Files
swift-mirror/lib/AST/Expr.cpp

799 lines
26 KiB
C++

//===--- Expr.cpp - Swift Language Expression ASTs ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Expr.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/TypeLoc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Expr methods.
//===----------------------------------------------------------------------===//
// Only allow allocation of Stmts using the allocator in ASTContext.
void *Expr::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
// Helper functions to verify statically whether the getSourceRange()
// function has been overridden.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Expr::*)() const);
SourceRange Expr::getSourceRange() const {
switch (Kind) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: \
static_assert(sizeof(checkSourceRangeType(&ID##Expr::getSourceRange)) == 1, \
#ID "Expr is missing getSourceRange()"); \
return cast<ID##Expr>(this)->getSourceRange();
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("expression type not handled!");
}
/// getLoc - Return the caret location of the expression.
SourceLoc Expr::getLoc() const {
switch (Kind) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: \
if (&Expr::getLoc != &ID##Expr::getLoc) \
return cast<ID##Expr>(this)->getLoc(); \
break;
#include "swift/AST/ExprNodes.def"
}
return getStartLoc();
}
Expr *Expr::getSemanticsProvidingExpr() {
if (ParenExpr *PE = dyn_cast<ParenExpr>(this))
return PE->getSubExpr()->getSemanticsProvidingExpr();
return this;
}
Expr *Expr::getValueProvidingExpr() {
// For now, this is totally equivalent to the above.
// TODO:
// - tuple literal projection, which may become interestingly idiomatic
return getSemanticsProvidingExpr();
}
bool Expr::isImplicit() const {
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(this))
return !DRE->getLoc().isValid();
if (const ImplicitConversionExpr *ICE
= dyn_cast<ImplicitConversionExpr>(this))
return ICE->getSubExpr()->isImplicit();
return false;
}
//===----------------------------------------------------------------------===//
// Support methods for Exprs.
//===----------------------------------------------------------------------===//
APInt IntegerLiteralExpr::getValue() const {
assert(!getType().isNull() && "Semantic analysis has not completed");
unsigned BitWidth = getType()->castTo<BuiltinIntegerType>()->getBitWidth();
llvm::APInt Value(BitWidth, 0);
bool Error = getText().getAsInteger(0, Value);
assert(!Error && "Invalid IntegerLiteral formed"); (void)Error;
if (Value.getBitWidth() != BitWidth)
Value = Value.zextOrTrunc(BitWidth);
return Value;
}
llvm::APFloat FloatLiteralExpr::getValue() const {
assert(!getType().isNull() && "Semantic analysis has not completed");
APFloat Val(getType()->castTo<BuiltinFloatType>()->getAPFloatSemantics());
APFloat::opStatus Res =
Val.convertFromString(getText(), llvm::APFloat::rmNearestTiesToEven);
assert(Res != APFloat::opInvalidOp && "Sema didn't reject invalid number");
(void)Res;
return Val;
}
MemberRefExpr::MemberRefExpr(Expr *Base, SourceLoc DotLoc, VarDecl *Value,
SourceLoc NameLoc)
: Expr(ExprKind::MemberRef), Base(Base),
Value(Value), DotLoc(DotLoc), NameLoc(NameLoc) { }
ExistentialMemberRefExpr::ExistentialMemberRefExpr(Expr *Base, SourceLoc DotLoc,
ValueDecl *Value,
SourceLoc NameLoc)
: Expr(ExprKind::ExistentialMemberRef), Base(Base), Value(Value),
DotLoc(DotLoc), NameLoc(NameLoc) { }
ArchetypeMemberRefExpr::ArchetypeMemberRefExpr(Expr *Base, SourceLoc DotLoc,
ValueDecl *Value,
SourceLoc NameLoc)
: Expr(ExprKind::ArchetypeMemberRef), Base(Base), Value(Value),
DotLoc(DotLoc), NameLoc(NameLoc) { }
ArchetypeType *ArchetypeMemberRefExpr::getArchetype() const {
Type BaseTy = getBase()->getType()->getRValueType();
if (auto Meta = BaseTy->getAs<MetaTypeType>())
return Meta->getInstanceType()->castTo<ArchetypeType>();
return BaseTy->castTo<ArchetypeType>();
