mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
3194 lines
108 KiB
C++
3194 lines
108 KiB
C++
//===--- CSDiagnostics.cpp - Constraint Diagnostics -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements diagnostics for constraint system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CSDiagnostics.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "MiscDiagnostics.h"
|
|
#include "TypoCorrection.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Initializer.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/ProtocolConformanceRef.h"
|
|
#include "swift/AST/Stmt.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/SourceLoc.h"
|
|
#include "swift/Parse/Lexer.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
FailureDiagnostic::~FailureDiagnostic() {}
|
|
|
|
bool FailureDiagnostic::diagnose(bool asNote) {
|
|
return asNote ? diagnoseAsNote() : diagnoseAsError();
|
|
}
|
|
|
|
bool FailureDiagnostic::diagnoseAsNote() {
|
|
return false;
|
|
}
|
|
|
|
std::pair<Expr *, bool> FailureDiagnostic::computeAnchor() const {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
auto *locator = getLocator();
|
|
// Resolve the locator to a specific expression.
|
|
SourceRange range;
|
|
bool isSubscriptMember =
|
|
(!locator->getPath().empty() && locator->getPath().back().getKind() ==
|
|
ConstraintLocator::SubscriptMember);
|
|
|
|
ConstraintLocator *resolved = simplifyLocator(cs, locator, range);
|
|
if (!resolved || !resolved->getAnchor())
|
|
return {locator->getAnchor(), true};
|
|
|
|
Expr *anchor = resolved->getAnchor();
|
|
// FIXME: Work around an odd locator representation that doesn't separate the
|
|
// base of a subscript member from the member access.
|
|
if (isSubscriptMember) {
|
|
if (auto subscript = dyn_cast<SubscriptExpr>(anchor))
|
|
anchor = subscript->getBase();
|
|
}
|
|
|
|
return {anchor, !resolved->getPath().empty()};
|
|
}
|
|
|
|
Type FailureDiagnostic::getType(Expr *expr) const {
|
|
return resolveType(CS.getType(expr));
|
|
}
|
|
|
|
Type FailureDiagnostic::getType(const TypeLoc &loc) const {
|
|
return resolveType(CS.getType(loc));
|
|
}
|
|
|
|
template <typename... ArgTypes>
|
|
InFlightDiagnostic
|
|
FailureDiagnostic::emitDiagnostic(ArgTypes &&... Args) const {
|
|
auto &cs = getConstraintSystem();
|
|
return cs.TC.diagnose(std::forward<ArgTypes>(Args)...);
|
|
}
|
|
|
|
Expr *FailureDiagnostic::findParentExpr(Expr *subExpr) const {
|
|
return E ? E->getParentMap()[subExpr] : nullptr;
|
|
}
|
|
|
|
Expr *FailureDiagnostic::getArgumentExprFor(Expr *anchor) const {
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
if (auto *call = dyn_cast_or_null<CallExpr>(findParentExpr(UDE)))
|
|
return call->getArg();
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
return UME->getArgument();
|
|
} else if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
return call->getArg();
|
|
} else if (auto *SE = dyn_cast<SubscriptExpr>(anchor)) {
|
|
return SE->getIndex();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Optional<SelectedOverload> FailureDiagnostic::getChoiceFor(Expr *expr) const {
|
|
auto &cs = getConstraintSystem();
|
|
return getOverloadChoiceIfAvailable(cs.getCalleeLocator(expr));
|
|
}
|
|
|
|
Type RequirementFailure::getOwnerType() const {
|
|
auto *anchor = getRawAnchor();
|
|
|
|
// If diagnostic is anchored at assignment expression
|
|
// it means that requirement failure happend while trying
|
|
// to convert source to destination, which means that
|
|
// owner type is actually not an assignment expression
|
|
// itself but its source.
|
|
if (auto *assignment = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assignment->getSrc();
|
|
|
|
return getType(anchor)->getInOutObjectType()->getMetatypeInstanceType();
|
|
}
|
|
|
|
const GenericContext *RequirementFailure::getGenericContext() const {
|
|
if (auto *genericCtx = AffectedDecl->getAsGenericContext())
|
|
return genericCtx;
|
|
return AffectedDecl->getDeclContext()->getAsDecl()->getAsGenericContext();
|
|
}
|
|
|
|
const Requirement &RequirementFailure::getRequirement() const {
|
|
// If this is a conditional requirement failure we need to
|
|
// fetch conformance from constraint system associated with
|
|
// type requirement this conditional conformance belongs to.
|
|
auto requirements = isConditional()
|
|
? Conformance->getConditionalRequirements()
|
|
: Signature->getRequirements();
|
|
return requirements[getRequirementIndex()];
|
|
}
|
|
|
|
ProtocolConformance *RequirementFailure::getConformanceForConditionalReq(
|
|
ConstraintLocator *locator) {
|
|
auto &cs = getConstraintSystem();
|
|
auto path = locator->getPath();
|
|
assert(!path.empty());
|
|
|
|
if (!path.back().isConditionalRequirement()) {
|
|
assert(path.back().isTypeParameterRequirement());
|
|
return nullptr;
|
|
}
|
|
|
|
auto *typeReqLoc = cs.getConstraintLocator(getRawAnchor(), path.drop_back(),
|
|
/*summaryFlags=*/0);
|
|
|
|
auto result = llvm::find_if(
|
|
cs.CheckedConformances,
|
|
[&](const std::pair<ConstraintLocator *, ProtocolConformanceRef>
|
|
&conformance) { return conformance.first == typeReqLoc; });
|
|
assert(result != cs.CheckedConformances.end());
|
|
|
|
auto conformance = result->second;
|
|
assert(conformance.isConcrete());
|
|
return conformance.getConcrete();
|
|
}
|
|
|
|
ValueDecl *RequirementFailure::getDeclRef() const {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
// Get a declaration associated with given type (if any).
|
|
// This is used to retrieve affected declaration when
|
|
// failure is in any way contextual, and declaration can't
|
|
// be fetched directly from constraint system.
|
|
auto getAffectedDeclFromType = [](Type type) -> ValueDecl * {
|
|
assert(type);
|
|
// If problem is related to a typealias, let's point this
|
|
// diagnostic directly to its declaration without desugaring.
|
|
if (auto *alias = dyn_cast<TypeAliasType>(type.getPointer()))
|
|
return alias->getDecl();
|
|
|
|
if (auto *opaque = type->getAs<OpaqueTypeArchetypeType>())
|
|
return opaque->getDecl();
|
|
|
|
return type->getAnyGeneric();
|
|
};
|
|
|
|
if (isFromContextualType())
|
|
return getAffectedDeclFromType(cs.getContextualType());
|
|
|
|
if (auto overload = getChoiceFor(getRawAnchor()))
|
|
return overload->choice.getDecl();
|
|
|
|
return getAffectedDeclFromType(getOwnerType());
|
|
}
|
|
|
|
GenericSignature *RequirementFailure::getSignature(ConstraintLocator *locator) {
|
|
if (isConditional())
|
|
return Conformance->getGenericSignature();
|
|
|
|
auto path = locator->getPath();
|
|
for (auto iter = path.rbegin(); iter != path.rend(); ++iter) {
|
|
const auto &elt = *iter;
|
|
if (elt.getKind() == ConstraintLocator::OpenedGeneric)
|
|
return elt.getGenericSignature();
|
|
}
|
|
|
|
llvm_unreachable("Type requirement failure should always have signature");
|
|
}
|
|
|
|
bool RequirementFailure::isFromContextualType() const {
|
|
auto path = getLocator()->getPath();
|
|
assert(!path.empty());
|
|
return path.front().getKind() == ConstraintLocator::ContextualType;
|
|
}
|
|
|
|
const DeclContext *RequirementFailure::getRequirementDC() const {
|
|
// In case of conditional requirement failure, we don't
|
|
// have to guess where the it comes from.
|
|
if (isConditional())
|
|
return Conformance->getDeclContext();
|
|
|
|
const auto &req = getRequirement();
|
|
auto *DC = AffectedDecl->getDeclContext();
|
|
|
|
do {
|
|
if (auto *sig = DC->getGenericSignatureOfContext()) {
|
|
if (sig->isRequirementSatisfied(req))
|
|
return DC;
|
|
}
|
|
} while ((DC = DC->getParent()));
|
|
|
|
return AffectedDecl->getAsGenericContext();
|
|
}
|
|
|
|
bool RequirementFailure::isStaticOrInstanceMember(const ValueDecl *decl) {
|
|
if (decl->isInstanceMember())
|
|
return true;
|
|
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(decl))
|
|
return AFD->isStatic() && !AFD->isOperator();
|
|
|
|
return decl->isStatic();
|
|
}
|
|
|
|
bool RequirementFailure::diagnoseAsError() {
|
|
if (!canDiagnoseFailure())
|
|
return false;
|
|
|
|
auto *anchor = getRawAnchor();
|
|
const auto *reqDC = getRequirementDC();
|
|
auto *genericCtx = getGenericContext();
|
|
|
|
auto lhs = resolveType(getLHS());
|
|
auto rhs = resolveType(getRHS());
|
|
|
|
if (auto *OTD = dyn_cast<OpaqueTypeDecl>(AffectedDecl)) {
|
|
auto *namingDecl = OTD->getNamingDecl();
|
|
emitDiagnostic(
|
|
anchor->getLoc(), diag::type_does_not_conform_in_opaque_return,
|
|
namingDecl->getDescriptiveKind(), namingDecl->getFullName(), lhs, rhs);
|
|
|
|
if (auto *repr = namingDecl->getOpaqueResultTypeRepr()) {
|
|
emitDiagnostic(repr->getLoc(), diag::opaque_return_type_declared_here)
|
|
.highlight(repr->getSourceRange());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (genericCtx != reqDC && (genericCtx->isChildContextOf(reqDC) ||
|
|
isStaticOrInstanceMember(AffectedDecl))) {
|
|
auto *NTD = reqDC->getSelfNominalTypeDecl();
|
|
emitDiagnostic(anchor->getLoc(), getDiagnosticInRereference(),
|
|
AffectedDecl->getDescriptiveKind(),
|
|
AffectedDecl->getFullName(), NTD->getDeclaredType(), lhs,
|
|
rhs);
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), getDiagnosticOnDecl(),
|
|
AffectedDecl->getDescriptiveKind(),
|
|
AffectedDecl->getFullName(), lhs, rhs);
|
|
}
|
|
|
|
emitRequirementNote(reqDC->getAsDecl(), lhs, rhs);
|
|
return true;
|
|
}
|
|
|
|
bool RequirementFailure::diagnoseAsNote() {
|
|
const auto &req = getRequirement();
|
|
const auto *reqDC = getRequirementDC();
|
|
|
|
emitDiagnostic(reqDC->getAsDecl(), getDiagnosticAsNote(), getLHS(), getRHS(),
|
|
req.getFirstType(), req.getSecondType(), "");
|
|
return true;
|
|
}
|
|
|
|
void RequirementFailure::emitRequirementNote(const Decl *anchor, Type lhs,
|
|
Type rhs) const {
|
|
auto &req = getRequirement();
|
|
|
|
if (isConditional()) {
|
|
emitDiagnostic(anchor, diag::requirement_implied_by_conditional_conformance,
|
|
resolveType(Conformance->getType()),
|
|
Conformance->getProtocol()->getDeclaredInterfaceType());
|
|
return;
|
|
}
|
|
|
|
if (rhs->isEqual(req.getSecondType())) {
|
|
emitDiagnostic(anchor, diag::where_requirement_failure_one_subst,
|
|
req.getFirstType(), lhs);
|
|
return;
|
|
}
|
|
|
|
if (lhs->isEqual(req.getFirstType())) {
|
|
emitDiagnostic(anchor, diag::where_requirement_failure_one_subst,
|
|
req.getSecondType(), rhs);
|
|
return;
|
|
}
|
|
|
|
emitDiagnostic(anchor, diag::where_requirement_failure_both_subst,
|
|
req.getFirstType(), lhs, req.getSecondType(), rhs);
|
|
}
|
|
|
|
bool MissingConformanceFailure::diagnoseAsError() {
|
|
if (!canDiagnoseFailure())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto ownerType = getOwnerType();
|
|
auto nonConformingType = getLHS();
|
|
auto protocolType = getRHS();
|
|
|
|
auto getArgumentAt = [](const ApplyExpr *AE, unsigned index) -> Expr * {
|
|
assert(AE);
|
|
|
|
auto *arg = AE->getArg();
|
|
if (auto *TE = dyn_cast<TupleExpr>(arg))
|
|
return TE->getElement(index);
|
|
|
|
assert(index == 0);
|
|
if (auto *PE = dyn_cast<ParenExpr>(arg))
|
|
return PE->getSubExpr();
|
|
|
|
return arg;
|
|
};
|
|
|
|
Optional<unsigned> atParameterPos;
|
|
// Sometimes fix is recorded by type-checking sub-expression
|
|
// during normal diagnostics, in such case call expression
|
|
// is unavailable.
