}
|
|
let one = UInt64(1) << (64 - integerBits)
|
|
let lastAccurateBit = UInt64(1) << 24
|
|
let fractionMask = (one - 1) & ~(lastAccurateBit - 1);
|
|
let oneHalf = one >> 1
|
|
var lastDigit = unsafe buffer.unsafeLoad(fromUncheckedByteOffset: nextDigit &- 1,
|
|
as: UInt8.self)
|
|
if ((skew &+ (lastAccurateBit >> 1)) & fractionMask) == oneHalf {
|
|
// Skew is integer + 1/2, round even after adjustment
|
|
let adjust = skew >> (64 - integerBits)
|
|
lastDigit &-= UInt8(truncatingIfNeeded: adjust)
|
|
lastDigit &= ~1
|
|
} else {
|
|
// Round nearest
|
|
let adjust = (skew &+ oneHalf) >> (64 - integerBits)
|
|
lastDigit &-= UInt8(truncatingIfNeeded: adjust)
|
|
}
|
|
unsafe buffer.storeBytes(of: lastDigit,
|
|
toUncheckedByteOffset: nextDigit &- 1,
|
|
as: UInt8.self)
|
|
}
|
|
|
|
// Step 8: Finish formatting
|
|
let forceExponential = (binaryExponent > 25) || (binaryExponent == 25 && !isBoundary)
|
|
return finishFormatting(&buffer, f.sign, firstDigit, nextDigit,
|
|
forceExponential, base10Exponent)
|
|
}
|
|
|
|
internal func Float64ToASCII(
|
|
value d: Float64,
|
|
buffer utf8Buffer: inout MutableSpan<UTF8.CodeUnit>) -> Range<Int>
|
|
{
|
|
if #available(macOS 9999, *) {
|
|
return _Float64ToASCII(value: d, buffer: &utf8Buffer)
|
|
} else {
|
|
return 0..<0
|
|
}
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate func _Float64ToASCII(
|
|
value d: Float64,
|
|
buffer utf8Buffer: inout MutableSpan<UTF8.CodeUnit>) -> Range<Int>
|
|
{
|
|
// We need a MutableRawSpan in order to use wide store/load operations
|
|
precondition(utf8Buffer.count >= 32)
|
|
var buffer = utf8Buffer.mutableBytes
|
|
|
|
//
|
|
// Step 1: Handle the special cases, decompose the input
|
|
//
|
|
let binaryExponent: Int
|
|
let significand: Double.RawSignificand
|
|
let exponentBias = (1 << (Double.exponentBitCount - 1)) - 2; // 1022
|
|
|
|
if (d.exponentBitPattern == 0x7ff) {
|
|
if (d.isInfinite) {
|
|
return infinity(buffer: &buffer, sign: d.sign)
|
|
} else { // d.isNaN
|
|
let quietBit = (d.significandBitPattern >> (Double.significandBitCount - 1)) & 1
|
|
let payloadMask = UInt64(1 << (Double.significandBitCount - 2)) - 1
|
|
let payload64 = d.significandBitPattern & payloadMask
|
|
return nan_details(buffer: &buffer,
|
|
sign: d.sign,
|
|
quiet: quietBit == 0,
|
|
payloadHigh: 0,
|
|
payloadLow: UInt64(truncatingIfNeeded:payload64))
|
|
}
|
|
} else if (d.exponentBitPattern == 0) {
|
|
if (d.isZero) {
|
|
return zero(buffer: &buffer, sign: d.sign)
|
|
} else { // d.isSubnormal
|
|
binaryExponent = 1 - exponentBias
|
|
significand = d.significandBitPattern &<< Double.exponentBitCount
|
|
}
|
|
} else {
|
|
binaryExponent = Int(d.exponentBitPattern) &- exponentBias
|
|
significand = (d.significandBitPattern &+ (1 << Double.significandBitCount)) &<< Double.exponentBitCount
|
|
}
|
|
// The input has been decomposed as significand * 2^binaryExponent,
|
|
// where `significand` is a 64-bit fraction with the binary
|
|
// point at the far left.
|
|
|
|
// Step 2: Determine the exact unscaled target interval
|
|
|
|
// Grisu-style algorithms construct the shortest decimal digit
|
|
// sequence within a specific interval. To build the appropriate
|
|
// interval, we start by computing the midpoints between this
|
|
// floating-point value and the adjacent ones. Note that this
|
|
// step is an exact computation.
|
|
|
|
let halfUlp: Double.RawSignificand = 1 << (Double.exponentBitCount - 1)
|
|
let quarterUlp = halfUlp >> 1
|
|
let upperMidpointExact = significand &+ halfUlp
|
|
let lowerMidpointExact = significand &- ((d.significandBitPattern == 0) ? quarterUlp : halfUlp)
|
|
let isOddSignificand = ((d.significandBitPattern & 1) != 0)
|
|
|
|
// Step 3: Estimate the base 10 exponent
|
|
|
|
// Grisu algorithms are based in part on a simple technique for
|
|
// generating a base-10 form for a binary floating-point number.
|
|
// Start with a binary floating-point number `f * 2^e` and then
|
|
// estimate the decimal exponent `p`. You can then rewrite your
|
|
// original number as:
|
|
//
|
|
// ```
|
|
// f * 2^e * 10^-p * 10^p
|
|
// ```
|
|
//
|
|
// The last term is part of our output, and a good estimate for
|
|
// `p` will ensure that `2^e * 10^-p` is close to 1. Multiplying
|
|
// the first three terms then yields a fraction suitable for
|
|
// producing the decimal digits. Here we use a very fast estimate
|
|
// of `p` that is never off by more than 1; we'll have
|
|
// opportunities later to correct any error.
|
|
|
|
var base10Exponent = decimalExponentFor2ToThe(binaryExponent)
|
|
|
|
// Step 4: Compute power-of-10 scale factor
|
|
|
|
// Compute `10^-p` to 128-bit precision. We generate
|
|
// both over- and under-estimates to ensure we can exactly
|
|
// bound the later use of these values.
|
|
// The `powerOfTenRounded{Up,Down}` values are 128-bit
|
|
// pure fractions with the decimal point at the far left.
|
|
|
|
var powerOfTenRoundedDown: UInt128 = 0
|
|
var powerOfTenRoundedUp: UInt128 = 0
|
|
|
|
// Note the extra factor of 10^bulkFirstDigits -- that will give
|
|
// us a headstart on digit generation later on. (In contrast, Ryu
|
|
// uses an extra factor of 10^17 here to get all the digits up
|
|
// front, but then has to back out any extra digits. Doing that
|
|
// with a 17-digit value requires 64-bit division, which is the
|
|
// root cause of Ryu's poor performance on 32-bit processors. We
|
|
// also might have to back out extra digits if 7 is too many, but
|
|
// will only need 32-bit division in that case.)
