Files
swift-mirror/lib/IRGen/IRGenFunction.cpp
Adrian Prantl 75e10a66cc This fixes a bot failure in the LLDB testsuite.
This removes an assertion that no longer serves its purpose and
relaxes the IRBuilder checks for debug info when generating code
inside the debugger.

When LLDB is JIT-compiling expressions, it will not generate a
SWIFT_ENTRY_POINT_FUNCTION (there will be one per expression)
but it will still generate the equivalent of top level code.

rdar://problem/26955467
2016-06-28 10:33:40 -07:00

323 lines
12 KiB
C++

//===--- IRGenFunction.cpp - Swift Per-Function IR Generation -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements basic setup and teardown for the class which
// performs IR generation for function bodies.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/IRGenOptions.h"
#include "swift/Basic/SourceLoc.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include "Explosion.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Linking.h"
#include "LoadableTypeInfo.h"
using namespace swift;
using namespace irgen;
IRGenFunction::IRGenFunction(IRGenModule &IGM, llvm::Function *Fn,
const SILDebugScope *DbgScope,
Optional<SILLocation> DbgLoc)
: IGM(IGM), Builder(IGM.getLLVMContext(),
IGM.DebugInfo && !IGM.Context.LangOpts.DebuggerSupport),
CurFn(Fn), DbgScope(DbgScope) {
// Make sure the instructions in this function are attached its debug scope.
if (IGM.DebugInfo) {
// Functions, especially artificial thunks and closures, are often
// generated on-the-fly while we are in the middle of another
// function. Be nice and preserve the current debug location until
// after we're done with this function.
IGM.DebugInfo->pushLoc();
}
// Apply sanitizer attributes to the function.
// TODO: Check if the function is ASan black listed either in the external
// file or via annotations.
if (IGM.IRGen.Opts.Sanitize == SanitizerKind::Address)
Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
if (IGM.IRGen.Opts.Sanitize == SanitizerKind::Thread)
Fn->addFnAttr(llvm::Attribute::SanitizeThread);
emitPrologue();
}
IRGenFunction::~IRGenFunction() {
emitEpilogue();
// Restore the debug location.
if (IGM.DebugInfo) IGM.DebugInfo->popLoc();
// Tear down any side-table data structures.
if (LocalTypeData) destroyLocalTypeData();
}
ModuleDecl *IRGenFunction::getSwiftModule() const {
return IGM.getSwiftModule();
}
SILModule &IRGenFunction::getSILModule() const {
return IGM.getSILModule();
}
Lowering::TypeConverter &IRGenFunction::getSILTypes() const {
return IGM.getSILTypes();
}
/// Call the llvm.memcpy intrinsic. The arguments need not already
/// be of i8* type.
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
Size size, Alignment align) {
emitMemCpy(dest, src, IGM.getSize(size), align);
}
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
llvm::Value *size, Alignment align) {
Builder.CreateMemCpy(dest, src, size, align.getValue(), false);
}
void IRGenFunction::emitMemCpy(Address dest, Address src, Size size) {
emitMemCpy(dest, src, IGM.getSize(size));
}
void IRGenFunction::emitMemCpy(Address dest, Address src, llvm::Value *size) {
// Map over to the inferior design of the LLVM intrinsic.
emitMemCpy(dest.getAddress(), src.getAddress(), size,
std::min(dest.getAlignment(), src.getAlignment()));
}
static llvm::Value *emitAllocatingCall(IRGenFunction &IGF,
llvm::Value *fn,
std::initializer_list<llvm::Value*> args,
const llvm::Twine &name) {
auto allocAttrs = IGF.IGM.getAllocAttrs();
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, makeArrayRef(args.begin(), args.size()));
call->setAttributes(allocAttrs);
return call;
}
/// Emit a 'raw' allocation, which has no heap pointer and is
/// not guaranteed to be zero-initialized.
llvm::Value *IRGenFunction::emitAllocRawCall(llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_slowAlloc.
return emitAllocatingCall(*this, IGM.getSlowAllocFn(),
{size, alignMask},
name);
}
/// Emit a heap allocation.
llvm::Value *IRGenFunction::emitAllocObjectCall(llvm::Value *metadata,
llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_allocObject.
return emitAllocatingCall(*this, IGM.getAllocObjectFn(),
{ metadata, size, alignMask }, name);
}
llvm::Value *IRGenFunction::emitInitStackObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getInitStackObjectFn(), { metadata, object }, name);
call->setDoesNotThrow();
return call;
}
llvm::Value *IRGenFunction::emitVerifyEndOfLifetimeCall(llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getVerifyEndOfLifetimeFn(), { object }, name);
call->setDoesNotThrow();
return call;
}
void IRGenFunction::emitAllocBoxCall(llvm::Value *typeMetadata,
llvm::Value *&box,
llvm::Value *&valueAddress) {