}
bool ArchetypeMemberRefExpr::isBaseIgnored() const {
if (isa<TypeDecl>(Value))
return true;
return false;
}
GenericMemberRefExpr::GenericMemberRefExpr(Expr *Base, SourceLoc DotLoc,
ValueDecl *Value,
SourceLoc NameLoc)
: Expr(ExprKind::GenericMemberRef), Base(Base), Value(Value),
DotLoc(DotLoc), NameLoc(NameLoc) { }
bool GenericMemberRefExpr::isBaseIgnored() const {
if (getBase()->getType()->getRValueType()->is<MetaTypeType>())
return true;
if (isa<TypeDecl>(Value))
return true;
if (auto Func = dyn_cast<FuncDecl>(Value))
return Func->isStatic();
return false;
}
Type OverloadSetRefExpr::getBaseType() const {
if (isa<OverloadedDeclRefExpr>(this))
return Type();
if (const OverloadedMemberRefExpr *DRE
= dyn_cast<OverloadedMemberRefExpr>(this)) {
return DRE->getBase()->getType()->getRValueType();
}
llvm_unreachable("Unhandled overloaded set reference expression");
}
bool OverloadSetRefExpr::hasBaseObject() const {
if (Type BaseTy = getBaseType())
return !BaseTy->is<MetaTypeType>();
return false;
}
SequenceExpr *SequenceExpr::create(ASTContext &ctx, ArrayRef<Expr*> elements) {
void *Buffer = ctx.Allocate(sizeof(SequenceExpr) +
elements.size() * sizeof(Expr*),
Expr::Alignment);
return ::new(Buffer) SequenceExpr(elements);
}
NewArrayExpr *NewArrayExpr::create(ASTContext &ctx, SourceLoc newLoc,
TypeLoc elementTy, ArrayRef<Bound> bounds) {
void *buffer = ctx.Allocate(sizeof(NewArrayExpr) +
bounds.size() * sizeof(Bound),
Expr::Alignment);
NewArrayExpr *E =
::new (buffer) NewArrayExpr(newLoc, elementTy, bounds.size());
memcpy(E->getBoundsBuffer(), bounds.data(), bounds.size() * sizeof(Bound));
return E;
}
SourceRange NewReferenceExpr::getSourceRange() const {
if (getArg())
return { NewLoc, getArg()->getEndLoc() };
return { NewLoc, ElementTy.getSourceRange().End };
}
SourceRange TupleExpr::getSourceRange() const {
if (LParenLoc.isValid()) {
assert(RParenLoc.isValid() && "Mismatched parens?");
return SourceRange(LParenLoc, RParenLoc);
}
assert(!getElements().empty() && "Empty tuple missing paren locations!");
SourceLoc Start = getElement(0)->getStartLoc();
SourceLoc End = getElement(getElements().size()-1)->getEndLoc();
return SourceRange(Start, End);
}
SubscriptExpr::SubscriptExpr(Expr *Base, SourceLoc LBracketLoc, Expr *Index,
SourceLoc RBracketLoc, SubscriptDecl *D)
: Expr(ExprKind::Subscript, D? D->getElementType() : Type()),
D(D), Brackets(LBracketLoc, RBracketLoc), Base(Base), Index(Index) {
assert((!D ||
!D->getDeclContext()->getDeclaredTypeOfContext()->isExistentialType())
&& "use ExistentialSubscriptExpr for existential type subscript");
}
ExistentialSubscriptExpr::
ExistentialSubscriptExpr(Expr *Base, SourceLoc LBracketLoc, Expr *Index,
SourceLoc RBracketLoc, SubscriptDecl *D)
: Expr(ExprKind::ExistentialSubscript, D? D->getElementType() : Type()),
D(D), Brackets(LBracketLoc, RBracketLoc), Base(Base), Index(Index) {
assert(Base->getType()->getRValueType()->isExistentialType() &&
"use SubscriptExpr for non-existential type subscript");
}
ArchetypeSubscriptExpr::
ArchetypeSubscriptExpr(Expr *Base, SourceLoc LBracketLoc, Expr *Index,
SourceLoc RBracketLoc, SubscriptDecl *D)
: Expr(ExprKind::ArchetypeSubscript, D? D->getElementType() : Type()),
D(D), Brackets(LBracketLoc, RBracketLoc), Base(Base), Index(Index) {
assert(Base->getType()->getRValueType()->is<ArchetypeType>() &&
"use SubscriptExpr for non-archetype type subscript");
}
GenericSubscriptExpr::
GenericSubscriptExpr(Expr *Base, SourceLoc LBracketLoc, Expr *Index,
SourceLoc RBracketLoc, SubscriptDecl *D)
: Expr(ExprKind::GenericSubscript, D? D->getElementType() : Type()),
D(D), Brackets(LBracketLoc, RBracketLoc), Base(Base), Index(Index) {
assert(Base->getType()->getRValueType()->is<BoundGenericType>() &&
"use SubscriptExpr for non-generic type subscript");
}
Expr *OverloadedSubscriptExpr::createWithCopy(Expr *Base,
ArrayRef<ValueDecl*> Decls,
SourceLoc LBracketLoc,