|
|
|
|
let bulkFirstDigits = 7
|
|
let bulkFirstDigitFactor = 1000000 // 10^(bulkFirstDigits - 1)
|
|
|
|
let powerOfTenExponent = intervalContainingPowerOf10_Binary64(
|
|
-base10Exponent &+ bulkFirstDigits &- 1,
|
|
&powerOfTenRoundedDown, &powerOfTenRoundedUp)
|
|
|
|
let extraBits = binaryExponent + powerOfTenExponent
|
|
|
|
// Step 5: Scale the interval (with rounding)
|
|
|
|
// As mentioned above, the final digit generation works
|
|
// with an interval, so we actually apply the scaling
|
|
// to the upper and lower midpoint values separately.
|
|
|
|
// As part of the scaling here, we'll switch from a pure
|
|
// fraction with zero bit integer portion and 128-bit fraction
|
|
// to a fixed-point form with 32 bits in the integer portion.
|
|
|
|
let integerBits = 32
|
|
let roundingBias = UInt128((1 &<< UInt64(truncatingIfNeeded: integerBits &- extraBits)) &- 1)
|
|
var u: UInt128
|
|
var l: UInt128
|
|
if isOddSignificand {
|
|
// Case A: Narrow the interval (odd significand)
|
|
|
|
// Loitsch' original Grisu2 always rounds so as to narrow the
|
|
// interval. Since our digit generation will select a value
|
|
// within the scaled interval, narrowing the interval
|
|
// guarantees that we will find a digit sequence that converts
|
|
// back to the original value.
|
|
|
|
// This ensures accuracy but, as explained in Loitsch' paper,
|
|
// this carries a risk that there will be a shorter digit
|
|
// sequence outside of our narrowed interval that we will
|
|
// miss. This risk obviously gets lower with increased
|
|
// precision, but it wasn't until the Errol paper that anyone
|
|
// had a good way to test whether a particular implementation
|
|
// had sufficient precision. That paper shows a way to enumerate
|
|
// the worst-case numbers; those numbers that are extremely close
|
|
// to the mid-points between adjacent floating-point values.
|
|
// These are the values that might sit just outside of the
|
|
// narrowed interval. By testing these values, we can verify
|
|
// the correctness of our implementation.
|
|
|
|
// Multiply out the upper midpoint, rounding down...
|
|
let u1 = multiply128x64RoundingDown(powerOfTenRoundedDown, upperMidpointExact)
|
|
// Account for residual binary exponent and adjust
|
|
// to the fixed-point format
|
|
u = u1 >> (integerBits - extraBits)
|
|
|
|
// Conversely for the lower midpoint...
|
|
let l1 = multiply128x64RoundingUp(powerOfTenRoundedUp, lowerMidpointExact)
|
|
l = (l1 + roundingBias) >> (integerBits - extraBits)
|
|
} else {
|
|
// Case B: Widen the interval (even significand)
|
|
|
|
// As explained in Errol Theorem 6, in certain cases there is
|
|
// a short decimal representation at the exact boundary of the
|
|
// scaled interval. When such a number is converted back to
|
|
// binary, it will get rounded to the adjacent even
|
|
// significand.
|
|
|
|
// So when the significand is even, we round so as to widen
|
|
// the interval in order to ensure that the exact midpoints
|
|
// are considered. Of couse, this ensures that we find a
|
|
// short result but carries a risk of selecting a result
|
|
// outside of the exact scaled interval (which would be
|
|
// inaccurate).
|
|
// (This technique of rounding differently for even/odd significands
|
|
// seems to be new; I've not seen it described in any of the
|
|
// papers on floating-point printing.)
|
|
|
|
// The same testing approach described above (based on results
|
|
// in the Errol paper) also applies
|
|
// to this case.
|
|
|
|
let u1 = multiply128x64RoundingUp(powerOfTenRoundedUp, upperMidpointExact)
|
|
u = (u1 &+ roundingBias) >> (integerBits - extraBits)
|
|
let l1 = multiply128x64RoundingDown(powerOfTenRoundedDown, lowerMidpointExact)
|
|
l = l1 >> (integerBits - extraBits)
|
|
}
|
|
|
|
// Step 6: Align the first digit, adjust exponent
|
|
|
|
// Calculations above used an estimate for the power-of-ten scale.
|
|
// Here, we compensate for any error in that estimate by testing
|
|
// whether we have the expected number of digits in the integer
|
|
// portion and correcting as necessary. This also serves to
|
|
// prune leading zeros from subnormals.
|
|
|
|
// Except for subnormals, this loop never runs more than once.
|
|
// For subnormals, this might run as many as 16 times.
|
|
let minimumU = UInt128(bulkFirstDigitFactor) << (128 - integerBits)
|
|
while u < minimumU {
|
|
base10Exponent -= 1
|
|
l &*= 10
|
|
u &*= 10
|
|
}
|
|
|
|
// Step 7: Produce decimal digits
|
|
|
|
// One standard approach generates digits for the scaled upper and
|
|
// lower boundaries and stops at the first digit that
|
|
// differs. For example, note that 0.1234 is the shortest decimal
|
|
// between u = 0.123456 and l = 0.123345.
|
|
|
|
// Grisu optimizes this by generating digits for the upper bound
|
|
// (multiplying by 10 to isolate each digit) while simultaneously
|
|
// scaling the interval width `delta`. As we remove each digit
|
|
// from the upper bound, the remainder is the difference between
|
|
// the base-10 value generated so far and the true upper bound.
|
|
// When that remainder is less than the scaled width of the
|
|
// interval, we know the current digits specify a value within the
|
|
// target interval.
|
|
|
|
// The logic below actually blends three different digit-generation
|
|
// strategies:
|
|
// * The first digits are already in the integer portion of the
|
|
// fixed-point value, thanks to the `bulkFirstDigits` factor above.
|
|
// We can just break those down and write them out.
|
|
// * If we generated too many digits, we use a Ryu-inspired technique
|
|
// to backtrack.
|
|
// * If we generated too few digits (the usual case), we use an
|
|
// optimized form of the Grisu2 method to produce the remaining
|
|
// values.
|
|
|
|
//
|
|
// Generate digits and build the output.
|
|
//
|
|
|
|
// Generate digits for `t` with interval width `delta = u - l`
|
|
// As above, these are fixed-point with 32-bit integer, 96-bit fraction
|
|
var t = u
|
|
var delta = u &- l
|
|
let fractionMask = (UInt128(1) << 96) - 1
|
|
|
|
var nextDigit = 5
|
|
var firstDigit = nextDigit
|
|
unsafe buffer.storeBytes(of: 0x3030303030303030 as UInt64,
|
|
toUncheckedByteOffset: 0,
|
|
as: UInt64.self)
|
|
|
|
// Our initial scaling gave us the first 7 digits already:
|
|
let d12345678 = UInt32(truncatingIfNeeded: t._high >> 32)
|
|
t &= fractionMask
|
|
|
|
if delta >= t {
|
|
// Oops! We have too many digits. Back out the extra ones to
|
|
// get the right answer. This is similar to Ryu, but since
|
|
// we've only produced seven digits, we only need 32-bit
|
|
// arithmetic here. (Ryu needs 64-bit arithmetic to back out
|
|
// digits, which severely compromises performance on 32-bit
|
|
// processors. The same problem occurs with Ryu for 128-bit
|
|
// floats on 64-bit processors.)
