Files
swift-mirror/stdlib/public/runtime/ProtocolConformance.cpp
Doug Gregor b531b3923f [ABI] Use mangled names for associated type witnesses.
Rather than storing associated type metadata access functions in
witness tables, initially store a pointer to a mangled type name.
On first access, demangle that type name and replace the witness
table entry with the resulting type metadata.

This reduces the code size of protocol conformances, because we no
longer need to create associated type metadata access functions for
every associated type, and the mangled names are much smaller (and
sharable). The same code size improvements apply to defaulted
associated types for resilient protocols, although those are more
rare. Witness tables themselves are slightly smaller, because we
don’t need separate private entries in them to act as caches.

On the caller side, associated type metadata is always produced via
a call to swift_getAssociatedTypeWitness(), which handles the demangling
and caching behavior.

In all, this reduces the size of the standard library by ~70k. There
are additional code-size wins that are possible with follow-on work:

* We can stop emitting type metadata access functions for non-resilient
types that have constant metadata (like `Int`), because they’re only
currently used as associated type metadata access functions.
* We can stop emitting separate associated type reflection metadata,
because the reflection infrastructure can use these mangled names
directly.
2018-09-26 23:19:33 -07:00

770 lines
25 KiB
C++

//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Unreachable.h"
#include "CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include <vector>
using namespace swift;
#ifndef NDEBUG
template <> void ProtocolDescriptor::dump() const {
printf("TargetProtocolDescriptor.\n"
"Name: \"%s\".\n",
Name.get());
}
void ProtocolDescriptorFlags::dump() const {
printf("ProtocolDescriptorFlags.\n");
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
printf("Needs Witness Table: %s.\n",
(needsWitnessTable() ? "true" : "false"));
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
printf("Special Protocol: %s.\n",
(bool(getSpecialProtocol()) ? "Error" : "None"));
printf("Class Constraint: %s.\n",
(bool(getClassConstraint()) ? "Class" : "Any"));
printf("Dispatch Strategy: %s.\n",
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
}
#endif
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
static const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
template<> void ProtocolConformanceDescriptor::dump() const {
auto symbolName = [&](const void *addr) -> const char * {
SymbolInfo info;
int ok = lookupSymbol(addr, &info);
if (!ok)
return "<unknown addr>";
return info.symbolName;
};
switch (auto kind = getTypeKind()) {
case TypeReferenceKind::DirectObjCClassName:
printf("direct Objective-C class name %s", getDirectObjCClassName());
break;
case TypeReferenceKind::IndirectObjCClass:
printf("indirect Objective-C class %s",
class_getName(*getIndirectObjCClass()));
break;
case TypeReferenceKind::DirectNominalTypeDescriptor:
case TypeReferenceKind::IndirectNominalTypeDescriptor:
printf("unique nominal type descriptor %s", symbolName(getTypeContextDescriptor()));
break;
}
printf(" => ");
switch (getConformanceKind()) {
case ConformanceFlags::ConformanceKind::WitnessTable:
printf("witness table %s\n", symbolName(getStaticWitnessTable()));
break;
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
printf("witness table accessor %s\n",
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
break;
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor:
printf("conditional witness table accessor %s\n",
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
break;
}
}
#endif
#ifndef NDEBUG
template<> void ProtocolConformanceDescriptor::verify() const {
auto typeKind = unsigned(getTypeKind());
assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
(unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
"Corrupted type metadata record kind");
auto confKind = unsigned(getConformanceKind());
using ConformanceKind = ConformanceFlags::ConformanceKind;
assert(((unsigned(ConformanceKind::First_Kind) <= confKind) &&
(unsigned(ConformanceKind::Last_Kind) >= confKind)) &&
"Corrupted conformance kind");
}
#endif
#if SWIFT_OBJC_INTEROP
template <>
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
switch (kind) {
case TypeReferenceKind::IndirectObjCClass:
return *getIndirectObjCClass(kind);
case TypeReferenceKind::DirectObjCClassName:
