Files
swift-mirror/lib/SILPasses/SILCodeMotion.cpp
2014-05-31 00:25:10 +00:00

286 lines
8.7 KiB
C++

//===- SILCodeMotion.cpp - Code Motion Optimizations ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "codemotion"
#include "swift/SILPasses/Passes.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/Projection.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/SILAnalysis/AliasAnalysis.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
STATISTIC(NumSunk, "Number of instructions sunk");
using namespace swift;
static const int SinkSearchWindow = 6;
/// \brief Returns True if we can sink this instruction to another basic block.
static bool canSinkInstruction(SILInstruction *Inst) {
return Inst->use_empty() && !isa<TermInst>(Inst);
}
/// \brief Returns true if this instruction is a skip barrier, which means that
/// we can't sink other instructions past it.
static bool isSinkBarrier(SILInstruction *Inst) {
// We know that some calls do not have side effects.
if (const ApplyInst *AI = dyn_cast<ApplyInst>(Inst))
if (BuiltinFunctionRefInst *FR =
dyn_cast<BuiltinFunctionRefInst>(AI->getCallee()))
return !isSideEffectFree(FR);
if (isa<TermInst>(Inst))
return false;
if (Inst->mayHaveSideEffects())
return true;
return false;
}
/// \brief Search for an instruction that is identical to \p Iden by scanning
/// \p BB starting at the end of the block, stopping on sink barriers.
SILInstruction *findIdenticalInBlock(SILBasicBlock *BB, SILInstruction *Iden) {
int SkipBudget = SinkSearchWindow;
SILBasicBlock::iterator InstToSink = BB->getTerminator();
while (SkipBudget) {
// If we found a sinkable instruction that is identical to our goal
// then return it.
if (canSinkInstruction(InstToSink) && Iden->isIdenticalTo(InstToSink)) {
DEBUG(llvm::dbgs() << "Found an identical instruction.");
return InstToSink;
}
// If this instruction is a skip-barrier end the scan.
if (isSinkBarrier(InstToSink))
return nullptr;
// If this is the first instruction in the block then we are done.
if (InstToSink == BB->begin())
return nullptr;
SkipBudget--;
InstToSink = std::prev(InstToSink);
DEBUG(llvm::dbgs() << "Continuing scan. Next inst: " << *InstToSink);
}
return nullptr;
}
// Try to sink values from the Nth argument \p ArgNum.
static bool sinkArgument(SILBasicBlock *BB, unsigned ArgNum) {
assert(ArgNum < BB->getNumBBArg() && "Invalid argument");
// Find the first predecessor, the first terminator and the Nth argument.
SILBasicBlock *FirstPred = *BB->pred_begin();
TermInst *FirstTerm = FirstPred->getTerminator();
auto FirstPredArg = FirstTerm->getOperand(ArgNum);
SILInstruction *FSI = dyn_cast<SILInstruction>(FirstPredArg);
// The list of identical instructions.
SmallVector<SILValue, 8> Clones;
Clones.push_back(FirstPredArg);
// We only move instructions with a single use.
if (!FSI || !FSI->hasOneUse())
return false;
// Don't move instructions that are sensitive to their location.
if (FSI->mayHaveSideEffects())
return false;
// Check if the Nth argument in all predecessors is identical.
for (auto P : BB->getPreds()) {
if (P == FirstPred)
continue;
// Only handle branch or conditional branch instructions.
TermInst *TI = P->getTerminator();
if (!isa<BranchInst>(TI) && !isa<CondBranchInst>(TI))
return false;
// Find the Nth argument passed to BB.
SILValue Arg = TI->getOperand(ArgNum);
SILInstruction *SI = dyn_cast<SILInstruction>(Arg);
if (SI && SI->hasOneUse() && SI->isIdenticalTo(FSI)) {
Clones.push_back(SI);
continue;
}
// Arguments are different.
return false;
}
if (!FSI)
return false;
SILValue Undef = SILUndef::get(FirstPredArg.getType(), BB->getModule());
// Sink one of the copies of the instruction.