|
|
// A few notes:
|
|
// * Our target hardware always supports 32-bit hardware division,
|
|
// so this should be reasonably fast.
|
|
// * For small integers (like "2.0"), Ryu would have to back out 16
|
|
// digits; we only have to back out 6.
|
|
// * Very few double-precision values actually need fewer than 7
|
|
// digits. So this is rarely used except in workloads that
|
|
// specifically use double for small integers.
|
|
|
|
// Why this is critical for performance: In order to use the
|
|
// 8-digits-at-a-time optimization below, we need at least 30
|
|
// bits in the integer part of our fixed-point format above.
|
|
// If we only use bulkDigits = 1, that leaves only 128 - 30 =
|
|
// 98 bit accuracy for our scaling step, which isn't enough
|
|
// (experiments suggest that binary64 needs ~110 bits for
|
|
// correctness). So we have to use a large bulkDigits value
|
|
// to make full use of the 128-bit scaling above, which forces
|
|
// us to have some form of logic to handle the case of too
|
|
// many digits. The alternatives are either to use >128 bit
|
|
// arithmetic, or to back up and repeat the original scaling
|
|
// with bulkDigits = 1.
|
|
|
|
let uHigh = u._high
|
|
let lHigh = (l &+ UInt128(UInt64.max))._high
|
|
let tHigh: UInt64
|
|
if d.significand == 0 {
|
|
tHigh = (uHigh &+ lHigh &* 2) / 3
|
|
} else {
|
|
tHigh = (uHigh &+ lHigh) / 2
|
|
}
|
|
var u0 = UInt32(truncatingIfNeeded: uHigh >> (64 - integerBits))
|
|
var l0 = UInt32(truncatingIfNeeded: lHigh >> (64 - integerBits))
|
|
if lHigh & ((1 << (64 - integerBits)) - 1) != 0 {
|
|
l0 &+= 1
|
|
}
|
|
var t0 = UInt32(truncatingIfNeeded: tHigh >> (64 - integerBits))
|
|
var t0digits = 8
|
|
|
|
var u1 = u0 / 10
|
|
var l1 = (l0 &+ 9) / 10
|
|
var trailingZeros = (t == 0)
|
|
var droppedDigit = UInt32(truncatingIfNeeded: ((tHigh &* 10) >> (64 - integerBits)) % 10)
|
|
while u1 >= l1 && u1 != 0 {
|
|
u0 = u1
|
|
l0 = l1
|
|
trailingZeros = trailingZeros && (droppedDigit == 0)
|
|
droppedDigit = t0 % 10
|
|
t0 /= 10
|
|
t0digits -= 1
|
|
u1 = u0 / 10
|
|
l1 = (l0 &+ 9) / 10
|
|
}
|
|
// Correct the final digit
|
|
if droppedDigit > 5 || (droppedDigit == 5 && !trailingZeros) { // > 0.5000
|
|
t0 &+= 1
|
|
} else if droppedDigit == 5 && trailingZeros { // == 0.5000
|
|
t0 &+= 1
|
|
t0 &= ~1
|
|
}
|
|
// t0 has t0digits digits. Write them out
|
|
let text = intToEightDigits(t0) >> ((8 - t0digits) * 8)
|
|
unsafe buffer.storeBytes(of: text,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt64.self)
|
|
nextDigit &+= t0digits
|
|
firstDigit &+= 1
|
|
} else {
|
|
// Our initial scaling did not produce too many digits. The
|
|
// `d12345678` value holds the first 7 digits (plus a leading
|
|
// zero). The remainder of this algorithm is basically just a
|
|
// heavily-optimized variation of Grisu2.
|
|
|
|
// Write out exactly 8 digits, assuming little-endian.
|
|
let chars = intToEightDigits(d12345678)
|
|
unsafe buffer.storeBytes(of: chars,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt64.self)
|
|
nextDigit &+= 8
|
|
firstDigit &+= 1
|
|
|
|
// >90% of random binary64 values need at least 15 digits.
|
|
// We already have seven, try grabbing the next 8 digits all at once.
|
|
let TenToTheEighth = 100000000 as UInt128; // 10^(15-bulkFirstDigits)
|
|
let d0 = delta * TenToTheEighth
|
|
var t0 = t * TenToTheEighth
|
|
let next8Digits = UInt32(truncatingIfNeeded: t0._high >> 32)
|
|
t0 &= fractionMask
|
|
if d0 < t0 {
|
|
// We got 8 more digits! (So number is at least 15 digits)
|
|
// Write them out:
|
|
let chars = intToEightDigits(next8Digits)
|
|
unsafe buffer.storeBytes(of: chars,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt64.self)
|
|
nextDigit &+= 8
|
|
t = t0
|
|
delta = d0
|
|
}
|
|
|
|
// Generate remaining digits one at a time, following Grisu:
|
|
while (delta < t) {
|
|
delta &*= 10
|
|
t &*= 10
|
|
unsafe buffer.storeBytes(of: UInt8(truncatingIfNeeded: t._high >> 32) &+ 0x30,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
t &= fractionMask
|
|
}
|
|
|
|
// Adjust the final digit to be closer to the original value.
|
|
// This accounts for the fact that sometimes there is more than
|
|
// one shortest digit sequence.
|
|
|
|
// For example, consider how the above would work if you had the
|
|
// value 0.1234 and computed u = 0.1257, l = 0.1211. The above
|
|
// digit generation works with `u`, so produces 0.125. But the
|
|
// values 0.122, 0.123, and 0.124 are just as short and 0.123 is
|
|
// therefore the best choice, since it's closest to the original
|
|
// value.
|
|
|
|
// We know delta and t are both less than 10.0 here, so we can
|
|
// shed some excess integer bits to simplify the following:
|
|
let adjustIntegerBits = 4 // Integer bits for "adjust" phase
|
|
let deltaHigh64 = UInt64(truncatingIfNeeded: delta >> (64 - integerBits + adjustIntegerBits))
|
|
let tHigh64 = UInt64(truncatingIfNeeded: t >> (64 - integerBits + adjustIntegerBits))
|
|
|
|
let one = UInt64(1) << (64 - adjustIntegerBits)
|
|
let adjustFractionMask = one - 1;
|
|
let oneHalf = one >> 1;
|
|
if deltaHigh64 >= tHigh64 &+ one {
|
|
// The `skew` is the difference between our
|
|
// computed digits and the original exact value.