return reinterpret_cast<const ClassMetadata *>(
objc_lookUpClass(getDirectObjCClassName(kind)));
case TypeReferenceKind::DirectNominalTypeDescriptor:
case TypeReferenceKind::IndirectNominalTypeDescriptor:
return nullptr;
}
swift_runtime_unreachable("Unhandled TypeReferenceKind in switch.");
}
#endif
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template <>
const Metadata *
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
switch (getTypeKind()) {
case TypeReferenceKind::IndirectObjCClass:
case TypeReferenceKind::DirectObjCClassName:
#if SWIFT_OBJC_INTEROP
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto cls = TypeRef.getObjCClass(getTypeKind()))
return getMetadataForClass(cls);
#endif
return nullptr;
case TypeReferenceKind::DirectNominalTypeDescriptor:
case TypeReferenceKind::IndirectNominalTypeDescriptor:
return nullptr;
}
swift_runtime_unreachable("Unhandled TypeReferenceKind in switch.");
}
template<>
const WitnessTable *
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
switch (getConformanceKind()) {
case ConformanceFlags::ConformanceKind::WitnessTable:
return getStaticWitnessTable();
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
return getWitnessTableAccessor()(type, nullptr, 0);
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor: {
// Check the conditional requirements.
SubstGenericParametersFromMetadata substitutions(type);
std::vector<const void *> conditionalArgs;
bool failed =
_checkGenericRequirements(getConditionalRequirements(), conditionalArgs,
substitutions, substitutions);
if (failed) return nullptr;
return getWitnessTableAccessor()(
type,
(const swift::WitnessTable**)conditionalArgs.data(),
conditionalArgs.size());
}
}
return nullptr;
}
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
/// Either a Metadata* or a NominalTypeDescriptor*.
const void *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const void *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {
assert(type);
}
};
struct ConformanceCacheEntry {
private:
const void *Type;
const ProtocolDescriptor *Proto;
std::atomic<const WitnessTable *> Table;
std::atomic<size_t> FailureGeneration;
public:
ConformanceCacheEntry(ConformanceCacheKey key,
const WitnessTable *table,
size_t failureGeneration)
: Type(key.Type), Proto(key.Proto), Table(table),
FailureGeneration(failureGeneration) {
}
int compareWithKey(const ConformanceCacheKey &key) const {
if (key.Type != Type) {
return (uintptr_t(key.Type) < uintptr_t(Type) ? -1 : 1);
} else if (key.Proto != Proto) {
return (uintptr_t(key.Proto) < uintptr_t(Proto) ? -1 : 1);
} else {
return 0;
}
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
bool isSuccessful() const {
return Table.load(std::memory_order_relaxed) != nullptr;
}
void makeSuccessful(const WitnessTable *table) {
Table.store(table, std::memory_order_release);
}
void updateFailureGeneration(size_t failureGeneration) {
assert(!isSuccessful());
FailureGeneration.store(failureGeneration, std::memory_order_relaxed);
}
/// Get the cached witness table, if successful.
const WitnessTable *getWitnessTable() const {
assert(isSuccessful());
return Table.load(std::memory_order_acquire);
}
/// Get the generation in which this lookup failed.
size_t getFailureGeneration() const {
assert(!isSuccessful());
return FailureGeneration.load(std::memory_order_relaxed);
}
};
} // end anonymous namespace
// Conformance Cache.
struct ConformanceState {
ConcurrentMap<ConformanceCacheEntry> Cache;
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
ConformanceState() {
initializeProtocolConformanceLookup();
}
void cacheSuccess(const void *type, const ProtocolDescriptor *proto,
const WitnessTable *witness) {
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
witness, 0);
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->makeSuccessful(witness);
}
}
void cacheFailure(const void *type, const ProtocolDescriptor *proto,
size_t failureGeneration) {
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
(const WitnessTable *) nullptr,
failureGeneration);
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->updateFailureGeneration(failureGeneration);
}
}
ConformanceCacheEntry *findCached(const void *type,
const ProtocolDescriptor *proto) {
return Cache.find(ConformanceCacheKey(type, proto));
}
#ifndef NDEBUG
void verify() const LLVM_ATTRIBUTE_USED;
#endif
};
#ifndef NDEBUG
void ConformanceState::verify() const {
// Iterate over all of the sections and verify all of the protocol
// descriptors.