|
|
if (Apply) {
|
|
if (auto *fnType = ownerType->getAs<AnyFunctionType>()) {
|
|
auto parameters = fnType->getParams();
|
|
for (auto index : indices(parameters)) {
|
|
if (parameters[index].getOldType()->isEqual(nonConformingType)) {
|
|
atParameterPos = index;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nonConformingType->isExistentialType()) {
|
|
auto diagnostic = diag::protocol_does_not_conform_objc;
|
|
if (nonConformingType->isObjCExistentialType())
|
|
diagnostic = diag::protocol_does_not_conform_static;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, nonConformingType,
|
|
protocolType);
|
|
return true;
|
|
}
|
|
|
|
if (atParameterPos) {
|
|
// Requirement comes from one of the parameter types,
|
|
// let's try to point diagnostic to the argument expression.
|
|
auto *argExpr = getArgumentAt(Apply, *atParameterPos);
|
|
emitDiagnostic(argExpr->getLoc(),
|
|
diag::cannot_convert_argument_value_protocol,
|
|
nonConformingType, protocolType);
|
|
return true;
|
|
}
|
|
|
|
// If none of the special cases could be diagnosed,
|
|
// let's fallback to the most general diagnostic.
|
|
return RequirementFailure::diagnoseAsError();
|
|
}
|
|
|
|
bool LabelingFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto *anchor = getRawAnchor();
|
|
|
|
auto *argExpr = getArgumentExprFor(anchor);
|
|
if (!argExpr)
|
|
return false;
|
|
|
|
return diagnoseArgumentLabelError(cs.getASTContext(), argExpr, CorrectLabels,
|
|
isa<SubscriptExpr>(anchor));
|
|
}
|
|
|
|
bool NoEscapeFuncToTypeConversionFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
|
|
if (diagnoseParameterUse())
|
|
return true;
|
|
|
|
if (ConvertTo) {
|
|
emitDiagnostic(anchor->getLoc(), diag::converting_noescape_to_type,
|
|
ConvertTo);
|
|
return true;
|
|
}
|
|
|
|
GenericTypeParamType *paramTy = nullptr;
|
|
|
|
auto path = getLocator()->getPath();
|
|
if (!path.empty()) {
|
|
auto &last = path.back();
|
|
if (last.getKind() == ConstraintLocator::GenericParameter)
|
|
paramTy = last.getGenericParameter();
|
|
}
|
|
|
|
if (paramTy) {
|
|
emitDiagnostic(anchor->getLoc(), diag::converting_noescape_to_type,
|
|
paramTy);
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), diag::unknown_escaping_use_of_noescape);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NoEscapeFuncToTypeConversionFailure::diagnoseParameterUse() const {
|
|
// If the other side is not a function, we have common case diagnostics
|
|
// which handle function-to-type conversion diagnostics.
|
|
if (!ConvertTo || !ConvertTo->is<FunctionType>())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto *locator = getLocator();
|
|
auto diagnostic = diag::general_noescape_to_escaping;
|
|
|
|
auto getGenericParamType =
|
|
[](TypeVariableType *typeVar) -> GenericTypeParamType * {
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
if (locator->isForGenericParameter()) {
|
|
const auto &GP = locator->getPath().back();
|
|
return GP.getGenericParameter();
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
ParamDecl *PD = nullptr;
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(anchor)) {
|
|
PD = dyn_cast<ParamDecl>(DRE->getDecl());
|
|
|
|
// If anchor is not a parameter declaration there
|
|
// is no need to dig up more information.
|
|
if (!PD)
|
|
return false;
|
|
|
|
// Let's check whether this is a function parameter passed
|
|
// as an argument to another function which accepts @escaping
|
|
// function at that position.
|
|
auto path = locator->getPath();
|
|
if (!path.empty() &&
|
|
(path.back().getKind() == ConstraintLocator::ApplyArgToParam)) {
|
|
if (auto paramType =
|
|
getParameterTypeFor(getRawAnchor(), path.back().getValue2())) {
|
|
if (paramType->isTypeVariableOrMember()) {
|
|
auto diagnoseGenericParamFailure = [&](Type genericParam,
|
|
GenericTypeParamDecl *decl) {
|
|
emitDiagnostic(anchor->getLoc(),
|
|
diag::converting_noespace_param_to_generic_type,
|
|
PD->getName(), genericParam);
|
|
|
|
emitDiagnostic(decl, diag::generic_parameters_always_escaping);
|
|
};
|
|
|
|
// If this is a situation when non-escaping parameter is passed
|
|
// to the argument which represents generic parameter, there is
|
|
// a tailored diagnostic for that.
|
|
|
|
if (auto *DMT = paramType->getAs<DependentMemberType>()) {
|
|
auto baseTy = DMT->getBase()->castTo<TypeVariableType>();
|
|
diagnoseGenericParamFailure(resolveType(DMT),
|
|
getGenericParamType(baseTy)->getDecl());
|
|
return true;
|
|
}
|
|
|
|
auto *typeVar = paramType->getAs<TypeVariableType>();
|
|
if (auto *GP = getGenericParamType(typeVar)) {
|
|
diagnoseGenericParamFailure(GP, GP->getDecl());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there are no generic parameters involved, this could
|
|
// only mean that parameter is expecting @escaping function type.
|
|
diagnostic = diag::passing_noescape_to_escaping;
|
|
}
|
|
} else if (auto *AE = dyn_cast<AssignExpr>(getRawAnchor())) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(AE->getSrc())) {
|
|
PD = dyn_cast<ParamDecl>(DRE->getDecl());
|
|
diagnostic = diag::assigning_noescape_to_escaping;
|
|
}
|
|
}
|
|
|
|
if (!PD)
|
|
return false;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, PD->getName());
|
|
|
|
// Give a note and fix-it
|
|
auto note =
|
|
emitDiagnostic(PD->getLoc(), diag::noescape_parameter, PD->getName());
|
|
|
|
if (!PD->isAutoClosure()) {
|
|
note.fixItInsert(PD->getTypeLoc().getSourceRange().Start, "@escaping ");
|
|
} // TODO: add in a fixit for autoclosure
|
|
|
|
return true;
|
|
}
|
|
|
|
Type NoEscapeFuncToTypeConversionFailure::getParameterTypeFor(
|
|
Expr *expr, unsigned paramIdx) const {
|
|
auto choice = getChoiceFor(expr);
|
|
if (!choice)
|
|
return Type();
|
|
|
|
if (auto *fnType = choice->openedType->getAs<FunctionType>()) {
|
|
const auto ¶m = fnType->getParams()[paramIdx];
|
|
return param.getPlainType();
|
|
}
|
|
|
|
return Type();
|
|
}
|
|
|
|
bool MissingForcedDowncastFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto &TC = getTypeChecker();
|
|
|
|
auto *expr = getAnchor();
|
|
if (auto *assignExpr = dyn_cast<AssignExpr>(expr))
|
|
expr = assignExpr->getSrc();
|
|
auto *coerceExpr = dyn_cast<CoerceExpr>(expr);
|
|
if (!coerceExpr)
|
|
return false;
|
|
|
|
auto *subExpr = coerceExpr->getSubExpr();
|
|
auto fromType = getType(subExpr)->getRValueType();
|
|
auto toType = resolveType(coerceExpr->getCastTypeLoc().getType());
|
|
|
|
auto castKind =
|
|
TC.typeCheckCheckedCast(fromType, toType, CheckedCastContextKind::None,
|
|
getDC(), coerceExpr->getLoc(), subExpr,
|
|
coerceExpr->getCastTypeLoc().getSourceRange());
|
|
|
|
switch (castKind) {
|
|
// Invalid cast.
|
|
case CheckedCastKind::Unresolved:
|
|
// Fix didn't work, let diagnoseFailureForExpr handle this.
|
|
return false;
|
|
case CheckedCastKind::Coercion:
|
|
case CheckedCastKind::BridgingCoercion:
|
|
llvm_unreachable("Coercions handled in other disjunction branch");
|
|
|
|
// Valid casts.