FirstPredArg.replaceAllUsesWith(Undef);
FSI->moveBefore(BB->begin());
SILValue(BB->getBBArg(ArgNum)).replaceAllUsesWith(FirstPredArg);
// The argument is no longer in use. Replace all incoming inputs with undef
// and try to delete the instruction.
for (auto S : Clones)
if (S.getDef() != FSI) {
S.replaceAllUsesWith(Undef);
auto DeadArgInst = cast<SILInstruction>(S.getDef());
recursivelyDeleteTriviallyDeadInstructions(DeadArgInst);
}
return true;
}
/// Try to sink identical arguments coming from multiple predecessors.
static bool sinkArgumentsFromPredecessors(SILBasicBlock *BB) {
if (BB->pred_empty() || BB->getSinglePredecessor())
return false;
// This block must be the only successor of all the predecessors.
for (auto P : BB->getPreds())
if (P->getSingleSuccessor() != BB)
return false;
// Try to sink values from each of the arguments to the basic block.
bool Changed = false;
for (int i = 0, e = BB->getNumBBArg(); i < e; ++i)
Changed |= sinkArgument(BB, i);
return Changed;
}
static bool sinkCodeFromPredecessors(SILBasicBlock *BB) {
bool Changed = false;
if (BB->pred_empty())
return Changed;
// This block must be the only successor of all the predecessors.
for (auto P : BB->getPreds())
if (P->getSingleSuccessor() != BB)
return Changed;
SILBasicBlock *FirstPred = *BB->pred_begin();
// The first Pred must have at least one non-terminator.
if (FirstPred->getTerminator() == FirstPred->begin())
return Changed;
DEBUG(llvm::dbgs() << " Sinking values from predecessors.\n");
unsigned SkipBudget = SinkSearchWindow;
// Start scanning backwards from the terminator.
SILBasicBlock::iterator InstToSink = FirstPred->getTerminator();
while (SkipBudget) {
DEBUG(llvm::dbgs() << "Processing: " << *InstToSink);
// Save the duplicated instructions in case we need to remove them.
SmallVector<SILInstruction *, 4> Dups;
if (canSinkInstruction(InstToSink)) {
// For all preds:
for (auto P : BB->getPreds()) {
if (P == FirstPred)
continue;
// Search the duplicated instruction in the predecessor.
if (SILInstruction *DupInst = findIdenticalInBlock(P, InstToSink)) {
Dups.push_back(DupInst);
} else {
DEBUG(llvm::dbgs() << "Instruction mismatch.\n");
Dups.clear();
break;
}
}
// If we found duplicated instructions, sink one of the copies and delete
// the rest.
if (Dups.size()) {
DEBUG(llvm::dbgs() << "Moving: " << *InstToSink);
InstToSink->moveBefore(BB->begin());
Changed = true;
for (auto I : Dups) {
I->replaceAllUsesWith(InstToSink);
I->eraseFromParent();
NumSunk++;
}
// Restart the scan.
InstToSink = FirstPred->getTerminator();
DEBUG(llvm::dbgs() << "Restarting scan. Next inst: " << *InstToSink);
continue;
}
}
// If this instruction was a barrier then we can't sink anything else.
if (isSinkBarrier(InstToSink)) {
DEBUG(llvm::dbgs() << "Aborting on barrier: " << *InstToSink);
return Changed;
}
// This is the first instruction, we are done.
if (InstToSink == FirstPred->begin()) {
DEBUG(llvm::dbgs() << "Reached the first instruction.");
return Changed;
}
SkipBudget--;
InstToSink = std::prev(InstToSink);
DEBUG(llvm::dbgs() << "Continuing scan. Next inst: " << *InstToSink);
}
return Changed;
}
namespace {
class SILCodeMotion : public SILFunctionTransform {
/// The entry point to the transformation.
void run() {
SILFunction &F = *getFunction();
DEBUG(llvm::dbgs() << "***** CodeMotion on function: " << F.getName() <<
" *****\n");
// Sink duplicated code from predecessors.
bool Changed = false;
for (auto &BB : F) {
Changed |= sinkCodeFromPredecessors(&BB);
Changed |= sinkArgumentsFromPredecessors(&BB);
}
if (Changed)
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
StringRef getName() override { return "SIL Code Motion"; }
};
} // end anonymous namespace
SILTransform *swift::createCodeMotion() {
return new SILCodeMotion();
}