Expr *Index,
SourceLoc RBracketLoc) {
assert(!Decls.empty() &&
"Cannot create an overloaded member ref with no decls");
ASTContext &C = Decls[0]->getASTContext();
if (Decls.size() == 1) {
Type ContainerTy = Decls[0]->getDeclContext()->getDeclaredTypeOfContext();
if (ContainerTy->isExistentialType())
return new (C) ExistentialSubscriptExpr(Base, LBracketLoc, Index,
RBracketLoc,
cast<SubscriptDecl>(Decls[0]));
if (ContainerTy->is<ArchetypeType>())
return new (C) ArchetypeSubscriptExpr(Base, LBracketLoc, Index,
RBracketLoc,
cast<SubscriptDecl>(Decls[0]));
if (ContainerTy->isSpecialized())
return new (C) GenericSubscriptExpr(Base, LBracketLoc, Index,
RBracketLoc,
cast<SubscriptDecl>(Decls[0]));
return new (C) SubscriptExpr(Base, LBracketLoc, Index, RBracketLoc,
cast<SubscriptDecl>(Decls[0]));
}
// Otherwise, copy the overload set into the ASTContext's memory.
return new (C) OverloadedSubscriptExpr(Base, C.AllocateCopy(Decls),
LBracketLoc, Index, RBracketLoc,
UnstructuredUnresolvedType::get(C));
}
namespace {
class FindCapturedVars : public ASTWalker {
llvm::SetVector<ValueDecl*> &Captures;
CapturingExpr *CurExpr;
public:
bool walkToExprPre(Expr *E) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (DRE->getDecl()->getDeclContext()->isLocalContext() &&
DRE->getDecl()->getDeclContext() != CurExpr)
Captures.insert(DRE->getDecl());
return false;
}
if (CapturingExpr *SubCE = dyn_cast<CapturingExpr>(E)) {
for (auto D : SubCE->getCaptures())
if (D->getDeclContext() != CurExpr)
Captures.insert(D);
return false;
}
return true;
}
FindCapturedVars(llvm::SetVector<ValueDecl*> &captures,
CapturingExpr *curExpr)
: Captures(captures), CurExpr(curExpr) {}
void doWalk(Expr *E) {
E->walk(*this);
}
void doWalk(Stmt *S) {
S->walk(*this);
}
};
}
void CapturingExpr::computeCaptures(ASTContext &Context) {
llvm::SetVector<ValueDecl*> Captures;
if (isa<ClosureExpr>(this))
FindCapturedVars(Captures, this).doWalk(cast<ClosureExpr>(this)->getBody());
else
FindCapturedVars(Captures, this).doWalk(cast<FuncExpr>(this)->getBody());
ValueDecl** CaptureCopy
= Context.AllocateCopy<ValueDecl*>(Captures.begin(), Captures.end());
setCaptures(llvm::makeArrayRef(CaptureCopy, Captures.size()));
}
FuncExpr *FuncExpr::create(ASTContext &C, SourceLoc funcLoc,
ArrayRef<Pattern*> params, TypeLoc fnRetType,
BraceStmt *body, DeclContext *parent) {
unsigned nParams = params.size();
void *buf = C.Allocate(sizeof(FuncExpr) + nParams * sizeof(Pattern*),
Expr::Alignment);
FuncExpr *fn = ::new (buf) FuncExpr(funcLoc, nParams, fnRetType,
body, parent);
for (unsigned i = 0; i != nParams; ++i)
fn->getParamsBuffer()[i] = params[i];
return fn;
}
SourceRange FuncExpr::getSourceRange() const {
if (Body)
return { FuncLoc, Body->getEndLoc() };
if (FnRetType.hasLocation())
return { FuncLoc, FnRetType.getSourceRange().End };
Pattern *LastPat = getParamPatterns().back();
return { FuncLoc, LastPat->getEndLoc() };
}
Type FuncExpr::getResultType(ASTContext &Ctx) const {
Type resultTy = getType();
if (resultTy->is<ErrorType>())
return resultTy;
for (unsigned i = 0, e = getParamPatterns().size(); i != e; ++i)
resultTy = resultTy->castTo<AnyFunctionType>()->getResult();
if (!resultTy)
resultTy = TupleType::getEmpty(Ctx);
return resultTy;
}
static ValueDecl *getCalledValue(Expr *E) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getDecl();
Expr *E2 = E->getValueProvidingExpr();
if (E != E2) return getCalledValue(E2);
return nullptr;
}
ValueDecl *ApplyExpr::getCalledValue() const {
return ::getCalledValue(Fn);
}
void ExplicitClosureExpr::GenerateVarDecls(unsigned NumDecls,
std::vector<VarDecl*> &Decls,
ASTContext &Context) {
while (NumDecls >= Decls.size()) {
unsigned NextIdx = Decls.size();
llvm::SmallVector<char, 4> StrBuf;
StringRef VarName = ("$" + Twine(NextIdx)).toStringRef(StrBuf);
Identifier ident = Context.getIdentifier(VarName);
SourceLoc VarLoc; // FIXME: Location?