|
|
case CheckedCastKind::ArrayDowncast:
|
|
case CheckedCastKind::DictionaryDowncast:
|
|
case CheckedCastKind::SetDowncast:
|
|
case CheckedCastKind::ValueCast:
|
|
emitDiagnostic(coerceExpr->getLoc(), diag::missing_forced_downcast,
|
|
fromType, toType)
|
|
.highlight(coerceExpr->getSourceRange())
|
|
.fixItReplace(coerceExpr->getLoc(), "as!");
|
|
return true;
|
|
}
|
|
llvm_unreachable("unhandled cast kind");
|
|
}
|
|
|
|
bool MissingAddressOfFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto type = getType(anchor)->getRValueType();
|
|
emitDiagnostic(anchor->getLoc(), diag::missing_address_of, type)
|
|
.fixItInsert(anchor->getStartLoc(), "&");
|
|
return true;
|
|
}
|
|
|
|
bool MissingExplicitConversionFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *DC = getDC();
|
|
auto &TC = getTypeChecker();
|
|
|
|
auto *anchor = getAnchor();
|
|
if (auto *assign = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assign->getSrc();
|
|
if (auto *paren = dyn_cast<ParenExpr>(anchor))
|
|
anchor = paren->getSubExpr();
|
|
|
|
auto fromType = getType(anchor)->getRValueType();
|
|
Type toType = resolveType(ConvertingTo);
|
|
bool useAs = TC.isExplicitlyConvertibleTo(fromType, toType, DC);
|
|
bool useAsBang = !useAs && TC.checkedCastMaySucceed(fromType, toType, DC);
|
|
if (!useAs && !useAsBang)
|
|
return false;
|
|
|
|
auto *expr = getParentExpr();
|
|
// If we're performing pattern matching,
|
|
// "as" means something completely different...
|
|
if (auto binOpExpr = dyn_cast<BinaryExpr>(expr)) {
|
|
auto overloadedFn = dyn_cast<OverloadedDeclRefExpr>(binOpExpr->getFn());
|
|
if (overloadedFn && !overloadedFn->getDecls().empty()) {
|
|
ValueDecl *decl0 = overloadedFn->getDecls()[0];
|
|
if (decl0->getBaseName() == decl0->getASTContext().Id_MatchOperator)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool needsParensInside = exprNeedsParensBeforeAddingAs(anchor);
|
|
bool needsParensOutside = exprNeedsParensAfterAddingAs(anchor, expr);
|
|
|
|
llvm::SmallString<2> insertBefore;
|
|
llvm::SmallString<32> insertAfter;
|
|
if (needsParensOutside) {
|
|
insertBefore += "(";
|
|
}
|
|
if (needsParensInside) {
|
|
insertBefore += "(";
|
|
insertAfter += ")";
|
|
}
|
|
insertAfter += useAs ? " as " : " as! ";
|
|
insertAfter += toType->getWithoutParens()->getString();
|
|
if (needsParensOutside)
|
|
insertAfter += ")";
|
|
|
|
auto diagID =
|
|
useAs ? diag::missing_explicit_conversion : diag::missing_forced_downcast;
|
|
auto diag = emitDiagnostic(anchor->getLoc(), diagID, fromType, toType);
|
|
if (!insertBefore.empty()) {
|
|
diag.fixItInsert(anchor->getStartLoc(), insertBefore);
|
|
}
|
|
diag.fixItInsertAfter(anchor->getEndLoc(), insertAfter);
|
|
return true;
|
|
}
|
|
|
|
bool MemberAccessOnOptionalBaseFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
auto type = getType(anchor)->getRValueType();
|
|
bool resultIsOptional = ResultTypeIsOptional;
|
|
|
|
// If we've resolved the member overload to one that returns an optional
|
|
// type, then the result of the expression is optional (and we want to offer
|
|
// only a '?' fixit) even though the constraint system didn't need to add any
|
|
// additional optionality.
|
|
auto overload = getResolvedOverload(getLocator());
|
|
if (overload && overload->ImpliedType->getOptionalObjectType())
|
|
resultIsOptional = true;
|
|
|
|
return diagnoseBaseUnwrapForMemberAccess(anchor, type, Member,
|
|
resultIsOptional, SourceRange());
|
|
}
|
|
|
|
Optional<AnyFunctionType::Param>
|
|
MissingOptionalUnwrapFailure::getOperatorParameterFor(Expr *expr) const {
|
|
auto *parentExpr = findParentExpr(expr);
|
|
if (!parentExpr)
|
|
return None;
|
|
|
|
auto getArgIdx = [](TupleExpr *tuple, Expr *argExpr) -> unsigned {
|
|
for (unsigned i = 0, n = tuple->getNumElements(); i != n; ++i) {
|
|
if (tuple->getElement(i) == argExpr)
|
|
return i;
|
|
}
|
|
llvm_unreachable("argument is not in enclosing tuple?!");
|
|
};
|
|
|
|
auto *tupleExpr = dyn_cast<TupleExpr>(parentExpr);
|
|
if (!(tupleExpr && tupleExpr->isImplicit()))
|
|
return None;
|
|
|
|
parentExpr = findParentExpr(tupleExpr);
|
|
if (!(parentExpr && isa<ApplyExpr>(parentExpr)))
|
|
return None;
|
|
|
|
auto &cs = getConstraintSystem();
|
|
auto *fnExpr = cast<ApplyExpr>(parentExpr)->getFn();
|
|
if (auto overload =
|
|
getOverloadChoiceIfAvailable(cs.getConstraintLocator(fnExpr))) {
|
|
if (auto *decl = overload->choice.getDecl()) {
|
|
if (!decl->isOperator())
|
|
return None;
|
|
|
|
auto *fnType = overload->openedType->castTo<FunctionType>();
|
|
return fnType->getParams()[getArgIdx(tupleExpr, expr)];
|
|
}
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
void MissingOptionalUnwrapFailure::offerDefaultValueUnwrapFixIt(
|
|
DeclContext *DC, Expr *expr) const {
|
|
auto *anchor = getAnchor();
|
|
|
|
// If anchor is an explicit address-of, or expression which produces
|
|
// an l-value (e.g. first argument of `+=` operator), let's not
|
|
// suggest default value here because that would produce r-value type.
|
|
if (isa<InOutExpr>(anchor))
|
|
return;
|
|
|
|
if (auto param = getOperatorParameterFor(anchor)) {
|
|
if (param->isInOut())
|
|
return;
|
|
}
|
|
|
|
auto diag = emitDiagnostic(expr->getLoc(), diag::unwrap_with_default_value);
|
|
|
|
auto &TC = getTypeChecker();
|
|
// Figure out what we need to parenthesize.
|
|
bool needsParensInside =
|
|
exprNeedsParensBeforeAddingNilCoalescing(TC, DC, expr);
|
|
bool needsParensOutside =
|
|
exprNeedsParensAfterAddingNilCoalescing(TC, DC, expr, getParentExpr());
|
|
|
|
llvm::SmallString<2> insertBefore;
|
|
llvm::SmallString<32> insertAfter;
|
|
if (needsParensOutside) {
|
|
insertBefore += "(";
|
|
}
|
|
if (needsParensInside) {
|
|
insertBefore += "(";
|
|
insertAfter += ")";
|
|
}
|
|
insertAfter += " ?? <" "#default value#" ">";
|
|
if (needsParensOutside)
|
|
insertAfter += ")";
|
|
|
|
if (!insertBefore.empty()) {
|
|
diag.fixItInsert(expr->getStartLoc(), insertBefore);
|
|
}
|
|
diag.fixItInsertAfter(expr->getEndLoc(), insertAfter);
|
|
}
|
|
|
|
// Suggest a force-unwrap.
|
|
void MissingOptionalUnwrapFailure::offerForceUnwrapFixIt(Expr *expr) const {
|
|
auto diag = emitDiagnostic(expr->getLoc(), diag::unwrap_with_force_value);
|
|
|
|
// If expr is optional as the result of an optional chain and this last
|
|
// dot isn't a member returning optional, then offer to force the last
|
|
// link in the chain, rather than an ugly parenthesized postfix force.
|
|
if (auto optionalChain = dyn_cast<OptionalEvaluationExpr>(expr)) {
|
|
if (auto dotExpr =
|
|
dyn_cast<UnresolvedDotExpr>(optionalChain->getSubExpr())) {
|
|
auto bind = dyn_cast<BindOptionalExpr>(dotExpr->getBase());
|
|
if (bind && !getType(dotExpr)->getOptionalObjectType()) {
|
|
diag.fixItReplace(SourceRange(bind->getLoc()), "!");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (expr->canAppendPostfixExpression(true)) {
|
|
diag.fixItInsertAfter(expr->getEndLoc(), "!");
|
|
} else {
|
|
diag.fixItInsert(expr->getStartLoc(), "(")
|
|
.fixItInsertAfter(expr->getEndLoc(), ")!");
|
|
}
|
|
}
|
|
|
|
class VarDeclMultipleReferencesChecker : public ASTWalker {
|
|
VarDecl *varDecl;
|
|
int count;
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (DRE->getDecl() == varDecl)
|
|
count++;
|
|
}
|
|
return { true, E };
|
|
}
|
|
|
|
public:
|
|
VarDeclMultipleReferencesChecker(VarDecl *varDecl) : varDecl(varDecl),count(0) {}
|
|
int referencesCount() { return count; }
|
|
};
|
|
|
|
bool MissingOptionalUnwrapFailure::diagnoseAsError() {
|
|
if (hasComplexLocator())
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
|
|
if (auto assignExpr = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assignExpr->getSrc();
|
|
|
|
auto *unwrappedExpr = anchor->getValueProvidingExpr();
|
|
|
|
if (auto *tryExpr = dyn_cast<OptionalTryExpr>(unwrappedExpr)) {
|
|
bool isSwift5OrGreater = getASTContext().isSwiftVersionAtLeast(5);
|
|
auto subExprType = getType(tryExpr->getSubExpr());
|
|
bool subExpressionIsOptional = (bool)subExprType->getOptionalObjectType();
|
|
|
|
if (isSwift5OrGreater && subExpressionIsOptional) {
|
|
// Using 'try!' won't change the type for a 'try?' with an optional
|
|
// sub-expr under Swift 5+, so just report that a missing unwrap can't be
|
|
// handled here.
|
|
return false;
|
|
}
|
|
|
|
emitDiagnostic(tryExpr->getTryLoc(), diag::missing_unwrap_optional_try,
|
|
getType(anchor)->getRValueType())
|
|
.fixItReplace({tryExpr->getTryLoc(), tryExpr->getQuestionLoc()},
|
|
"try!");
|
|
return true;
|
|
}
|
|
|
|
auto baseType = getBaseType();
|
|
auto unwrappedType = getUnwrappedType();
|
|
|
|
assert(!baseType->hasTypeVariable() &&
|
|
"Base type must not be a type variable");
|
|
assert(!unwrappedType->hasTypeVariable() &&
|
|
"Unwrapped type must not be a type variable");
|
|
|
|
if (!baseType->getOptionalObjectType())
|
|
return false;
|
|
|
|
emitDiagnostic(unwrappedExpr->getLoc(), diag::optional_not_unwrapped,
|
|
baseType, unwrappedType);
|
|
|
|
// If the expression we're unwrapping is the only reference to a
|
|
// local variable whose type isn't explicit in the source, then
|
|
// offer unwrapping fixits on the initializer as well.