|
|
var skew: UInt64
|
|
if (d.significandBitPattern == 0) {
|
|
skew = deltaHigh64 &- deltaHigh64 / 3 &- tHigh64
|
|
} else {
|
|
skew = deltaHigh64 / 2 &- tHigh64
|
|
}
|
|
|
|
// We use the `skew` to figure out whether there's
|
|
// a better base-10 value than our current one.
|
|
if (skew & adjustFractionMask) == oneHalf {
|
|
// Difference is an integer + exactly 1/2, so ...
|
|
let adjust = skew >> (64 - adjustIntegerBits)
|
|
var t = unsafe buffer.unsafeLoad(fromUncheckedByteOffset: nextDigit - 1,
|
|
as: UInt8.self)
|
|
t &-= UInt8(truncatingIfNeeded: adjust)
|
|
// ... we round the last digit even.
|
|
t &= ~1
|
|
unsafe buffer.storeBytes(of: t,
|
|
toUncheckedByteOffset: nextDigit - 1,
|
|
as: UInt8.self)
|
|
} else {
|
|
let adjust = (skew + oneHalf) >> (64 - adjustIntegerBits)
|
|
var t = unsafe buffer.unsafeLoad(fromUncheckedByteOffset: nextDigit - 1,
|
|
as: UInt8.self)
|
|
t &-= UInt8(truncatingIfNeeded: adjust)
|
|
unsafe buffer.storeBytes(of: t,
|
|
toUncheckedByteOffset: nextDigit - 1,
|
|
as: UInt8.self)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 8: Finalize formatting by rearranging
|
|
// the digits and filling in decimal points,
|
|
// exponents, and zero padding.
|
|
let isBoundary = (d.significandBitPattern == 0)
|
|
let forceExponential = (binaryExponent > 54) || (binaryExponent == 54 && !isBoundary)
|
|
return finishFormatting(&buffer, d.sign, firstDigit, nextDigit,
|
|
forceExponential, base10Exponent)
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
// TODO: This doesn't guarantee inlining in all cases :(
|
|
@inline(__always)
|
|
fileprivate func finishFormatting(_ buffer: inout MutableRawSpan,
|
|
_ sign: FloatingPointSign,
|
|
_ firstDigit: Int,
|
|
_ nextDigit: Int,
|
|
_ forceExponential: Bool,
|
|
_ base10Exponent: Int) -> Range<Int>
|
|
{
|
|
// Performance note: This could be made noticeably faster by
|
|
// writing the output consistently in exponential form with no
|
|
// decimal point, e.g., "31415926e-07". But the extra cost seems
|
|
// worthwhile to achieve "3.1415926" instead.
|
|
var firstDigit = firstDigit
|
|
var nextDigit = nextDigit
|
|
|
|
let digitCount = nextDigit &- firstDigit
|
|
if base10Exponent < -4 || forceExponential {
|
|
// Exponential form: "-1.23456789e+123"
|
|
// Rewrite "123456789" => "1.23456789" by moving the first
|
|
// digit to the left one byte and overwriting a period.
|
|
// (This is one reason we left empty space to the left of the digits.)
|
|
// We don't do this for single-digit significands: "1e+78", "5e-324"
|
|
if digitCount > 1 {
|
|
let t = unsafe buffer.unsafeLoad(fromUncheckedByteOffset: firstDigit,
|
|
as: UInt8.self)
|
|
unsafe buffer.storeBytes(of: 0x2e,
|
|
toUncheckedByteOffset: firstDigit,
|
|
as: UInt8.self)
|
|
firstDigit &-= 1
|
|
unsafe buffer.storeBytes(of: t,
|
|
toUncheckedByteOffset: firstDigit,
|
|
as: UInt8.self)
|
|
}
|
|
// Append the exponent:
|
|
unsafe buffer.storeBytes(of: 0x65,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
var e = base10Exponent
|
|
let expSign: UInt8
|
|
if base10Exponent < 0 {
|
|
expSign = 0x2d // "-"
|
|
e = 0 &- e
|
|
} else {
|
|
expSign = 0x2b // "+"
|
|
}
|
|
unsafe buffer.storeBytes(of: expSign,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
if e > 99 {
|
|
if e > 999 {
|
|
let d = asciiDigitTable[e / 100]
|
|
unsafe buffer.storeBytes(of: d,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt16.self)
|
|
nextDigit &+= 2
|
|
} else {
|
|
let d = 0x30 &+ UInt8(truncatingIfNeeded: (e / 100))
|
|
unsafe buffer.storeBytes(of: d,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt8.self)
|
|
nextDigit &+= 1
|
|
}
|
|
e = e % 100
|
|
}
|
|
let d = unsafe asciiDigitTable[unchecked: e]
|
|
unsafe buffer.storeBytes(of: d,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt16.self)
|
|
nextDigit &+= 2
|
|
} else if base10Exponent < 0 {
|
|
// "-0.000123456789"
|
|
// We need up to 5 leading characters before the digits.
|
|
// Note that the formatters above all insert extra leading "0" characters
|
|
// to the beginning of the buffer, so we don't need to memset() here,
|
|
// just back up the start to include them...
|
|
firstDigit &+= base10Exponent - 1
|
|
// ... and then overwrite a decimal point to get "0." at the beginning
|
|
buffer.storeBytes(of: 0x2e, // "."
|
|
toByteOffset: firstDigit &+ 1,
|
|
as: UInt8.self)
|
|
} else if base10Exponent &+ 1 < digitCount {
|
|
// "123456.789"
|
|
// We move the first digits forward one position
|
|
// so we can insert a decimal point in the middle.
|
|
// Note: This is the only case where we actually move
|
|
// more than one digit around in the buffer.
|
|
// TODO: Find out how to use C memmove() here
|
|
firstDigit &-= 1
|
|
for i in 0...(base10Exponent &+ 1) {
|
|
let t = unsafe buffer.unsafeLoad(fromUncheckedByteOffset: firstDigit &+ i &+ 1,
|
|
as: UInt8.self)
|
|
unsafe buffer.storeBytes(of: t,
|
|
toUncheckedByteOffset: firstDigit &+ i,
|
|
as: UInt8.self)
|
|
}
|
|
unsafe buffer.storeBytes(of: 0x2e,
|
|
toUncheckedByteOffset: firstDigit &+ base10Exponent &+ 1,
|
|
as: UInt8.self)
|
|
} else {
|
|
// "12345678900.0"
|
|
// Fill trailing zeros, put ".0" at the end
|
|
// so the result is obviously floating-point.
|
|
let zeroEnd = firstDigit &+ base10Exponent &+ 3
|
|
// TODO: Find out how to use C memset() here:
|
|
// Blast 8 "0" digits into the buffer
|
|
unsafe buffer.storeBytes(of: 0x3030303030303030 as UInt64,
|
|
toUncheckedByteOffset: nextDigit,
|
|
as: UInt64.self)
|
|
// Add more "0" digits if needed...