VarDecl *var = new (Context) VarDecl(VarLoc, ident, Type(), this);
Decls.push_back(var);
}
}
//===----------------------------------------------------------------------===//
// Printing for Expr and all subclasses.
//===----------------------------------------------------------------------===//
namespace {
/// PrintExpr - Visitor implementation of Expr::print.
class PrintExpr : public ExprVisitor<PrintExpr> {
public:
raw_ostream &OS;
unsigned Indent;
PrintExpr(raw_ostream &os, unsigned indent) : OS(os), Indent(indent) {
}
void printRec(Expr *E) {
Indent += 2;
if (E)
visit(E);
else
OS.indent(Indent) << "(**NULL EXPRESSION**)";
Indent -= 2;
}
/// FIXME: This should use ExprWalker to print children.
void printRec(Decl *D) { D->print(OS, Indent+2); }
void printRec(Stmt *S) { S->print(OS, Indent+2); }
void printSubstitutions(ArrayRef<Substitution> Substitutions) {
for (auto S : Substitutions) {
OS.indent(Indent + 2) << "(with " << S.Archetype->getFullName()
<< " = " << S.Replacement.getString() << ")\n";
}
}
raw_ostream &printCommon(Expr *E, const char *C) {
return OS.indent(Indent) << '(' << C << " type='" << E->getType() << '\'';
}
void visitErrorExpr(ErrorExpr *E) {
printCommon(E, "error_expr") << ')';
}
void visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
printCommon(E, "integer_literal_expr") << " value=";
if (E->getType().isNull() || E->getType()->isUnresolvedType())
OS << E->getText();
else
OS << E->getValue();
OS << ')';
}
void visitFloatLiteralExpr(FloatLiteralExpr *E) {
printCommon(E, "float_literal_expr") << " value=" << E->getText() << ')';
}
void visitCharacterLiteralExpr(CharacterLiteralExpr *E) {
printCommon(E, "character_literal_expr") << " value=" << E->getValue()<<')';
}
void visitStringLiteralExpr(StringLiteralExpr *E) {
printCommon(E, "string_literal_expr") << " value=" << E->getValue() << ')';
}
void visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E) {
printCommon(E, "interpolated_string_literal_expr");
for (auto Segment : E->getSegments()) {
OS << '\n';
printRec(Segment);
}
OS << ')';
}
void visitDeclRefExpr(DeclRefExpr *E) {
printCommon(E, "declref_expr")
<< " decl=" << E->getDecl()->getName() << ')';
}
void visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *E) {
printCommon(E, "overloadeddeclref_expr")
<< " name=" << E->getDecls()[0]->getName().str()
<< " #decls=" << E->getDecls().size();
for (ValueDecl *D : E->getDecls()) {
OS << '\n';
OS.indent(Indent);
OS << " type=" << D->getTypeOfReference().getString();
}
OS << ')';
}
void visitOverloadedMemberRefExpr(OverloadedMemberRefExpr *E) {
printCommon(E, "overloadedmemberref_expr")
<< " name=" << E->getDecls()[0]->getName().str()
<< " #decls=" << E->getDecls().size() << "\n";
printRec(E->getBase());
for (ValueDecl *D : E->getDecls()) {
OS << '\n';
OS.indent(Indent);
OS << " type=" << D->getTypeOfReference().getString();
}
OS << ')';
}
void visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
printCommon(E, "unresolved_decl_ref_expr")
<< " name=" << E->getName() << ')';
}
void visitMemberRefExpr(MemberRefExpr *E) {
printCommon(E, "member_ref_expr")
<< " decl=" << E->getDecl()->getName() << '\n';
printRec(E->getBase());
OS << ')';
}
void visitExistentialMemberRefExpr(ExistentialMemberRefExpr *E) {
printCommon(E, "existential_member_ref_expr")
<< " decl=" << E->getDecl()->getName() << '\n';
printRec(E->getBase());