|
|
if (auto declRef = dyn_cast<DeclRefExpr>(unwrappedExpr)) {
|
|
if (auto varDecl = dyn_cast<VarDecl>(declRef->getDecl())) {
|
|
bool singleUse = false;
|
|
AbstractFunctionDecl *AFD = nullptr;
|
|
if (auto contextDecl = varDecl->getDeclContext()->getAsDecl()) {
|
|
if ((AFD = dyn_cast<AbstractFunctionDecl>(contextDecl))) {
|
|
auto checker = VarDeclMultipleReferencesChecker(varDecl);
|
|
AFD->getBody()->walk(checker);
|
|
singleUse = checker.referencesCount() == 1;
|
|
}
|
|
}
|
|
|
|
PatternBindingDecl *binding = varDecl->getParentPatternBinding();
|
|
if (singleUse && binding && binding->getNumPatternEntries() == 1 &&
|
|
varDecl->getTypeSourceRangeForDiagnostics().isInvalid()) {
|
|
|
|
Expr *initializer = varDecl->getParentInitializer();
|
|
if (auto declRefExpr = dyn_cast<DeclRefExpr>(initializer)) {
|
|
if (declRefExpr->getDecl()
|
|
->getAttrs()
|
|
.hasAttribute<ImplicitlyUnwrappedOptionalAttr>()) {
|
|
emitDiagnostic(declRefExpr->getLoc(), diag::unwrap_iuo_initializer,
|
|
baseType);
|
|
}
|
|
}
|
|
|
|
auto fnTy = AFD->getInterfaceType()->castTo<AnyFunctionType>();
|
|
bool voidReturn =
|
|
fnTy->getResult()->isEqual(TupleType::getEmpty(getASTContext()));
|
|
|
|
auto diag = emitDiagnostic(varDecl->getLoc(), diag::unwrap_with_guard);
|
|
diag.fixItInsert(binding->getStartLoc(), "guard ");
|
|
if (voidReturn) {
|
|
diag.fixItInsertAfter(binding->getEndLoc(), " else { return }");
|
|
} else {
|
|
diag.fixItInsertAfter(binding->getEndLoc(), " else { return <"
|
|
"#default value#"
|
|
"> }");
|
|
}
|
|
diag.flush();
|
|
|
|
offerDefaultValueUnwrapFixIt(varDecl->getDeclContext(), initializer);
|
|
offerForceUnwrapFixIt(initializer);
|
|
}
|
|
}
|
|
}
|
|
|
|
offerDefaultValueUnwrapFixIt(getDC(), unwrappedExpr);
|
|
offerForceUnwrapFixIt(unwrappedExpr);
|
|
return true;
|
|
}
|
|
|
|
bool RValueTreatedAsLValueFailure::diagnoseAsError() {
|
|
Diag<StringRef> subElementDiagID;
|
|
Diag<Type> rvalueDiagID = diag::assignment_lhs_not_lvalue;
|
|
Expr *diagExpr = getRawAnchor();
|
|
SourceLoc loc = diagExpr->getLoc();
|
|
|
|
if (auto assignExpr = dyn_cast<AssignExpr>(diagExpr)) {
|
|
diagExpr = assignExpr->getDest();
|
|
}
|
|
|
|
if (auto callExpr = dyn_cast<ApplyExpr>(diagExpr)) {
|
|
Expr *argExpr = callExpr->getArg();
|
|
loc = callExpr->getFn()->getLoc();
|
|
|
|
if (isa<PrefixUnaryExpr>(callExpr) || isa<PostfixUnaryExpr>(callExpr)) {
|
|
subElementDiagID = diag::cannot_apply_lvalue_unop_to_subelement;
|
|
rvalueDiagID = diag::cannot_apply_lvalue_unop_to_rvalue;
|
|
diagExpr = argExpr;
|
|
} else if (isa<BinaryExpr>(callExpr)) {
|
|
subElementDiagID = diag::cannot_apply_lvalue_binop_to_subelement;
|
|
rvalueDiagID = diag::cannot_apply_lvalue_binop_to_rvalue;
|
|
auto argTuple = dyn_cast<TupleExpr>(argExpr);
|
|
diagExpr = argTuple->getElement(0);
|
|
} else if (getLocator()->getPath().size() > 0) {
|
|
auto lastPathElement = getLocator()->getPath().back();
|
|
assert(lastPathElement.getKind() ==
|
|
ConstraintLocator::PathElementKind::ApplyArgToParam);
|
|
|
|
subElementDiagID = diag::cannot_pass_rvalue_inout_subelement;
|
|
rvalueDiagID = diag::cannot_pass_rvalue_inout;
|
|
if (auto argTuple = dyn_cast<TupleExpr>(argExpr))
|
|
diagExpr = argTuple->getElement(lastPathElement.getValue());
|
|
else if (auto parens = dyn_cast<ParenExpr>(argExpr))
|
|
diagExpr = parens->getSubExpr();
|
|
} else {
|
|
subElementDiagID = diag::assignment_lhs_is_apply_expression;
|
|
}
|
|
} else if (auto inoutExpr = dyn_cast<InOutExpr>(diagExpr)) {
|
|
if (auto restriction = getRestrictionForType(getType(inoutExpr))) {
|
|
PointerTypeKind pointerKind;
|
|
if (restriction->second == ConversionRestrictionKind::ArrayToPointer &&
|
|
restriction->first->getAnyPointerElementType(pointerKind) &&
|
|
(pointerKind == PTK_UnsafePointer ||
|
|
pointerKind == PTK_UnsafeRawPointer)) {
|
|
// If we're converting to an UnsafePointer, then the programmer
|
|
// specified an & unnecessarily. Produce a fixit hint to remove it.
|
|
emitDiagnostic(inoutExpr->getLoc(),
|
|
diag::extra_address_of_unsafepointer, restriction->first)
|
|
.highlight(inoutExpr->getSourceRange())
|
|
.fixItRemove(inoutExpr->getStartLoc());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
subElementDiagID = diag::cannot_pass_rvalue_inout_subelement;
|
|
rvalueDiagID = diag::cannot_pass_rvalue_inout;
|
|
diagExpr = inoutExpr->getSubExpr();
|
|
} else if (isa<DeclRefExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_variable;
|
|
} else if (isa<ForceValueExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_bang_has_immutable_subcomponent;
|
|
} else if (isa<MemberRefExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_property;
|
|
} else if (auto member = dyn_cast<UnresolvedDotExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_property;
|
|
|
|
if (auto *ctor = dyn_cast<ConstructorDecl>(getDC())) {
|
|
if (auto *baseRef = dyn_cast<DeclRefExpr>(member->getBase())) {
|
|
if (baseRef->getDecl() == ctor->getImplicitSelfDecl() &&
|
|
ctor->getDelegatingOrChainedInitKind(nullptr) ==
|
|
ConstructorDecl::BodyInitKind::Delegating) {
|
|
emitDiagnostic(loc, diag::assignment_let_property_delegating_init,
|
|
member->getName());
|
|
if (auto *ref = getResolvedMemberRef(member)) {
|
|
emitDiagnostic(ref, diag::decl_declared_here, member->getName());
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto resolvedOverload = getResolvedOverload(getLocator())) {
|
|
if (resolvedOverload->Choice.getKind() ==
|
|
OverloadChoiceKind::DynamicMemberLookup)
|
|
subElementDiagID = diag::assignment_dynamic_property_has_immutable_base;
|
|
|
|
if (resolvedOverload->Choice.getKind() ==
|
|
OverloadChoiceKind::KeyPathDynamicMemberLookup) {
|
|
if (!getType(member->getBase())->hasLValueType())
|
|
subElementDiagID =
|
|
diag::assignment_dynamic_property_has_immutable_base;
|
|
}
|
|
}
|
|
} else if (auto sub = dyn_cast<SubscriptExpr>(diagExpr)) {
|
|
subElementDiagID = diag::assignment_subscript_has_immutable_base;
|
|
} else {
|
|
subElementDiagID = diag::assignment_lhs_is_immutable_variable;
|
|
}
|
|
|
|
AssignmentFailure failure(diagExpr, getConstraintSystem(), loc,
|
|
subElementDiagID, rvalueDiagID);
|
|
return failure.diagnose();
|
|
}
|
|
|
|
bool TrailingClosureAmbiguityFailure::diagnoseAsNote() {
|
|
const auto *expr = getParentExpr();
|
|
auto *callExpr = dyn_cast<CallExpr>(expr);
|
|
if (!callExpr)
|
|
return false;
|
|
if (!callExpr->hasTrailingClosure())
|
|
return false;
|
|
if (callExpr->getFn() != getAnchor())
|
|
return false;
|
|
|
|
llvm::SmallMapVector<Identifier, const ValueDecl *, 8> choicesByLabel;
|
|
for (const auto &choice : Choices) {
|
|
auto *callee = dyn_cast<AbstractFunctionDecl>(choice.getDecl());
|
|
if (!callee)
|
|
return false;
|
|
|
|
const ParameterList *paramList = callee->getParameters();
|
|
const ParamDecl *param = paramList->getArray().back();
|
|
|
|
// Sanity-check that the trailing closure corresponds to this parameter.
|
|
if (!param->hasValidSignature() ||
|
|
!param->getInterfaceType()->is<AnyFunctionType>())
|
|
return false;
|
|
|
|
Identifier trailingClosureLabel = param->getArgumentName();
|
|
auto &choiceForLabel = choicesByLabel[trailingClosureLabel];
|
|
|
|
// FIXME: Cargo-culted from diagnoseAmbiguity: apparently the same decl can
|
|
// appear more than once?
|
|
if (choiceForLabel == callee)
|
|
continue;
|
|
|
|
// If just providing the trailing closure label won't solve the ambiguity,
|
|
// don't bother offering the fix-it.
|
|
if (choiceForLabel != nullptr)
|
|
return false;
|
|
|
|
choiceForLabel = callee;
|
|
}
|
|
|
|
// If we got here, then all of the choices have unique labels. Offer them in
|
|
// order.
|
|
for (const auto &choicePair : choicesByLabel) {
|
|
auto diag = emitDiagnostic(
|
|
expr->getLoc(), diag::ambiguous_because_of_trailing_closure,
|
|
choicePair.first.empty(), choicePair.second->getFullName());
|
|
swift::fixItEncloseTrailingClosure(getTypeChecker(), diag, callExpr,
|
|
choicePair.first);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
AssignmentFailure::AssignmentFailure(Expr *destExpr, ConstraintSystem &cs,
|
|
SourceLoc diagnosticLoc)
|
|
: FailureDiagnostic(destExpr, cs, cs.getConstraintLocator(destExpr)),
|
|
Loc(diagnosticLoc),
|
|
DeclDiagnostic(findDeclDiagonstic(cs.getASTContext(), destExpr)),
|
|
TypeDiagnostic(diag::assignment_lhs_not_lvalue) {}
|
|
|
|
bool AssignmentFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto *DC = getDC();
|
|
auto *destExpr = getParentExpr();
|
|
|
|
// Walk through the destination expression, resolving what the problem is. If
|
|
// we find a node in the lvalue path that is problematic, this returns it.