|
|
// (Note: Can't use a standard range loop because nextDigit+8
|
|
// can legitimately be larger than zeroEnd here.)
|
|
var i = nextDigit + 8
|
|
while i < zeroEnd {
|
|
unsafe buffer.storeBytes(of: 0x30,
|
|
toUncheckedByteOffset: i,
|
|
as: UInt8.self)
|
|
i &+= 1
|
|
}
|
|
nextDigit = zeroEnd
|
|
unsafe buffer.storeBytes(of: 0x2e,
|
|
toUncheckedByteOffset: nextDigit &- 2,
|
|
as: UInt8.self)
|
|
}
|
|
if sign == .minus {
|
|
unsafe buffer.storeBytes(of: 0x2d,
|
|
toUncheckedByteOffset: firstDigit &- 1,
|
|
as: UInt8.self) // "-"
|
|
firstDigit &-= 1
|
|
}
|
|
|
|
return unsafe Range(_uncheckedBounds: (lower: firstDigit, upper: nextDigit))
|
|
}
|
|
|
|
// Table with ASCII strings for all 2-digit decimal numbers.
|
|
// Stored as little-endian UInt16s for efficiency
|
|
@available(macOS 9999, *)
|
|
fileprivate let asciiDigitTable: InlineArray<100, UInt16> = [
|
|
0x3030, 0x3130, 0x3230, 0x3330, 0x3430,
|
|
0x3530, 0x3630, 0x3730, 0x3830, 0x3930,
|
|
0x3031, 0x3131, 0x3231, 0x3331, 0x3431,
|
|
0x3531, 0x3631, 0x3731, 0x3831, 0x3931,
|
|
0x3032, 0x3132, 0x3232, 0x3332, 0x3432,
|
|
0x3532, 0x3632, 0x3732, 0x3832, 0x3932,
|
|
0x3033, 0x3133, 0x3233, 0x3333, 0x3433,
|
|
0x3533, 0x3633, 0x3733, 0x3833, 0x3933,
|
|
0x3034, 0x3134, 0x3234, 0x3334, 0x3434,
|
|
0x3534, 0x3634, 0x3734, 0x3834, 0x3934,
|
|
0x3035, 0x3135, 0x3235, 0x3335, 0x3435,
|
|
0x3535, 0x3635, 0x3735, 0x3835, 0x3935,
|
|
0x3036, 0x3136, 0x3236, 0x3336, 0x3436,
|
|
0x3536, 0x3636, 0x3736, 0x3836, 0x3936,
|
|
0x3037, 0x3137, 0x3237, 0x3337, 0x3437,
|
|
0x3537, 0x3637, 0x3737, 0x3837, 0x3937,
|
|
0x3038, 0x3138, 0x3238, 0x3338, 0x3438,
|
|
0x3538, 0x3638, 0x3738, 0x3838, 0x3938,
|
|
0x3039, 0x3139, 0x3239, 0x3339, 0x3439,
|
|
0x3539, 0x3639, 0x3739, 0x3839, 0x3939
|
|
]
|
|
|
|
// The constants below assume we're on a little-endian processor
|
|
fileprivate func infinity(buffer: inout MutableRawSpan, sign: FloatingPointSign) -> Range<Int> {
|
|
if sign == .minus {
|
|
buffer.storeBytes(of: 0x666e692d, toByteOffset: 0, as: UInt32.self) // "-inf"
|
|
return 0..<4
|
|
} else {
|
|
buffer.storeBytes(of: 0x00666e69, toByteOffset: 0, as: UInt32.self) // "inf\0"
|
|
return 0..<3
|
|
}
|
|
}
|
|
|
|
fileprivate func zero(buffer: inout MutableRawSpan, sign: FloatingPointSign) -> Range<Int> {
|
|
if sign == .minus {
|
|
buffer.storeBytes(of: 0x302e302d, toByteOffset: 0, as: UInt32.self) // "-0.0"
|
|
return 0..<4
|
|
} else {
|
|
buffer.storeBytes(of: 0x00302e30, toByteOffset: 0, as: UInt32.self) // "0.0\0"
|
|
return 0..<3
|
|
}
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate let hexdigits: InlineArray<16, UInt8> = [ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 ]
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate func hexWithoutLeadingZeros(buffer: inout MutableRawSpan, offset: inout Int, value: UInt64) {
|
|
var shift = 60
|
|
while (shift > 0) && ((value >> shift) & 0xf == 0) {
|
|
shift -= 4
|
|
}
|
|
while shift >= 0 {
|
|
let d = hexdigits[Int(truncatingIfNeeded: (value >> shift) & 0xf)]
|
|
shift -= 4
|
|
buffer.storeBytes(of: d, toByteOffset: offset, as: UInt8.self)
|
|
offset += 1
|
|
}
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate func hexWithLeadingZeros(buffer: inout MutableRawSpan, offset: inout Int, value: UInt64) {
|
|
var shift = 60
|
|
while shift >= 0 {
|
|
let d = hexdigits[Int(truncatingIfNeeded: (value >> shift) & 0xf)]
|
|
shift -= 4
|
|
buffer.storeBytes(of: d, toByteOffset: offset, as: UInt8.self)
|
|
offset += 1
|
|
}
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate func nan_details(buffer: inout MutableRawSpan,
|
|
sign: FloatingPointSign,
|
|
quiet: Bool,
|
|
payloadHigh: UInt64,
|
|
payloadLow: UInt64) -> Range<Int>
|
|
{
|
|
// value is a NaN of some sort
|
|
var i = 0
|
|
if sign == .minus {
|
|
buffer.storeBytes(of: 0x2d, toByteOffset: 0, as: UInt8.self) // "-"
|
|
i = 1
|
|
}
|
|
if quiet {
|
|
buffer.storeBytes(of: 0x73, toByteOffset: i, as: UInt8.self) // "s"
|
|
i += 1
|
|
}
|
|
buffer.storeBytes(of: 0x6e, toByteOffset: i, as: UInt8.self) // "n"
|
|
buffer.storeBytes(of: 0x61, toByteOffset: i + 1, as: UInt8.self) // "a"
|
|
buffer.storeBytes(of: 0x6e, toByteOffset: i + 2, as: UInt8.self) // "n"
|
|
i += 3
|
|
if payloadHigh != 0 || payloadLow != 0 {
|
|
buffer.storeBytes(of: 0x28, toByteOffset: i, as: UInt8.self) // "("
|
|
i += 1
|
|
buffer.storeBytes(of: 0x30, toByteOffset: i, as: UInt8.self) // "0"
|
|
i += 1
|
|
buffer.storeBytes(of: 0x78, toByteOffset: i, as: UInt8.self) // "x"
|
|
i += 1
|
|
if payloadHigh == 0 {
|
|
hexWithoutLeadingZeros(buffer: &buffer, offset: &i, value: payloadLow)
|
|
} else {
|
|
hexWithoutLeadingZeros(buffer: &buffer, offset: &i, value: payloadHigh)
|
|
hexWithLeadingZeros(buffer: &buffer, offset: &i, value: payloadLow)
|
|
}
|
|
buffer.storeBytes(of: 0x29, toByteOffset: i, as: UInt8.self) // ")"
|
|
i += 1
|
|
}
|
|
return 0..<i
|
|
}
|
|
|
|
// Convert an integer less than 10^8 into exactly 8 ASCII digits in a
|
|
// UInt64. Assuming little-endian, the resulting UInt64 can be stored
|
|
// directly to memory.