OS << ')';
}
void visitArchetypeMemberRefExpr(ArchetypeMemberRefExpr *E) {
printCommon(E, "archetype_member_ref_expr")
<< " decl=" << E->getDecl()->getName() << '\n';
printRec(E->getBase());
OS << ')';
}
void visitGenericMemberRefExpr(GenericMemberRefExpr *E) {
printCommon(E, "generic_member_ref_expr")
<< " decl=" << E->getDecl()->getName() << '\n';
printSubstitutions(E->getSubstitutions());
printRec(E->getBase());
OS << ')';
}
void visitUnresolvedMemberExpr(UnresolvedMemberExpr *E) {
printCommon(E, "unresolved_member_expr")
<< " name='" << E->getName() << "')";
}
void visitParenExpr(ParenExpr *E) {
printCommon(E, "paren_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitTupleExpr(TupleExpr *E) {
printCommon(E, "tuple_expr");
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i) {
OS << '\n';
if (E->getElement(i))
printRec(E->getElement(i));
else
OS.indent(Indent+2) << "<<tuple element default value>>";
}
OS << ')';
}
void visitSubscriptExpr(SubscriptExpr *E) {
printCommon(E, "subscript_expr");
OS << '\n';
printRec(E->getBase());
OS << '\n';
printRec(E->getIndex());
OS << ')';
}
void visitExistentialSubscriptExpr(ExistentialSubscriptExpr *E) {
printCommon(E, "existential_subscript_expr");
OS << '\n';
printRec(E->getBase());
OS << '\n';
printRec(E->getIndex());
OS << ')';
}
void visitArchetypeSubscriptExpr(ArchetypeSubscriptExpr *E) {
printCommon(E, "archetype_subscript_expr");
OS << '\n';
printRec(E->getBase());
OS << '\n';
printRec(E->getIndex());
OS << ')';
}
void visitGenericSubscriptExpr(GenericSubscriptExpr *E) {
printCommon(E, "generic_subscript_expr");
OS << '\n';
printSubstitutions(E->getSubstitutions());
printRec(E->getBase());
OS << '\n';
printRec(E->getIndex());
OS << ')';
}
void visitOverloadedSubscriptExpr(OverloadedSubscriptExpr *E) {
printCommon(E, "overloaded_subscript_expr");
OS << '\n';
printRec(E->getBase());
OS << '\n';
printRec(E->getIndex());
OS << ')';
}
void visitUnresolvedDotExpr(UnresolvedDotExpr *E) {
printCommon(E, "unresolved_dot_expr")
<< " field '" << E->getName().str() << "'";
if (E->getBase()) {
OS << '\n';
printRec(E->getBase());
}
OS << ')';
}
void visitModuleExpr(ModuleExpr *E) {
printCommon(E, "module_expr") << ')';
}
void visitTupleElementExpr(TupleElementExpr *E) {
printCommon(E, "tuple_element_expr")
<< " field #" << E->getFieldNumber() << '\n';
printRec(E->getBase());
OS << ')';
}
void visitTupleShuffleExpr(TupleShuffleExpr *E) {
printCommon(E, "tuple_shuffle_expr") << " elements=[";
for (unsigned i = 0, e = E->getElementMapping().size(); i != e; ++i) {
if (i) OS << ", ";
OS << E->getElementMapping()[i];
}
OS << "]\n";
printRec(E->getSubExpr());
OS << ')';
}
void visitFunctionConversionExpr(FunctionConversionExpr *E) {
printCommon(E, "function_conversion_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitErasureExpr(ErasureExpr *E) {
printCommon(E, "erasure_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitSpecializeExpr(SpecializeExpr *E) {
printCommon(E, "specialize_expr") << '\n';
printSubstitutions(E->getSubstitutions());
printRec(E->getSubExpr());
OS << ')';
}
void visitLoadExpr(LoadExpr *E) {
printCommon(E, "load_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitMaterializeExpr(MaterializeExpr *E) {
printCommon(E, "materialize_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitRequalifyExpr(RequalifyExpr *E) {