|
|
auto immInfo = resolveImmutableBase(destExpr);
|
|
|
|
Optional<OverloadChoice> choice = immInfo.second;
|
|
|
|
// Attempt diagnostics based on the overload choice.
|
|
if (choice.hasValue()) {
|
|
|
|
auto getKeyPathArgument = [](SubscriptExpr *expr) {
|
|
auto *TE = dyn_cast<TupleExpr>(expr->getIndex());
|
|
assert(TE->getNumElements() == 1);
|
|
assert(TE->getElementName(0).str() == "keyPath");
|
|
return TE->getElement(0);
|
|
};
|
|
|
|
if (!choice->isDecl()) {
|
|
if (choice->getKind() == OverloadChoiceKind::KeyPathApplication &&
|
|
!isa<ApplyExpr>(immInfo.first)) {
|
|
std::string message = "key path is read-only";
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(immInfo.first)) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(getKeyPathArgument(SE))) {
|
|
auto identifier = DRE->getDecl()->getBaseName().getIdentifier();
|
|
message =
|
|
"'" + identifier.str().str() + "' is a read-only key path";
|
|
}
|
|
}
|
|
emitDiagnostic(Loc, DeclDiagnostic, message)
|
|
.highlight(immInfo.first->getSourceRange());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we cannot resolve this because the available setter candidates
|
|
// are all mutating and the base must be mutating. If we dug out a
|
|
// problematic decl, we can produce a nice tailored diagnostic.
|
|
if (auto *VD = dyn_cast<VarDecl>(choice->getDecl())) {
|
|
std::string message = "'";
|
|
message += VD->getName().str().str();
|
|
message += "'";
|
|
|
|
auto type = getType(immInfo.first);
|
|
|
|
if (isKnownKeyPathType(type))
|
|
message += " is read-only";
|
|
else if (VD->isCaptureList())
|
|
message += " is an immutable capture";
|
|
else if (VD->isImplicit())
|
|
message += " is immutable";
|
|
else if (VD->isLet())
|
|
message += " is a 'let' constant";
|
|
else if (!VD->isSettable(DC))
|
|
message += " is a get-only property";
|
|
else if (!VD->isSetterAccessibleFrom(DC))
|
|
message += " setter is inaccessible";
|
|
else {
|
|
message += " is immutable";
|
|
}
|
|
|
|
emitDiagnostic(Loc, DeclDiagnostic, message)
|
|
.highlight(immInfo.first->getSourceRange());
|
|
|
|
// If there is a masked instance variable of the same type, emit a
|
|
// note to fixit prepend a 'self.'.
|
|
if (auto typeContext = DC->getInnermostTypeContext()) {
|
|
UnqualifiedLookup lookup(VD->getFullName(), typeContext,
|
|
getASTContext().getLazyResolver());
|
|
for (auto &result : lookup.Results) {
|
|
const VarDecl *typeVar = dyn_cast<VarDecl>(result.getValueDecl());
|
|
if (typeVar && typeVar != VD && typeVar->isSettable(DC) &&
|
|
typeVar->isSetterAccessibleFrom(DC) &&
|
|
typeVar->getType()->isEqual(VD->getType())) {
|
|
// But not in its own accessor.
|
|
auto AD =
|
|
dyn_cast_or_null<AccessorDecl>(DC->getInnermostMethodContext());
|
|
if (!AD || AD->getStorage() != typeVar) {
|
|
emitDiagnostic(Loc, diag::masked_instance_variable,
|
|
typeContext->getSelfTypeInContext())
|
|
.fixItInsert(Loc, "self.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a simple variable marked with a 'let', emit a note to fixit
|
|
// hint it to 'var'.
|
|
VD->emitLetToVarNoteIfSimple(DC);
|
|
return true;
|
|
}
|
|
|
|
// If the underlying expression was a read-only subscript, diagnose that.
|
|
if (auto *SD = dyn_cast_or_null<SubscriptDecl>(choice->getDecl())) {
|
|
StringRef message;
|
|
if (!SD->isSettable())
|
|
message = "subscript is get-only";
|
|
else if (!SD->isSetterAccessibleFrom(DC))
|
|
message = "subscript setter is inaccessible";
|
|
else
|
|
message = "subscript is immutable";
|
|
|
|
emitDiagnostic(Loc, DeclDiagnostic, message)
|
|
.highlight(immInfo.first->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
// If we're trying to set an unapplied method, say that.
|
|
if (auto *VD = choice->getDecl()) {
|
|
std::string message = "'";
|
|
message += VD->getBaseName().getIdentifier().str();
|
|
message += "'";
|
|
|
|
auto diagID = DeclDiagnostic;
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
|
|
if (AFD->hasImplicitSelfDecl()) {
|
|
message += " is a method";
|
|
diagID = diag::assignment_lhs_is_immutable_variable;
|
|
} else {
|
|
message += " is a function";
|
|
}
|
|
} else
|
|
message += " is not settable";
|
|
|
|
emitDiagnostic(Loc, diagID, message)
|
|
.highlight(immInfo.first->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Fall back to producing diagnostics based on the expression since we
|
|
// couldn't determine anything from the OverloadChoice.
|
|
|
|
// If a keypath was the problem but wasn't resolved into a vardecl
|
|
// it is ambiguous or unable to be used for setting.
|
|
if (auto *KPE = dyn_cast_or_null<KeyPathExpr>(immInfo.first)) {
|
|
emitDiagnostic(Loc, DeclDiagnostic, "immutable key path")
|
|
.highlight(KPE->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (auto LE = dyn_cast<LiteralExpr>(immInfo.first)) {
|
|
emitDiagnostic(Loc, DeclDiagnostic, "literals are not mutable")
|
|
.highlight(LE->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
// If the expression is the result of a call, it is an rvalue, not a mutable
|
|
// lvalue.
|
|
if (auto *AE = dyn_cast<ApplyExpr>(immInfo.first)) {
|
|
// Handle literals, which are a call to the conversion function.
|
|
auto argsTuple =
|
|
dyn_cast<TupleExpr>(AE->getArg()->getSemanticsProvidingExpr());
|
|
if (isa<CallExpr>(AE) && AE->isImplicit() && argsTuple &&
|
|
argsTuple->getNumElements() == 1) {
|
|
if (auto LE = dyn_cast<LiteralExpr>(
|
|
argsTuple->getElement(0)->getSemanticsProvidingExpr())) {
|
|
emitDiagnostic(Loc, DeclDiagnostic, "literals are not mutable")
|
|
.highlight(LE->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
std::string name = "call";
|
|
if (isa<PrefixUnaryExpr>(AE) || isa<PostfixUnaryExpr>(AE))
|
|
name = "unary operator";
|
|
else if (isa<BinaryExpr>(AE))
|
|
name = "binary operator";
|
|
else if (isa<CallExpr>(AE))
|
|
name = "function call";
|
|
else if (isa<DotSyntaxCallExpr>(AE) || isa<DotSyntaxBaseIgnoredExpr>(AE))
|
|
name = "method call";
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(AE->getFn()->getValueProvidingExpr()))
|
|
name = std::string("'") +
|
|
DRE->getDecl()->getBaseName().getIdentifier().str().str() + "'";
|
|
|
|
emitDiagnostic(Loc, DeclDiagnostic, name + " returns immutable value")
|
|
.highlight(AE->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (auto contextualType = cs.getContextualType(immInfo.first)) {
|
|
Type neededType = contextualType->getInOutObjectType();
|
|
Type actualType = getType(immInfo.first)->getInOutObjectType();
|
|
if (!neededType->isEqual(actualType)) {
|
|
if (DeclDiagnostic.ID == diag::cannot_pass_rvalue_inout_subelement.ID) {
|
|
// We have a special diagnostic with tailored wording for this
|
|
// common case.
|
|
emitDiagnostic(Loc, diag::cannot_pass_rvalue_inout_converted,
|
|
actualType, neededType)
|
|
.highlight(immInfo.first->getSourceRange());
|
|
|
|
if (auto inoutExpr = dyn_cast<InOutExpr>(immInfo.first))
|
|
fixItChangeInoutArgType(inoutExpr->getSubExpr(), actualType,
|
|
neededType);
|
|
} else {
|
|
emitDiagnostic(Loc, DeclDiagnostic,
|
|
"implicit conversion from '" + actualType->getString() +
|
|
"' to '" + neededType->getString() +
|
|
"' requires a temporary")
|
|
.highlight(immInfo.first->getSourceRange());
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto IE = dyn_cast<IfExpr>(immInfo.first)) {
|
|
if (isLoadedLValue(IE)) {
|
|
emitDiagnostic(Loc, DeclDiagnostic,
|
|
"result of conditional operator '? :' is never mutable")
|
|
.highlight(IE->getQuestionLoc())
|
|
.highlight(IE->getColonLoc());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(Loc, TypeDiagnostic, getType(destExpr))
|
|
.highlight(immInfo.first->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
void AssignmentFailure::fixItChangeInoutArgType(const Expr *arg,
|
|
Type actualType,
|
|
Type neededType) const {
|
|
auto *DC = getDC();
|
|
auto *DRE = dyn_cast<DeclRefExpr>(arg);
|
|
if (!DRE)
|
|
return;
|
|
|
|
auto *VD = dyn_cast_or_null<VarDecl>(DRE->getDecl());
|
|
if (!VD)
|
|
return;
|
|
|
|
// Don't emit for non-local variables.
|
|
// (But in script-mode files, we consider module-scoped
|
|
// variables in the same file to be local variables.)
|
|
auto VDC = VD->getDeclContext();
|
|
bool isLocalVar = VDC->isLocalContext();
|
|
if (!isLocalVar && VDC->isModuleScopeContext()) {
|
|
auto argFile = DC->getParentSourceFile();
|
|
auto varFile = VDC->getParentSourceFile();
|
|
isLocalVar = (argFile == varFile && argFile->isScriptMode());
|
|
}
|
|
if (!isLocalVar)
|
|
return;
|
|
|
|
SmallString<32> scratch;
|
|
SourceLoc endLoc; // Filled in if we decide to diagnose this
|
|
SourceLoc startLoc; // Left invalid if we're inserting
|
|
|
|
auto isSimpleTypelessPattern = [](Pattern *P) -> bool {
|
|
if (auto VP = dyn_cast_or_null<VarPattern>(P))
|
|
P = VP->getSubPattern();
|
|
return P && isa<NamedPattern>(P);
|
|
};
|
|
|
|
auto typeRange = VD->getTypeSourceRangeForDiagnostics();
|
|
if (typeRange.isValid()) {
|
|
startLoc = typeRange.Start;
|
|
endLoc = typeRange.End;
|
|
} else if (isSimpleTypelessPattern(VD->getParentPattern())) {
|
|
endLoc = VD->getNameLoc();
|
|
scratch += ": ";
|
|
}
|
|
|
|
if (endLoc.isInvalid())
|
|
return;
|
|
|
|
scratch += neededType.getString();
|
|
|
|
// Adjust into the location where we actually want to insert
|
|
endLoc = Lexer::getLocForEndOfToken(getASTContext().SourceMgr, endLoc);
|
|
|
|
// Since we already adjusted endLoc, this will turn an insertion
|
|
// into a zero-character replacement.
|
|
if (!startLoc.isValid())
|
|
startLoc = endLoc;
|
|
|
|
emitDiagnostic(VD->getLoc(), diag::inout_change_var_type_if_possible,
|
|
actualType, neededType)
|
|
.fixItReplaceChars(startLoc, endLoc, scratch);
|
|
}
|
|
|
|
std::pair<Expr *, Optional<OverloadChoice>>
|
|
AssignmentFailure::resolveImmutableBase(Expr *expr) const {
|
|
auto &cs = getConstraintSystem();
|
|
auto *DC = getDC();
|
|
expr = expr->getValueProvidingExpr();
|
|
|
|
auto isImmutable = [&DC](ValueDecl *decl) {
|
|
if (auto *storage = dyn_cast<AbstractStorageDecl>(decl))
|
|
return !storage->isSettable(nullptr) ||
|
|
!storage->isSetterAccessibleFrom(DC);
|
|
|
|
return false;
|
|
};
|
|
|
|
// Provide specific diagnostics for assignment to subscripts whose base expr
|
|
// is known to be an rvalue.