|
|
//
|
|
// This implementation is based on work by Paul Khuong:
|
|
// https://pvk.ca/Blog/2017/12/22/appnexus-common-framework-its-out-also-how-to-print-integers-faster/
|
|
@inline(__always)
|
|
fileprivate func intToEightDigits(_ n: UInt32) -> UInt64 {
|
|
// Break into two numbers of 4 decimal digits each
|
|
let div8 = n / 10000
|
|
let mod8 = n &- div8 &* 10000
|
|
let fours = UInt64(div8) | (UInt64(mod8) << 32)
|
|
|
|
// Break into 4 numbers of 2 decimal digits each
|
|
let mask100: UInt64 = 0x0000007f0000007f
|
|
let div4 = ((fours &* 10486) >> 20) & mask100
|
|
let mod4 = fours &- 100 &* div4
|
|
let pairs = div4 | (mod4 &<< 16)
|
|
|
|
// Break into 8 numbers of a single decimal digit each
|
|
let mask10: UInt64 = 0x000f000f000f000f
|
|
let div2 = ((pairs &* 103) >> 10) & mask10
|
|
let mod2 = pairs &- 10 &* div2
|
|
let singles = div2 | (mod2 &<< 8)
|
|
|
|
// Convert 8 digits to ASCII characters
|
|
return singles &+ 0x3030303030303030
|
|
}
|
|
|
|
@inline(__always)
|
|
fileprivate func multiply64x32RoundingDown(_ lhs: UInt64, _ rhs: UInt32) -> UInt64 {
|
|
let mask32 = UInt64(UInt32.max)
|
|
let t = ((lhs & mask32) * UInt64(rhs)) >> 32
|
|
return t + (lhs >> 32) * UInt64(rhs)
|
|
}
|
|
|
|
@inline(__always)
|
|
fileprivate func multiply64x32RoundingUp(_ lhs: UInt64, _ rhs: UInt32) -> UInt64 {
|
|
let mask32 = UInt64(UInt32.max)
|
|
let t = (((lhs & mask32) * UInt64(rhs)) + mask32) >> 32
|
|
return t + (lhs >> 32) * UInt64(rhs)
|
|
}
|
|
|
|
// Arithmetic on fractions:
|
|
// E.g., `128x64` multiplies a 0.128 fixed-point
|
|
// value by a 0.64 fixed-point fraction, returning
|
|
// a 0.128 value that's been rounded down from the
|
|
// exact 192-bit result.
|
|
@available(SwiftStdlib 6.0, *)
|
|
@inline(__always)
|
|
fileprivate func multiply128x64RoundingDown(_ lhs: UInt128, _ rhs: UInt64) -> UInt128 {
|
|
let lhsHigh = UInt128(truncatingIfNeeded: lhs._high)
|
|
let lhsLow = UInt128(truncatingIfNeeded: lhs._low)
|
|
let rhs128 = UInt128(truncatingIfNeeded: rhs)
|
|
return (lhsHigh &* rhs128) &+ ((lhsLow &* rhs128) >> 64)
|
|
}
|
|
|
|
@available(SwiftStdlib 6.0, *)
|
|
@inline(__always)
|
|
fileprivate func multiply128x64RoundingUp(_ lhs: UInt128, _ rhs: UInt64) -> UInt128 {
|
|
let lhsHigh = UInt128(truncatingIfNeeded: lhs._high)
|
|
let lhsLow = UInt128(truncatingIfNeeded: lhs._low)
|
|
let rhs128 = UInt128(truncatingIfNeeded: rhs)
|
|
let h = lhsHigh &* rhs128
|
|
let l = lhsLow &* rhs128
|
|
let bias = (UInt128(1) << 64) &- 1
|
|
return h + ((l &+ bias) &>> 64)
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
@inline(__always)
|
|
fileprivate func intervalContainingPowerOf10_Binary32(_ p: Int, _ lower: inout UInt64, _ upper: inout UInt64) -> Int {
|
|
if p >= 0 {
|
|
let base = powersOf10_Exact128[p &* 2 &+ 1]
|
|
lower = base
|
|
if p < 28 {
|
|
upper = base
|
|
} else {
|
|
upper = base &+ 1
|
|
}
|
|
} else {
|
|
let base = powersOf10_negativeBinary32[p &+ 40]
|
|
lower = base
|
|
upper = base &+ 1
|
|
}
|
|
return binaryExponentFor10ToThe(p)
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
@inline(__always)
|
|
fileprivate func intervalContainingPowerOf10_Binary64(_ p: Int, _ lower: inout UInt128, _ upper: inout UInt128) -> Int {
|
|
if p >= 0 && p <= 55 {
|
|
let upper64 = powersOf10_Exact128[p &* 2 &+ 1]
|
|
let lower64 = powersOf10_Exact128[p &* 2]
|
|
upper = UInt128(_low: lower64, _high: upper64)
|
|
lower = upper
|
|
return binaryExponentFor10ToThe(p)
|
|
}
|
|
|
|
let index = p &+ 400
|
|
let mainPower = index / 28
|
|
let baseHigh = powersOf10_Binary64[mainPower &* 2 &+ 1]
|
|
let baseLow = powersOf10_Binary64[mainPower &* 2]
|
|
let extraPower = index &- mainPower &* 28
|
|
let baseExponent = binaryExponentFor10ToThe(p &- extraPower)
|
|
|
|
if extraPower == 0 {
|
|
lower = UInt128(_low: baseLow, _high: baseHigh)
|
|
upper = lower &+ 1
|
|
return baseExponent
|
|
} else {
|
|
let extra = powersOf10_Exact128[extraPower &* 2 &+ 1]
|
|
lower = ((UInt128(truncatingIfNeeded:baseHigh) &* UInt128(truncatingIfNeeded:extra))
|
|
&+ ((UInt128(truncatingIfNeeded:baseLow) &* UInt128(truncatingIfNeeded:extra)) &>> 64))
|
|
upper = lower &+ 2
|
|
return baseExponent &+ binaryExponentFor10ToThe(extraPower)
|
|
}