printCommon(E, "requalify_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitGetMetatypeExpr(GetMetatypeExpr *E) {
printCommon(E, "get_metatype_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitMetatypeConversionExpr(MetatypeConversionExpr *E) {
printCommon(E, "metatype_conversion_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitDerivedToBaseExpr(DerivedToBaseExpr *E) {
printCommon(E, "derived_to_base_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitScalarToTupleExpr(ScalarToTupleExpr *E) {
printCommon(E, "scalar_to_tuple_expr");
OS << " field=" << E->getScalarField();
OS << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitAddressOfExpr(AddressOfExpr *E) {
printCommon(E, "address_of_expr") << '\n';
printRec(E->getSubExpr());
OS << ')';
}
void visitSequenceExpr(SequenceExpr *E) {
printCommon(E, "sequence_expr");
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i) {
OS << '\n';
printRec(E->getElement(i));
}
OS << ')';
}
void visitFuncExpr(FuncExpr *E) {
printCommon(E, "func_expr");
if (E->getBody()) {
OS << '\n';
printRec(E->getBody());
}
OS << ')';
}
void visitExplicitClosureExpr(ExplicitClosureExpr *E) {
printCommon(E, "explicit_closure_expr") << '\n';
printRec(E->getBody());
OS << ')';
}
void visitImplicitClosureExpr(ImplicitClosureExpr *E) {
printCommon(E, "implicit_closure_expr") << '\n';
printRec(E->getBody());
OS << ')';
}
void visitNewArrayExpr(NewArrayExpr *E) {
printCommon(E, "new_array_expr")
<< " elementType='" << E->getElementTypeLoc().getType() << "'";
OS << '\n';
if (E->hasInjectionFunction())
printRec(E->getInjectionFunction());
for (auto &bound : E->getBounds()) {
OS << '\n';
if (bound.Value)
printRec(bound.Value);
else
OS.indent(Indent + 2) << "(empty bound)";
}
OS << ')';
}
void visitMetatypeExpr(MetatypeExpr *E) {
printCommon(E, "metatype_expr");
if (Expr *base = E->getBase()) {
OS << '\n';
printRec(base);
} else {
OS << " baseless";
}
OS << ")";
}
void visitOpaqueValueExpr(OpaqueValueExpr *E) {
printCommon(E, "opaque_value_expr") << ')';
}
void printApplyExpr(ApplyExpr *E, const char *NodeName) {
printCommon(E, NodeName) << '\n';
printRec(E->getFn());
OS << '\n';
printRec(E->getArg());
OS << ')';
}
void visitCallExpr(CallExpr *E) {
printApplyExpr(E, "call_expr");
}
void visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
printApplyExpr(E, "prefix_unary_expr");
}
void visitPostfixUnaryExpr(PostfixUnaryExpr *E) {
printApplyExpr(E, "postfix_unary_expr");
}
void visitBinaryExpr(BinaryExpr *E) {
printApplyExpr(E, "binary_expr");
}
void visitDotSyntaxCallExpr(DotSyntaxCallExpr *E) {
printApplyExpr(E, "dot_syntax_call_expr");
}
void visitNewReferenceExpr(NewReferenceExpr *E) {
printApplyExpr(E, "new_reference_expr");
}
void visitConstructorRefCallExpr(ConstructorRefCallExpr *E) {
printApplyExpr(E, "constructor_ref_call_expr");
}
void visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E) {
printCommon(E, "dot_syntax_base_ignored") << '\n';
printRec(E->getLHS());
OS << '\n';
printRec(E->getRHS());
OS << ')';
}
void visitCoerceExpr(CoerceExpr *E) {
printCommon(E, "coerce_expr") << '\n';
printRec(E->getLHS());
OS << '\n';
printRec(E->getRHS());
OS << ')';
}
};
} // end anonymous namespace.
void Expr::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void Expr::print(raw_ostream &OS, unsigned Indent) const {
PrintExpr(OS, Indent).visit(const_cast<Expr*>(this));
}