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(expr)) {
|
|
// If we found a decl for the subscript, check to see if it is a set-only
|
|
// subscript decl.
|
|
if (SE->hasDecl()) {
|
|
const auto &declRef = SE->getDecl();
|
|
if (auto *subscript =
|
|
dyn_cast_or_null<SubscriptDecl>(declRef.getDecl())) {
|
|
if (isImmutable(subscript))
|
|
return {expr, OverloadChoice(getType(SE->getBase()), subscript,
|
|
FunctionRefKind::DoubleApply)};
|
|
}
|
|
}
|
|
|
|
Optional<OverloadChoice> member = getMemberRef(
|
|
cs.getConstraintLocator(SE, ConstraintLocator::SubscriptMember));
|
|
|
|
// If it isn't settable, return it.
|
|
if (member) {
|
|
if (member->isDecl() && isImmutable(member->getDecl()))
|
|
return {expr, member};
|
|
|
|
// We still have a choice, the choice is not a decl
|
|
if (!member->isDecl()) {
|
|
// This must be a keypath application
|
|
assert(member->getKind() == OverloadChoiceKind::KeyPathApplication);
|
|
|
|
auto *argType = getType(SE->getIndex())->castTo<TupleType>();
|
|
assert(argType->getNumElements() == 1);
|
|
|
|
auto indexType = resolveType(argType->getElementType(0));
|
|
|
|
if (auto bgt = indexType->getAs<BoundGenericType>()) {
|
|
// In Swift versions lower than 5, this check will fail as read only
|
|
// key paths can masquerade as writable for compatibilty reasons.
|
|
// This is fine as in this case we just fall back on old diagnostics.
|
|
if (bgt->getDecl() == getASTContext().getKeyPathDecl()) {
|
|
return {expr, member};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If it is settable, then the base must be the problem, recurse.
|
|
return resolveImmutableBase(SE->getBase());
|
|
}
|
|
|
|
// Look through property references.
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(expr)) {
|
|
// If we found a decl for the UDE, check it.
|
|
auto loc = cs.getConstraintLocator(UDE, ConstraintLocator::Member);
|
|
|
|
auto member = getMemberRef(loc);
|
|
|
|
// If we can resolve a member, we can determine whether it is settable in
|
|
// this context.
|
|
if (member && member->isDecl() && isImmutable(member->getDecl()))
|
|
return {expr, member};
|
|
|
|
// If we weren't able to resolve a member or if it is mutable, then the
|
|
// problem must be with the base, recurse.
|
|
return resolveImmutableBase(UDE->getBase());
|
|
}
|
|
|
|
if (auto *MRE = dyn_cast<MemberRefExpr>(expr)) {
|
|
// If the member isn't settable, then it is the problem: return it.
|
|
if (auto member = dyn_cast<AbstractStorageDecl>(MRE->getMember().getDecl()))
|
|
if (isImmutable(member))
|
|
return {expr, OverloadChoice(getType(MRE->getBase()), member,
|
|
FunctionRefKind::SingleApply)};
|
|
|
|
// If we weren't able to resolve a member or if it is mutable, then the
|
|
// problem must be with the base, recurse.
|
|
return resolveImmutableBase(MRE->getBase());
|
|
}
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(expr))
|
|
return {expr,
|
|
OverloadChoice(Type(), DRE->getDecl(), FunctionRefKind::Unapplied)};
|
|
|
|
// Look through x!
|
|
if (auto *FVE = dyn_cast<ForceValueExpr>(expr))
|
|
return resolveImmutableBase(FVE->getSubExpr());
|
|
|
|
// Look through x?
|
|
if (auto *BOE = dyn_cast<BindOptionalExpr>(expr))
|
|
return resolveImmutableBase(BOE->getSubExpr());
|
|
|
|
// Look through implicit conversions
|
|
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(expr))
|
|
if (!isa<LoadExpr>(ICE->getSubExpr()))
|
|
return resolveImmutableBase(ICE->getSubExpr());
|
|
|
|
if (auto *SAE = dyn_cast<SelfApplyExpr>(expr))
|
|
return resolveImmutableBase(SAE->getFn());
|
|
|
|
return {expr, None};
|
|
}
|
|
|
|
Optional<OverloadChoice>
|
|
AssignmentFailure::getMemberRef(ConstraintLocator *locator) const {
|
|
auto member = getOverloadChoiceIfAvailable(locator);
|
|
if (!member)
|
|
return None;
|
|
|
|
if (!member->choice.isDecl())
|
|
return member->choice;
|
|
|
|
auto *DC = getDC();
|
|
auto &TC = getTypeChecker();
|
|
|
|
auto *decl = member->choice.getDecl();
|
|
if (isa<SubscriptDecl>(decl) &&
|
|
isValidDynamicMemberLookupSubscript(cast<SubscriptDecl>(decl), DC, TC)) {
|
|
auto *subscript = cast<SubscriptDecl>(decl);
|
|
// If this is a keypath dynamic member lookup, we have to
|
|
// adjust the locator to find member referred by it.
|
|
if (isValidKeyPathDynamicMemberLookup(subscript, TC)) {
|
|
auto &cs = getConstraintSystem();
|
|
// Type has a following format:
|
|
// `(Self) -> (dynamicMember: {Writable}KeyPath<T, U>) -> U`
|
|
auto *fullType = member->openedFullType->castTo<FunctionType>();
|
|
auto *fnType = fullType->getResult()->castTo<FunctionType>();
|
|
|
|
auto paramTy = fnType->getParams()[0].getPlainType();
|
|
auto keyPath = paramTy->getAnyNominal();
|
|
auto memberLoc = cs.getConstraintLocator(
|
|
locator, LocatorPathElt::getKeyPathDynamicMember(keyPath));
|
|
|
|
auto memberRef = getOverloadChoiceIfAvailable(memberLoc);
|
|
return memberRef ? Optional<OverloadChoice>(memberRef->choice) : None;
|
|
}
|
|
|
|
// If this is a string based dynamic lookup, there is no member declaration.
|
|
return None;
|
|
}
|
|
|
|
return member->choice;
|
|
}
|
|
|
|
Diag<StringRef> AssignmentFailure::findDeclDiagonstic(ASTContext &ctx,
|
|
Expr *destExpr) {
|
|
if (isa<ApplyExpr>(destExpr) || isa<SelfApplyExpr>(destExpr))
|
|
return diag::assignment_lhs_is_apply_expression;
|
|
|
|
if (isa<UnresolvedDotExpr>(destExpr) || isa<MemberRefExpr>(destExpr))
|
|
return diag::assignment_lhs_is_immutable_property;
|
|
|
|
if (auto *subscript = dyn_cast<SubscriptExpr>(destExpr)) {
|
|
auto diagID = diag::assignment_subscript_has_immutable_base;
|
|
// If the destination is a subscript with a 'dynamicLookup:' label and if
|
|
// the tuple is implicit, then this was actually a @dynamicMemberLookup
|
|
// access. Emit a more specific diagnostic.
|
|
if (subscript->getIndex()->isImplicit() &&
|
|
subscript->getArgumentLabels().size() == 1 &&
|
|
subscript->getArgumentLabels().front() == ctx.Id_dynamicMember)
|
|
diagID = diag::assignment_dynamic_property_has_immutable_base;
|
|
|
|
return diagID;
|
|
}
|
|
|
|
return diag::assignment_lhs_is_immutable_variable;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto path = getLocator()->getPath();
|
|
|
|
assert(!path.empty());
|
|
|
|
if (diagnoseMissingFunctionCall())
|
|
return true;
|
|
|
|
Diag<Type, Type> diagnostic;
|
|
switch (path.back().getKind()) {
|
|
case ConstraintLocator::ClosureResult: {
|
|
diagnostic = diag::cannot_convert_closure_result;
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ContextualType: {
|
|
if (isKnownKeyPathType(FromType) && isKnownKeyPathType(ToType)) {
|
|
diagnostic = diag::cannot_convert_initializer_value;
|
|
break;
|
|
}
|
|
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
auto diag = emitDiagnostic(anchor->getLoc(), diagnostic, FromType, ToType);
|
|
diag.highlight(anchor->getSourceRange());
|
|
|
|
(void)trySequenceSubsequenceFixIts(diag, getConstraintSystem(), FromType,
|
|
ToType, anchor);
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::diagnoseMissingFunctionCall() const {
|
|
auto &TC = getTypeChecker();
|
|
|
|
auto *srcFT = FromType->getAs<FunctionType>();
|
|
if (!srcFT || !srcFT->getParams().empty())
|
|
return false;
|
|
|
|
if (ToType->is<AnyFunctionType>() ||
|
|
!TC.isConvertibleTo(srcFT->getResult(), ToType, getDC()))
|
|
return false;
|
|
|
|
auto *anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::missing_nullary_call,
|
|
srcFT->getResult())
|
|
.highlight(anchor->getSourceRange())
|
|
.fixItInsertAfter(anchor->getEndLoc(), "()");
|
|
|
|
tryComputedPropertyFixIts(anchor);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ContextualFailure::trySequenceSubsequenceFixIts(InFlightDiagnostic &diag,
|
|
ConstraintSystem &CS,
|
|
Type fromType, Type toType,
|
|
Expr *expr) {
|
|
if (!CS.TC.Context.getStdlibModule())
|
|
return false;
|
|
|
|
auto String = CS.TC.getStringType(CS.DC);
|
|
auto Substring = CS.TC.getSubstringType(CS.DC);
|
|
|
|
if (!String || !Substring)
|
|
return false;
|
|
|
|
// Substring -> String conversion
|
|
// Wrap in String.init
|
|
if (fromType->isEqual(Substring)) {
|
|
if (toType->isEqual(String)) {
|
|
auto range = expr->getSourceRange();
|
|
diag.fixItInsert(range.Start, "String(");
|
|
diag.fixItInsertAfter(range.End, ")");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void ContextualFailure::tryComputedPropertyFixIts(Expr *expr) const {
|
|
if (!isa<ClosureExpr>(expr))
|
|
return;
|
|
|
|
// It is possible that we're looking at a stored property being
|
|
// initialized with a closure. Something like:
|
|
//
|
|
// var foo: Int = { return 0 }
|
|
//
|
|
// Let's offer another fix-it to remove the '=' to turn the stored
|
|
// property into a computed property. If the variable is immutable, then
|
|
// replace the 'let' with a 'var'.