auto &Self = const_cast<ConformanceState &>(*this);
for (const auto &Section : Self.SectionsToScan.snapshot()) {
for (const auto &Record : Section) {
Record.get()->verify();
}
}
}
#endif
static Lazy<ConformanceState> Conformances;
static void
_registerProtocolConformances(ConformanceState &C,
const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end) {
C.SectionsToScan.push_back(ConformanceSection{begin, end});
}
void swift::addImageProtocolConformanceBlockCallback(const void *conformances,
uintptr_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
"conformances section not a multiple of ProtocolConformanceRecord");
// If we have a section, enqueue the conformances for lookup.
auto conformanceBytes = reinterpret_cast<const char *>(conformances);
auto recordsBegin
= reinterpret_cast<const ProtocolConformanceRecord*>(conformances);
auto recordsEnd
= reinterpret_cast<const ProtocolConformanceRecord*>
(conformanceBytes + conformancesSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocolConformances(Conformances.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, begin, end);
}
struct ConformanceCacheResult {
// true if witnessTable is an authoritative result as-is.
// false if more searching is required (for example, because a cached
// failure was returned in failureEntry but it is out-of-date.
bool isAuthoritative;
// The matching witness table, or null if no cached conformance was found.
const WitnessTable *witnessTable;
// If the search fails, this may be the negative cache entry for the
// queried type itself. This entry may be null or out-of-date.
ConformanceCacheEntry *failureEntry;
static ConformanceCacheResult
cachedSuccess(const WitnessTable *table) {
return ConformanceCacheResult { true, table, nullptr };
}
static ConformanceCacheResult
cachedFailure(ConformanceCacheEntry *entry, bool auth) {
return ConformanceCacheResult { auth, nullptr, entry };
}
static ConformanceCacheResult
cacheMiss() {
return ConformanceCacheResult { false, nullptr, nullptr };
}
};
/// Retrieve the type key from the given metadata, to be used when looking
/// into the conformance cache.
static const void *getConformanceCacheTypeKey(const Metadata *type) {
if (auto description = type->getTypeContextDescriptor())
return description;
return type;
}
/// Search for a witness table in the ConformanceCache.
static
ConformanceCacheResult
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
auto origType = type;
ConformanceCacheEntry *failureEntry = nullptr;
recur:
{
// Try the specific type first.
if (auto *Value = C.findCached(type, protocol)) {
if (Value->isSuccessful()) {
// Found a conformance on the type or some superclass. Return it.
return ConformanceCacheResult::cachedSuccess(Value->getWitnessTable());
}
// Found a negative cache entry.
bool isAuthoritative;
if (type == origType) {
// This negative cache entry is for the original query type.
// Remember it so it can be returned later.
failureEntry = Value;
// An up-to-date entry for the original type is authoritative.
isAuthoritative = true;
} else {
// An up-to-date cached failure for a superclass of the type is not
// authoritative: there may be a still-undiscovered conformance
// for the original query type.
isAuthoritative = false;
}
// Check if the negative cache entry is up-to-date.
if (Value->getFailureGeneration() == C.SectionsToScan.snapshot().count()) {
// Negative cache entry is up-to-date. Return failure along with
// the original query type's own cache entry, if we found one.
// (That entry may be out of date but the caller still has use for it.)
return ConformanceCacheResult::cachedFailure(failureEntry,
isAuthoritative);
}
// Negative cache entry is out-of-date.
// Continue searching for a better result.