|
|
}
|
|
|
|
@inline(__always)
|
|
fileprivate func binaryExponentFor10ToThe(_ p: Int) -> Int {
|
|
return Int(((Int64(p) &* 55732705) >> 24) &+ 1)
|
|
}
|
|
|
|
@inline(__always)
|
|
fileprivate func decimalExponentFor2ToThe(_ p: Int) -> Int {
|
|
return Int((Int64(p) &* 20201781) >> 26)
|
|
}
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate let powersOf10_negativeBinary32: InlineArray<_, UInt64> = [
|
|
0x8b61313bbabce2c6, // x 2^-132 ~= 10^-40
|
|
0xae397d8aa96c1b77, // x 2^-129 ~= 10^-39
|
|
0xd9c7dced53c72255, // x 2^-126 ~= 10^-38
|
|
0x881cea14545c7575, // x 2^-122 ~= 10^-37
|
|
0xaa242499697392d2, // x 2^-119 ~= 10^-36
|
|
0xd4ad2dbfc3d07787, // x 2^-116 ~= 10^-35
|
|
0x84ec3c97da624ab4, // x 2^-112 ~= 10^-34
|
|
0xa6274bbdd0fadd61, // x 2^-109 ~= 10^-33
|
|
0xcfb11ead453994ba, // x 2^-106 ~= 10^-32
|
|
0x81ceb32c4b43fcf4, // x 2^-102 ~= 10^-31
|
|
0xa2425ff75e14fc31, // x 2^-99 ~= 10^-30
|
|
0xcad2f7f5359a3b3e, // x 2^-96 ~= 10^-29
|
|
0xfd87b5f28300ca0d, // x 2^-93 ~= 10^-28
|
|
0x9e74d1b791e07e48, // x 2^-89 ~= 10^-27
|
|
0xc612062576589dda, // x 2^-86 ~= 10^-26
|
|
0xf79687aed3eec551, // x 2^-83 ~= 10^-25
|
|
0x9abe14cd44753b52, // x 2^-79 ~= 10^-24
|
|
0xc16d9a0095928a27, // x 2^-76 ~= 10^-23
|
|
0xf1c90080baf72cb1, // x 2^-73 ~= 10^-22
|
|
0x971da05074da7bee, // x 2^-69 ~= 10^-21
|
|
0xbce5086492111aea, // x 2^-66 ~= 10^-20
|
|
0xec1e4a7db69561a5, // x 2^-63 ~= 10^-19
|
|
0x9392ee8e921d5d07, // x 2^-59 ~= 10^-18
|
|
0xb877aa3236a4b449, // x 2^-56 ~= 10^-17
|
|
0xe69594bec44de15b, // x 2^-53 ~= 10^-16
|
|
0x901d7cf73ab0acd9, // x 2^-49 ~= 10^-15
|
|
0xb424dc35095cd80f, // x 2^-46 ~= 10^-14
|
|
0xe12e13424bb40e13, // x 2^-43 ~= 10^-13
|
|
0x8cbccc096f5088cb, // x 2^-39 ~= 10^-12
|
|
0xafebff0bcb24aafe, // x 2^-36 ~= 10^-11
|
|
0xdbe6fecebdedd5be, // x 2^-33 ~= 10^-10
|
|
0x89705f4136b4a597, // x 2^-29 ~= 10^-9
|
|
0xabcc77118461cefc, // x 2^-26 ~= 10^-8
|
|
0xd6bf94d5e57a42bc, // x 2^-23 ~= 10^-7
|
|
0x8637bd05af6c69b5, // x 2^-19 ~= 10^-6
|
|
0xa7c5ac471b478423, // x 2^-16 ~= 10^-5
|
|
0xd1b71758e219652b, // x 2^-13 ~= 10^-4
|
|
0x83126e978d4fdf3b, // x 2^-9 ~= 10^-3
|
|
0xa3d70a3d70a3d70a, // x 2^-6 ~= 10^-2
|
|
0xcccccccccccccccc, // x 2^-3 ~= 10^-1
|
|
]
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate let powersOf10_Exact128: InlineArray<_, UInt64> = [
|
|
// Low order ... high order
|
|
0x0000000000000000, 0x8000000000000000, // x 2^1 == 10^0 exactly
|
|
0x0000000000000000, 0xa000000000000000, // x 2^4 == 10^1 exactly
|
|
0x0000000000000000, 0xc800000000000000, // x 2^7 == 10^2 exactly
|
|
0x0000000000000000, 0xfa00000000000000, // x 2^10 == 10^3 exactly
|
|
0x0000000000000000, 0x9c40000000000000, // x 2^14 == 10^4 exactly
|
|
0x0000000000000000, 0xc350000000000000, // x 2^17 == 10^5 exactly
|
|
0x0000000000000000, 0xf424000000000000, // x 2^20 == 10^6 exactly
|
|
0x0000000000000000, 0x9896800000000000, // x 2^24 == 10^7 exactly
|
|
0x0000000000000000, 0xbebc200000000000, // x 2^27 == 10^8 exactly
|
|
0x0000000000000000, 0xee6b280000000000, // x 2^30 == 10^9 exactly
|
|
0x0000000000000000, 0x9502f90000000000, // x 2^34 == 10^10 exactly
|
|
0x0000000000000000, 0xba43b74000000000, // x 2^37 == 10^11 exactly
|
|
0x0000000000000000, 0xe8d4a51000000000, // x 2^40 == 10^12 exactly
|
|
0x0000000000000000, 0x9184e72a00000000, // x 2^44 == 10^13 exactly
|
|
0x0000000000000000, 0xb5e620f480000000, // x 2^47 == 10^14 exactly
|
|
0x0000000000000000, 0xe35fa931a0000000, // x 2^50 == 10^15 exactly
|
|
0x0000000000000000, 0x8e1bc9bf04000000, // x 2^54 == 10^16 exactly
|
|
0x0000000000000000, 0xb1a2bc2ec5000000, // x 2^57 == 10^17 exactly
|
|
0x0000000000000000, 0xde0b6b3a76400000, // x 2^60 == 10^18 exactly
|
|
0x0000000000000000, 0x8ac7230489e80000, // x 2^64 == 10^19 exactly
|
|
0x0000000000000000, 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly
|
|
0x0000000000000000, 0xd8d726b7177a8000, // x 2^70 == 10^21 exactly
|
|
0x0000000000000000, 0x878678326eac9000, // x 2^74 == 10^22 exactly
|
|
0x0000000000000000, 0xa968163f0a57b400, // x 2^77 == 10^23 exactly
|
|
0x0000000000000000, 0xd3c21bcecceda100, // x 2^80 == 10^24 exactly
|
|
0x0000000000000000, 0x84595161401484a0, // x 2^84 == 10^25 exactly
|
|