|
|
|
|
PatternBindingDecl *PBD = nullptr;
|
|
|
|
if (auto TLCD = dyn_cast<TopLevelCodeDecl>(getDC())) {
|
|
if (TLCD->getBody()->isImplicit()) {
|
|
if (auto decl = TLCD->getBody()->getElement(0).dyn_cast<Decl *>()) {
|
|
if (auto binding = dyn_cast<PatternBindingDecl>(decl)) {
|
|
PBD = binding;
|
|
}
|
|
}
|
|
}
|
|
} else if (auto PBI = dyn_cast<PatternBindingInitializer>(getDC())) {
|
|
PBD = PBI->getBinding();
|
|
}
|
|
|
|
if (PBD) {
|
|
if (auto VD = PBD->getSingleVar()) {
|
|
auto entry = PBD->getPatternEntryForVarDecl(VD);
|
|
|
|
if (!VD->isStatic() &&
|
|
!VD->getAttrs().getAttribute<DynamicReplacementAttr>() &&
|
|
entry.getInit() && isa<ClosureExpr>(entry.getInit())) {
|
|
auto diag = emitDiagnostic(expr->getLoc(),
|
|
diag::extension_stored_property_fixit,
|
|
VD->getName());
|
|
diag.fixItRemove(entry.getEqualLoc());
|
|
|
|
if (VD->isLet()) {
|
|
diag.fixItReplace(PBD->getStartLoc(), getTokenText(tok::kw_var));
|
|
}
|
|
|
|
if (auto lazyAttr = VD->getAttrs().getAttribute<LazyAttr>()) {
|
|
diag.fixItRemove(lazyAttr->getRange());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool AutoClosureForwardingFailure::diagnoseAsError() {
|
|
auto path = getLocator()->getPath();
|
|
assert(!path.empty());
|
|
|
|
auto &last = path.back();
|
|
assert(last.getKind() == ConstraintLocator::ApplyArgToParam);
|
|
|
|
// We need a raw anchor here because `getAnchor()` is simplified
|
|
// to the argument expression.
|
|
auto *argExpr = getArgumentExpr(getRawAnchor(), last.getValue());
|
|
emitDiagnostic(argExpr->getLoc(), diag::invalid_autoclosure_forwarding)
|
|
.highlight(argExpr->getSourceRange())
|
|
.fixItInsertAfter(argExpr->getEndLoc(), "()");
|
|
return true;
|
|
}
|
|
|
|
bool NonOptionalUnwrapFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
|
|
auto diagnostic = diag::invalid_optional_chain;
|
|
if (isa<ForceValueExpr>(anchor))
|
|
diagnostic = diag::invalid_force_unwrap;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, BaseType)
|
|
.highlight(anchor->getSourceRange())
|
|
.fixItRemove(anchor->getEndLoc());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MissingCallFailure::diagnoseAsError() {
|
|
auto *baseExpr = getAnchor();
|
|
SourceLoc insertLoc = baseExpr->getEndLoc();
|
|
|
|
if (auto *FVE = dyn_cast<ForceValueExpr>(baseExpr))
|
|
baseExpr = FVE->getSubExpr();
|
|
|
|
// Calls are not yet supported by key path, but it
|
|
// is useful to record this fix to diagnose chaining
|
|
// where one of the key path components is a method
|
|
// reference.
|
|
if (isa<KeyPathExpr>(baseExpr))
|
|
return false;
|
|
|
|
auto path = getLocator()->getPath();
|
|
if (!path.empty()) {
|
|
const auto &last = path.back();
|
|
|
|
switch (last.getKind()) {
|
|
case ConstraintLocator::ContextualType:
|
|
case ConstraintLocator::ApplyArgToParam: {
|
|
auto fnType = getType(baseExpr)->castTo<FunctionType>();
|
|
assert(fnType->getNumParams() == 0);
|
|
emitDiagnostic(baseExpr->getLoc(), diag::missing_nullary_call,
|
|
fnType->getResult())
|
|
.fixItInsertAfter(baseExpr->getEndLoc(), "()");
|
|
return true;
|
|
}
|
|
|
|
case ConstraintLocator::FunctionResult: {
|
|
path = path.drop_back();
|
|
if (path.back().getKind() != ConstraintLocator::AutoclosureResult)
|
|
break;
|
|
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
|
|
case ConstraintLocator::AutoclosureResult: {
|
|
auto &cs = getConstraintSystem();
|
|
auto loc = cs.getConstraintLocator(getRawAnchor(), path.drop_back(),
|
|
/*summaryFlags=*/0);
|
|
AutoClosureForwardingFailure failure(cs, loc);
|
|
return failure.diagnoseAsError();
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(baseExpr)) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_function,
|
|
DRE->getDecl()->getBaseName().getIdentifier())
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(baseExpr)) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_method,
|
|
UDE->getName().getBaseIdentifier())
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
|
|
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(baseExpr)) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(DSCE->getFn())) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_method,
|
|
DRE->getDecl()->getBaseName().getIdentifier())
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *AE = dyn_cast<AssignExpr>(baseExpr)) {
|
|
auto *srcExpr = AE->getSrc();
|
|
if (auto *fnType = getType(srcExpr)->getAs<FunctionType>()) {
|
|
emitDiagnostic(srcExpr->getLoc(), diag::missing_nullary_call,
|
|
fnType->getResult())
|
|
.highlight(srcExpr->getSourceRange())
|
|
.fixItInsertAfter(srcExpr->getEndLoc(), "()");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(baseExpr->getLoc(), diag::did_not_call_function_value)
|
|
.fixItInsertAfter(insertLoc, "()");
|
|
return true;
|
|
}
|
|
|
|
bool SubscriptMisuseFailure::diagnoseAsError() {
|
|
auto &sourceMgr = getASTContext().SourceMgr;
|
|
|
|
auto *memberExpr = cast<UnresolvedDotExpr>(getRawAnchor());
|
|
auto *baseExpr = getAnchor();
|
|
|
|
auto memberRange = baseExpr->getSourceRange();
|
|
(void)simplifyLocator(getConstraintSystem(), getLocator(), memberRange);
|
|
|
|
auto nameLoc = DeclNameLoc(memberRange.Start);
|
|
|
|
auto diag = emitDiagnostic(baseExpr->getLoc(),
|
|
diag::could_not_find_subscript_member_did_you_mean,
|
|
getType(baseExpr));
|
|
|
|
diag.highlight(memberRange).highlight(nameLoc.getSourceRange());
|
|
|
|
auto *parentExpr = findParentExpr(memberExpr);
|
|
assert(parentExpr && "Couldn't find a parent expression for a member call?!");
|
|
|
|
auto *argExpr = cast<ApplyExpr>(parentExpr)->getArg();
|
|
|
|
auto toCharSourceRange = Lexer::getCharSourceRangeFromSourceRange;
|
|
auto lastArgSymbol = toCharSourceRange(sourceMgr, argExpr->getEndLoc());
|
|
|
|
diag.fixItReplace(SourceRange(argExpr->getStartLoc()),
|
|
getTokenText(tok::l_square));
|
|
diag.fixItRemove(nameLoc.getSourceRange());
|
|
diag.fixItRemove(SourceRange(memberExpr->getDotLoc()));
|
|
|
|
if (sourceMgr.extractText(lastArgSymbol) == getTokenText(tok::r_paren))
|
|
diag.fixItReplace(SourceRange(argExpr->getEndLoc()),
|
|
getTokenText(tok::r_square));
|
|
else
|
|
diag.fixItInsertAfter(argExpr->getEndLoc(), getTokenText(tok::r_square));
|
|
|
|
diag.flush();
|
|
if (auto overload = getOverloadChoiceIfAvailable(getLocator())) {
|
|
emitDiagnostic(overload->choice.getDecl(), diag::kind_declared_here,
|
|
DescriptiveDeclKind::Subscript);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SubscriptMisuseFailure::diagnoseAsNote() {
|
|
if (auto overload = getOverloadChoiceIfAvailable(getLocator())) {
|
|
emitDiagnostic(overload->choice.getDecl(), diag::found_candidate);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// When a user refers a enum case with a wrong member name, we try to find a
|
|
/// enum element whose name differs from the wrong name only in convention;
|
|
/// meaning their lower case counterparts are identical.
|
|
/// - DeclName is valid when such a correct case is found; invalid otherwise.
|
|
DeclName MissingMemberFailure::findCorrectEnumCaseName(
|
|
Type Ty, TypoCorrectionResults &corrections, DeclName memberName) {
|
|
if (memberName.isSpecial() || !memberName.isSimpleName())
|
|
return DeclName();
|
|
if (!Ty->getEnumOrBoundGenericEnum())
|
|
return DeclName();
|
|
auto candidate =
|
|
corrections.getUniqueCandidateMatching([&](ValueDecl *candidate) {
|
|
return (isa<EnumElementDecl>(candidate) &&
|
|
candidate->getFullName().getBaseIdentifier().str().equals_lower(
|
|
memberName.getBaseIdentifier().str()));
|
|
});
|
|
return (candidate ? candidate->getFullName() : DeclName());
|
|
}
|
|
|
|
bool MissingMemberFailure::diagnoseAsError() {
|
|
auto &TC = getTypeChecker();
|
|
auto *anchor = getRawAnchor();
|
|
auto *baseExpr = getAnchor();
|
|
|
|
if (!anchor || !baseExpr)
|
|
return false;
|
|
|
|
if (auto *typeVar = getBaseType()->getAs<TypeVariableType>()) {
|
|
auto &CS = getConstraintSystem();
|
|
auto *memberLoc = typeVar->getImpl().getLocator();
|
|
// Don't try to diagnose anything besides first missing
|
|
// member in the chain. e.g. `x.foo().bar()` let's make
|
|
// sure to diagnose only `foo()` as missing because we
|
|
// don't really know much about what `bar()` is supposed
|
|
// to be.