}
}
{
// For generic and resilient types, nondependent conformances
// are keyed by the nominal type descriptor rather than the
// metadata, so try that.
auto typeKey = getConformanceCacheTypeKey(type);
// Hash and lookup the type-protocol pair in the cache.
if (auto *Value = C.findCached(typeKey, protocol)) {
if (Value->isSuccessful())
return ConformanceCacheResult::cachedSuccess(Value->getWitnessTable());
// We don't try to cache negative responses for generic
// patterns.
}
}
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = getMetadataForClass(classType->Superclass);
goto recur;
}
}
// We did not find an up-to-date cache entry.
// If we found an out-of-date entry for the original query type then
// return it (non-authoritatively). Otherwise return a cache miss.
if (failureEntry)
return ConformanceCacheResult::cachedFailure(failureEntry, false);
else
return ConformanceCacheResult::cacheMiss();
}
/// Checks if a given candidate is a type itself, one of its
/// superclasses or a related generic type.
///
/// This check is supposed to use the same logic that is used
/// by searchInConformanceCache.
///
/// \param candidate Pointer to a Metadata or a NominalTypeDescriptor.
///
static
bool isRelatedType(const Metadata *type, const void *candidate,
bool candidateIsMetadata) {
while (true) {
// Check whether the types match.
if (candidateIsMetadata && type == candidate)
return true;
// Check whether the nominal type descriptors match.
if (!candidateIsMetadata) {
const auto *description = type->getTypeContextDescriptor();
auto candidateDescription =
static_cast<const TypeContextDescriptor *>(candidate);
if (description && equalContexts(description, candidateDescription))
return true;
}
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = getMetadataForClass(classType->Superclass);
continue;
}
}
break;
}
return false;
}
static const WitnessTable *
swift_conformsToProtocolImpl(const Metadata * const type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
// See if we have a cached conformance. The ConcurrentMap data structure
// allows us to insert and search the map concurrently without locking.
auto FoundConformance = searchInConformanceCache(type, protocol);
// If the result (positive or negative) is authoritative, return it.
if (FoundConformance.isAuthoritative)
return FoundConformance.witnessTable;
auto failureEntry = FoundConformance.failureEntry;
// Prepare to scan conformance records.
auto snapshot = C.SectionsToScan.snapshot();
// Scan only sections that were not scanned yet.
// If we found an out-of-date negative cache entry,
// we need not to re-scan the sections that it covers.
auto startIndex = failureEntry ? failureEntry->getFailureGeneration() : 0;
auto endIndex = snapshot.count();
// If there are no unscanned sections outstanding
// then we can cache failure and give up now.
if (startIndex == endIndex) {
C.cacheFailure(type, protocol, snapshot.count());
return nullptr;
}
/// Local function to retrieve the witness table and record the result.
auto recordWitnessTable = [&](const ProtocolConformanceDescriptor &descriptor,
const Metadata *type) {
switch (descriptor.getConformanceKind()) {
case ConformanceFlags::ConformanceKind::WitnessTable:
// If the record provides a nondependent witness table for all
// instances of a generic type, cache it for the generic pattern.
C.cacheSuccess(type, protocol, descriptor.getStaticWitnessTable());
return;
case ConformanceFlags::ConformanceKind::WitnessTableAccessor:
// If the record provides a dependent witness table accessor,
// cache the result for the instantiated type metadata.
C.cacheSuccess(type, protocol, descriptor.getWitnessTable(type));
return;
case ConformanceFlags::ConformanceKind::ConditionalWitnessTableAccessor: {
auto witnessTable = descriptor.getWitnessTable(type);
if (witnessTable)
C.cacheSuccess(type, protocol, witnessTable);
else
C.cacheFailure(type, protocol, snapshot.count());
return;
}
}
// Always fail, because we cannot interpret a future conformance
// kind.