0x0000000000000000, 0xa56fa5b99019a5c8, // x 2^87 == 10^26 exactly
|
|
0x0000000000000000, 0xcecb8f27f4200f3a, // x 2^90 == 10^27 exactly
|
|
0x4000000000000000, 0x813f3978f8940984, // x 2^94 == 10^28 exactly
|
|
0x5000000000000000, 0xa18f07d736b90be5, // x 2^97 == 10^29 exactly
|
|
0xa400000000000000, 0xc9f2c9cd04674ede, // x 2^100 == 10^30 exactly
|
|
0x4d00000000000000, 0xfc6f7c4045812296, // x 2^103 == 10^31 exactly
|
|
0xf020000000000000, 0x9dc5ada82b70b59d, // x 2^107 == 10^32 exactly
|
|
0x6c28000000000000, 0xc5371912364ce305, // x 2^110 == 10^33 exactly
|
|
0xc732000000000000, 0xf684df56c3e01bc6, // x 2^113 == 10^34 exactly
|
|
0x3c7f400000000000, 0x9a130b963a6c115c, // x 2^117 == 10^35 exactly
|
|
0x4b9f100000000000, 0xc097ce7bc90715b3, // x 2^120 == 10^36 exactly
|
|
0x1e86d40000000000, 0xf0bdc21abb48db20, // x 2^123 == 10^37 exactly
|
|
0x1314448000000000, 0x96769950b50d88f4, // x 2^127 == 10^38 exactly
|
|
0x17d955a000000000, 0xbc143fa4e250eb31, // x 2^130 == 10^39 exactly
|
|
0x5dcfab0800000000, 0xeb194f8e1ae525fd, // x 2^133 == 10^40 exactly
|
|
0x5aa1cae500000000, 0x92efd1b8d0cf37be, // x 2^137 == 10^41 exactly
|
|
0xf14a3d9e40000000, 0xb7abc627050305ad, // x 2^140 == 10^42 exactly
|
|
0x6d9ccd05d0000000, 0xe596b7b0c643c719, // x 2^143 == 10^43 exactly
|
|
0xe4820023a2000000, 0x8f7e32ce7bea5c6f, // x 2^147 == 10^44 exactly
|
|
0xdda2802c8a800000, 0xb35dbf821ae4f38b, // x 2^150 == 10^45 exactly
|
|
0xd50b2037ad200000, 0xe0352f62a19e306e, // x 2^153 == 10^46 exactly
|
|
0x4526f422cc340000, 0x8c213d9da502de45, // x 2^157 == 10^47 exactly
|
|
0x9670b12b7f410000, 0xaf298d050e4395d6, // x 2^160 == 10^48 exactly
|
|
0x3c0cdd765f114000, 0xdaf3f04651d47b4c, // x 2^163 == 10^49 exactly
|
|
0xa5880a69fb6ac800, 0x88d8762bf324cd0f, // x 2^167 == 10^50 exactly
|
|
0x8eea0d047a457a00, 0xab0e93b6efee0053, // x 2^170 == 10^51 exactly
|
|
0x72a4904598d6d880, 0xd5d238a4abe98068, // x 2^173 == 10^52 exactly
|
|
0x47a6da2b7f864750, 0x85a36366eb71f041, // x 2^177 == 10^53 exactly
|
|
0x999090b65f67d924, 0xa70c3c40a64e6c51, // x 2^180 == 10^54 exactly
|
|
0xfff4b4e3f741cf6d, 0xd0cf4b50cfe20765, // x 2^183 == 10^55 exactly
|
|
]
|
|
|
|
@available(macOS 9999, *)
|
|
fileprivate let powersOf10_Binary64: InlineArray<_, UInt64> = [
|
|
// low-order half, high-order half
|
|
0x3931b850df08e738, 0x95fe7e07c91efafa, // x 2^-1328 ~= 10^-400
|
|
0xba954f8e758fecb3, 0x9774919ef68662a3, // x 2^-1235 ~= 10^-372
|
|
0x9028bed2939a635c, 0x98ee4a22ecf3188b, // x 2^-1142 ~= 10^-344
|
|
0x47b233c92125366e, 0x9a6bb0aa55653b2d, // x 2^-1049 ~= 10^-316
|
|
0x4ee367f9430aec32, 0x9becce62836ac577, // x 2^-956 ~= 10^-288
|
|
0x6f773fc3603db4a9, 0x9d71ac8fada6c9b5, // x 2^-863 ~= 10^-260
|
|
0xc47bc5014a1a6daf, 0x9efa548d26e5a6e1, // x 2^-770 ~= 10^-232
|
|
0x80e8a40eccd228a4, 0xa086cfcd97bf97f3, // x 2^-677 ~= 10^-204
|
|
0xb8ada00e5a506a7c, 0xa21727db38cb002f, // x 2^-584 ~= 10^-176
|
|
0xc13e60d0d2e0ebba, 0xa3ab66580d5fdaf5, // x 2^-491 ~= 10^-148
|
|
0xc2974eb4ee658828, 0xa54394fe1eedb8fe, // x 2^-398 ~= 10^-120
|
|
0xcb4ccd500f6bb952, 0xa6dfbd9fb8e5b88e, // x 2^-305 ~= 10^-92
|
|
0x3f2398d747b36224, 0xa87fea27a539e9a5, // x 2^-212 ~= 10^-64
|
|
0xdde50bd1d5d0b9e9, 0xaa242499697392d2, // x 2^-119 ~= 10^-36
|
|
0xfdc20d2b36ba7c3d, 0xabcc77118461cefc, // x 2^-26 ~= 10^-8
|
|
0x0000000000000000, 0xad78ebc5ac620000, // x 2^67 == 10^20 exactly
|
|
0x9670b12b7f410000, 0xaf298d050e4395d6, // x 2^160 == 10^48 exactly
|
|
0x3b25a55f43294bcb, 0xb0de65388cc8ada8, // x 2^253 ~= 10^76
|
|
0x58edec91ec2cb657, 0xb2977ee300c50fe7, // x 2^346 ~= 10^104
|
|
0x29babe4598c311fb, 0xb454e4a179dd1877, // x 2^439 ~= 10^132
|
|
0x577b986b314d6009, 0xb616a12b7fe617aa, // x 2^532 ~= 10^160
|
|
0x0c11ed6d538aeb2f, 0xb7dcbf5354e9bece, // x 2^625 ~= 10^188
|
|
0x6d953e2bd7173692, 0xb9a74a0637ce2ee1, // x 2^718 ~= 10^216
|
|
0x9d6d1ad41abe37f1, 0xbb764c4ca7a4440f, // x 2^811 ~= 10^244
|
|
0x4b2d8644d8a74e18, 0xbd49d14aa79dbc82, // x 2^904 ~= 10^272
|
|
0xe0470a63e6bd56c3, 0xbf21e44003acdd2c, // x 2^997 ~= 10^300
|
|
0x505f522e53053ff2, 0xc0fe908895cf3b44, // x 2^1090 ~= 10^328
|
|
0xcca845ab2beafa9a, 0xc2dfe19c8c055535, // x 2^1183 ~= 10^356
|
|
0x1027fff56784f444, 0xc4c5e310aef8aa17, // x 2^1276 ~= 10^384
|
|
]
|