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoUnwind);
llvm::CallInst *call =
Builder.CreateCall(IGM.getAllocBoxFn(), typeMetadata);
call->setAttributes(attrs);
box = Builder.CreateExtractValue(call, 0);
valueAddress = Builder.CreateExtractValue(call, 1);
}
void IRGenFunction::emitDeallocBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoUnwind);
llvm::CallInst *call =
Builder.CreateCall(IGM.getDeallocBoxFn(), box);
call->setCallingConv(IGM.DefaultCC);
call->setAttributes(attrs);
}
llvm::Value *IRGenFunction::emitProjectBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
llvm::Attribute::AttrKind attrKinds[] = {
llvm::Attribute::NoUnwind,
llvm::Attribute::ReadNone,
};
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
attrKinds);
llvm::CallInst *call =
Builder.CreateCall(IGM.getProjectBoxFn(), box);
call->setCallingConv(IGM.DefaultCC);
call->setAttributes(attrs);
return call;
}
static void emitDeallocatingCall(IRGenFunction &IGF, llvm::Constant *fn,
std::initializer_list<llvm::Value *> args) {
auto cc = IGF.IGM.DefaultCC;
if (auto fun = dyn_cast<llvm::Function>(fn))
cc = fun->getCallingConv();
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, makeArrayRef(args.begin(), args.size()));
call->setCallingConv(cc);
call->setDoesNotThrow();
}
/// Emit a 'raw' deallocation, which has no heap pointer and is not
/// guaranteed to be zero-initialized.
void IRGenFunction::emitDeallocRawCall(llvm::Value *pointer,
llvm::Value *size,
llvm::Value *alignMask) {
// For now, all we have is swift_slowDealloc.
return emitDeallocatingCall(*this, IGM.getSlowDeallocFn(),
{pointer, size, alignMask});
}
/// Initialize a relative indirectable pointer to the given value.
/// This always leaves the value in the direct state; if it's not a
/// far reference, it's the caller's responsibility to ensure that the
/// pointer ranges are sufficient.
void IRGenFunction::emitStoreOfRelativeIndirectablePointer(llvm::Value *value,
Address addr,
bool isFar) {
value = Builder.CreatePtrToInt(value, IGM.IntPtrTy);
auto addrAsInt =
Builder.CreatePtrToInt(addr.getAddress(), IGM.IntPtrTy);
auto difference = Builder.CreateSub(value, addrAsInt);
if (!isFar) {
difference = Builder.CreateTrunc(difference, IGM.RelativeAddressTy);
}
Builder.CreateStore(difference, addr);
}
llvm::Value *
IRGenFunction::emitLoadOfRelativeIndirectablePointer(Address addr,
bool isFar,
llvm::PointerType *expectedType,
const llvm::Twine &name) {
// Load the pointer and turn it back into a pointer.
llvm::Value *value = Builder.CreateLoad(addr);
assert(value->getType() == (isFar ? IGM.FarRelativeAddressTy
: IGM.RelativeAddressTy));
if (!isFar) {
value = Builder.CreateSExt(value, IGM.IntPtrTy);
}
assert(value->getType() == IGM.IntPtrTy);
llvm::BasicBlock *origBB = Builder.GetInsertBlock();
llvm::Value *directResult = Builder.CreateIntToPtr(value, expectedType);
// Check whether the low bit is set.
llvm::Constant *one = llvm::ConstantInt::get(IGM.IntPtrTy, 1);
llvm::BasicBlock *indirectBB = createBasicBlock("relptr.indirect");
llvm::BasicBlock *contBB = createBasicBlock("relptr.cont");
llvm::Value *isIndirect = Builder.CreateAnd(value, one);
isIndirect = Builder.CreateIsNotNull(isIndirect);
Builder.CreateCondBr(isIndirect, indirectBB, contBB);
// In the indirect block, clear the low bit and perform an additional load.
llvm::Value *indirectResult; {
Builder.emitBlock(indirectBB);
// Clear the low bit.
llvm::Value *ptr = Builder.CreateSub(value, one);
ptr = Builder.CreateIntToPtr(ptr, expectedType->getPointerTo());
// Load.
Address indirectAddr(ptr, IGM.getPointerAlignment());
indirectResult = Builder.CreateLoad(indirectAddr);
Builder.CreateBr(contBB);
}
Builder.emitBlock(contBB);
auto phi = Builder.CreatePHI(expectedType, 2, name);
phi->addIncoming(directResult, origBB);
phi->addIncoming(indirectResult, indirectBB);
return phi;
}
void IRGenFunction::emitFakeExplosion(const TypeInfo &type,
Explosion &explosion) {
if (!isa<LoadableTypeInfo>(type)) {
explosion.add(llvm::UndefValue::get(type.getStorageType()->getPointerTo()));
return;
}
ExplosionSchema schema = cast<LoadableTypeInfo>(type).getSchema();
for (auto &element : schema) {
llvm::Type *elementType;
if (element.isAggregate()) {
elementType = element.getAggregateType()->getPointerTo();
} else {
elementType = element.getScalarType();
}
explosion.add(llvm::UndefValue::get(elementType));
}
}
void IRGenFunction::unimplemented(SourceLoc Loc, StringRef Message) {
return IGM.unimplemented(Loc, Message);
}
// Debug output for Explosions.
void Explosion::print(llvm::raw_ostream &OS) {
for (auto value : makeArrayRef(Values).slice(NextValue)) {
value->print(OS);
OS << '\n';
}
}
void Explosion::dump() {
print(llvm::errs());
}