C.cacheFailure(type, protocol, snapshot.count());
};
// Really scan conformance records.
for (size_t i = startIndex; i < endIndex; i++) {
auto &section = snapshot.Start[i];
// Eagerly pull records for nondependent witnesses into our cache.
for (const auto &record : section) {
auto &descriptor = *record.get();
// If the record applies to a specific type, cache it.
if (auto metadata = descriptor.getCanonicalTypeMetadata()) {
auto P = descriptor.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, metadata, /*candidateIsMetadata=*/true))
continue;
// Record the witness table.
recordWitnessTable(descriptor, metadata);
// TODO: "Nondependent witness table" probably deserves its own flag.
// An accessor function might still be necessary even if the witness table
// can be shared.
} else if (descriptor.getTypeKind()
== TypeReferenceKind::DirectNominalTypeDescriptor ||
descriptor.getTypeKind()
== TypeReferenceKind::IndirectNominalTypeDescriptor) {
auto R = descriptor.getTypeContextDescriptor();
auto P = descriptor.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, R, /*candidateIsMetadata=*/false))
continue;
recordWitnessTable(descriptor, type);
}
}
}
// Conformance scan is complete.
// Search the cache once more, and this time update the cache if necessary.
FoundConformance = searchInConformanceCache(type, protocol);
if (FoundConformance.isAuthoritative) {
return FoundConformance.witnessTable;
} else {
C.cacheFailure(type, protocol, snapshot.count());
return nullptr;
}
}
const TypeContextDescriptor *
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
auto &C = Conformances.get();
for (auto &section : C.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto ntd = record->getTypeContextDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node))
return ntd;
}
}
}
return nullptr;
}
/// Resolve a reference to a generic parameter to type metadata.
static const Metadata *resolveGenericParamRef(
const GenericParamRef &param,
SubstFlatGenericParameterFn substFlatGenericParam) {
// Resolve the root generic parameter.
const Metadata *current = substFlatGenericParam(param.getRootParamIndex());
if (!current) return nullptr;
// Follow the associated type path.
for (const auto &assocTypeRef : param) {
// Look for the witness table.
auto witnessTable =
swift_conformsToProtocol(current, assocTypeRef.Protocol);
if (!witnessTable) return nullptr;
// Retrieve the associated type.
auto assocTypeReq = assocTypeRef.Requirement.get();
current = swift_getAssociatedTypeWitness(
MetadataState::Abstract,
const_cast<WitnessTable *>(witnessTable),
current, assocTypeReq).Value;
if (!current) return nullptr;
}
return current;
}
bool swift::_checkGenericRequirements(
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
std::vector<const void *> &extraArguments,
SubstFlatGenericParameterFn substFlatGenericParam,
SubstGenericParameterFn substGenericParam) {
for (const auto &req : requirements) {
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind()) return true;
// Resolve the subject generic parameter.
auto subjectType =
resolveGenericParamRef(req.getParam(), substFlatGenericParam);
if (!subjectType) return true;
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
&witnessTable))
return true;
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTable);
extraArguments.push_back(witnessTable);
}
continue;
}
case GenericRequirementKind::SameType: {
// Demangle the second type under the given substitutions.
auto otherType =
_getTypeByMangledName(req.getMangledTypeName(), substGenericParam);
if (!otherType) return true;
assert(!req.getFlags().hasExtraArgument());
// Check that the types are equivalent.
if (subjectType != otherType) return true;
continue;
}
case GenericRequirementKind::Layout: {
switch (req.getLayout()) {
case GenericRequirementLayoutKind::Class:
if (!subjectType->satisfiesClassConstraint())
return true;
continue;
}
// Unknown layout.
return true;
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto baseType =
_getTypeByMangledName(req.getMangledTypeName(), substGenericParam);
if (!baseType) return true;
// Check whether it's dynamically castable, which works as a superclass
// check.
// FIXME: We should be explicitly checking the superclass, so we
// don't require the subject type to be complete.
if (!swift_dynamicCastMetatype(subjectType, baseType)) return true;
continue;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
continue;
}
}
// Unknown generic requirement kind.
return true;
}
// Success!
return false;
}
#define OVERRIDE_PROTOCOLCONFORMANCE COMPATIBILITY_OVERRIDE
#include "CompatibilityOverride.def"