|
|
if (CS.MissingMembers.count(memberLoc))
|
|
return false;
|
|
}
|
|
|
|
auto baseType = resolveType(getBaseType())->getWithoutSpecifierType();
|
|
|
|
DeclNameLoc nameLoc(anchor->getStartLoc());
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
nameLoc = UDE->getNameLoc();
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
nameLoc = UME->getNameLoc();
|
|
}
|
|
|
|
auto emitBasicError = [&](Type baseType) {
|
|
auto diagnostic = diag::could_not_find_value_member;
|
|
|
|
if (auto *metatype = baseType->getAs<MetatypeType>()) {
|
|
baseType = metatype->getInstanceType();
|
|
diagnostic = diag::could_not_find_type_member;
|
|
}
|
|
|
|
if (baseType->is<TupleType>())
|
|
diagnostic = diag::could_not_find_tuple_member;
|
|
|
|
emitDiagnostic(anchor->getLoc(), diagnostic, baseType, getName())
|
|
.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
};
|
|
|
|
TypoCorrectionResults corrections(TC, getName(), nameLoc);
|
|
auto tryTypoCorrection = [&] {
|
|
TC.performTypoCorrection(getDC(), DeclRefKind::Ordinary, baseType,
|
|
defaultMemberLookupOptions, corrections);
|
|
};
|
|
|
|
if (getName().getBaseName().getKind() == DeclBaseName::Kind::Subscript) {
|
|
emitDiagnostic(anchor->getLoc(), diag::could_not_find_value_subscript,
|
|
baseType)
|
|
.highlight(baseExpr->getSourceRange());
|
|
} else if (getName().getBaseName() == "deinit") {
|
|
// Specialised diagnostic if trying to access deinitialisers
|
|
emitDiagnostic(anchor->getLoc(), diag::destructor_not_accessible)
|
|
.highlight(baseExpr->getSourceRange());
|
|
} else if (auto metatypeTy = baseType->getAs<MetatypeType>()) {
|
|
auto instanceTy = metatypeTy->getInstanceType();
|
|
tryTypoCorrection();
|
|
|
|
if (DeclName rightName =
|
|
findCorrectEnumCaseName(instanceTy, corrections, getName())) {
|
|
emitDiagnostic(anchor->getLoc(), diag::could_not_find_enum_case,
|
|
instanceTy, getName(), rightName)
|
|
.fixItReplace(nameLoc.getBaseNameLoc(),
|
|
rightName.getBaseIdentifier().str());
|
|
return true;
|
|
}
|
|
|
|
if (auto correction = corrections.claimUniqueCorrection()) {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(), diag::could_not_find_type_member_corrected,
|
|
instanceTy, getName(), correction->CorrectedName);
|
|
diagnostic.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
correction->addFixits(diagnostic);
|
|
} else {
|
|
emitBasicError(baseType);
|
|
}
|
|
} else if (auto moduleTy = baseType->getAs<ModuleType>()) {
|
|
emitDiagnostic(baseExpr->getLoc(), diag::no_member_of_module,
|
|
moduleTy->getModule()->getName(), getName())
|
|
.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
return true;
|
|
} else {
|
|
// Check for a few common cases that can cause missing members.
|
|
auto *ED = baseType->getEnumOrBoundGenericEnum();
|
|
if (ED && getName().isSimpleName("rawValue")) {
|
|
auto loc = ED->getNameLoc();
|
|
if (loc.isValid()) {
|
|
emitBasicError(baseType);
|
|
emitDiagnostic(loc, diag::did_you_mean_raw_type);
|
|
return true;
|
|
}
|
|
} else if (baseType->isAny()) {
|
|
emitBasicError(baseType);
|
|
emitDiagnostic(anchor->getLoc(), diag::any_as_anyobject_fixit)
|
|
.fixItInsert(baseExpr->getStartLoc(), "(")
|
|
.fixItInsertAfter(baseExpr->getEndLoc(), " as AnyObject)");
|
|
return true;
|
|
}
|
|
|
|
tryTypoCorrection();
|
|
|
|
if (auto correction = corrections.claimUniqueCorrection()) {
|
|
auto diagnostic = emitDiagnostic(
|
|
anchor->getLoc(), diag::could_not_find_value_member_corrected,
|
|
baseType, getName(), correction->CorrectedName);
|
|
diagnostic.highlight(baseExpr->getSourceRange())
|
|
.highlight(nameLoc.getSourceRange());
|
|
correction->addFixits(diagnostic);
|
|
} else {
|
|
emitBasicError(baseType);
|
|
}
|
|
}
|
|
|
|
// Note all the correction candidates.
|
|
corrections.noteAllCandidates();
|
|
return true;
|
|
}
|
|
|
|
bool InvalidMemberRefOnExistential::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
|
|
Expr *baseExpr = getAnchor();
|
|
DeclNameLoc nameLoc;
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
baseExpr = UDE->getBase();
|
|
nameLoc = UDE->getNameLoc();
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
nameLoc = UME->getNameLoc();
|
|
} else if (auto *SE = dyn_cast<SubscriptExpr>(anchor)) {
|
|
baseExpr = SE->getBase();
|
|
} else if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
baseExpr = call->getFn();
|
|
}
|
|
|
|
emitDiagnostic(getAnchor()->getLoc(),
|
|
diag::could_not_use_member_on_existential, getBaseType(),
|
|
getName())
|
|
.highlight(nameLoc.getSourceRange())
|
|
.highlight(baseExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
bool AllowTypeOrInstanceMemberFailure::diagnoseAsError() {
|
|
auto loc = getAnchor()->getLoc();
|
|
auto &cs = getConstraintSystem();
|
|
auto *DC = getDC();
|
|
auto locator = getLocator();
|
|
|
|
if (loc.isInvalid()) {
|
|
return true;
|
|
}
|
|
|
|
Expr *expr = getParentExpr();
|
|
SourceRange baseRange = expr ? expr->getSourceRange() : SourceRange();
|
|
|
|
// If the base is an implicit self type reference, and we're in a
|
|
// an initializer, then the user wrote something like:
|
|
//
|
|
// class Foo { let x = 1, y = x }
|
|
//
|
|
// which runs in type context, not instance context, or
|
|
//
|
|
// class Bar {
|
|
// let otherwise = 1 // instance member
|
|
// var x: Int
|
|
// func init(x: Int =otherwise) { // default parameter
|
|
// self.x = x
|
|
// }
|
|
// }
|
|
//
|
|
// in which an instance member is used as a default value for a
|
|
// parameter.
|
|
//
|
|
// Produce a tailored diagnostic for these cases since this
|
|
// comes up and is otherwise non-obvious what is going on.
|
|
|
|
if (Name.isSimpleName(DeclBaseName::createConstructor()) &&
|
|
!BaseType->is<AnyMetatypeType>()) {
|
|
if (auto ctorRef = dyn_cast<UnresolvedDotExpr>(getRawAnchor())) {
|
|
if (isa<SuperRefExpr>(ctorRef->getBase())) {
|
|
emitDiagnostic(loc, diag::super_initializer_not_in_initializer);
|
|
return true;
|
|
}
|
|
|
|
auto isCallArgument = [this](Expr *expr) {
|
|
auto &cs = getConstraintSystem();
|
|
auto argExpr = cs.getParentExpr(expr);
|
|
if (!argExpr)
|
|
return false;
|
|
auto possibleApplyExpr = cs.getParentExpr(expr);
|
|
return possibleApplyExpr && isa<ApplyExpr>(possibleApplyExpr);
|
|
};
|
|
|
|
auto *initCall = cs.getParentExpr(cs.getParentExpr(ctorRef));
|
|
|
|
auto isMutable = [&DC](ValueDecl *decl) {
|
|
if (auto *storage = dyn_cast<AbstractStorageDecl>(decl))
|
|
return storage->isSettable(DC) && storage->isSetterAccessibleFrom(DC);
|
|
|
|
return true;
|
|
};
|
|
|
|
auto selection = getChoiceFor(ctorRef->getBase());
|
|
if (selection) {
|
|
OverloadChoice choice = selection->choice;
|
|
if (choice.isDecl() && isMutable(choice.getDecl()) &&
|
|
!isCallArgument(initCall) &&
|
|
cs.getContextualTypePurpose() == CTP_Unused) {
|
|
auto fixItLoc = ctorRef->getBase()->getSourceRange().End;
|
|
emitDiagnostic(loc, diag::init_not_instance_member_use_assignment)
|
|
.fixItInsertAfter(fixItLoc, " = ");
|
|
return true;
|
|
}
|
|
|
|
SourceRange fixItRng = ctorRef->getBase()->getSourceRange();
|
|
emitDiagnostic(loc, diag::init_not_instance_member)
|
|
.fixItInsert(fixItRng.Start, "type(of: ")
|
|
.fixItInsertAfter(fixItRng.End, ")");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (BaseType->is<AnyMetatypeType>() && !Member->isStatic()) {
|
|
auto instanceTy = BaseType;
|
|
|
|
if (auto *AMT = instanceTy->getAs<AnyMetatypeType>()) {
|
|
instanceTy = AMT->getInstanceType();
|
|
}
|
|
|
|
if (getRawAnchor() &&
|
|
cs.DC->getContextKind() == DeclContextKind::Initializer) {
|
|
auto *TypeDC = cs.DC->getParent();
|
|
bool propertyInitializer = true;
|
|
// If the parent context is not a type context, we expect it
|
|
// to be a defaulted parameter in a function declaration.
|
|
if (!TypeDC->isTypeContext()) {
|
|
assert(TypeDC->getContextKind() ==
|
|
DeclContextKind::AbstractFunctionDecl &&
|
|
"Expected function decl context for initializer!");
|
|
TypeDC = TypeDC->getParent();
|
|
propertyInitializer = false;
|
|
}
|
|
|
|
assert(TypeDC->isTypeContext() && "Expected type decl context!");
|
|
|
|
if (TypeDC->getSelfNominalTypeDecl() == instanceTy->getAnyNominal()) {
|
|
if (propertyInitializer) {
|
|
emitDiagnostic(loc, diag::instance_member_in_initializer, Name);
|
|
return true;
|
|
} else {
|
|
emitDiagnostic(loc, diag::instance_member_in_default_parameter, Name);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto maybeCallExpr = getRawAnchor();
|
|
|
|
if (auto UDE = dyn_cast<UnresolvedDotExpr>(maybeCallExpr)) {
|
|
maybeCallExpr = UDE->getBase();
|
|
}
|
|
|
|
if (auto callExpr = dyn_cast<ApplyExpr>(maybeCallExpr)) {
|
|
auto fnExpr = callExpr->getFn();
|
|
auto fnType = cs.getType(fnExpr)->getRValueType();
|
|
auto arg = callExpr->getArg();
|
|
|
|
if (fnType->is<ExistentialMetatypeType>()) {
|
|
emitDiagnostic(arg->getStartLoc(),
|
|
diag::missing_init_on_metatype_initialization)
|
|
.highlight(fnExpr->getSourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check whether the instance member is declared on parent context and if so
|
|
// provide more specialized message.
|
|
auto memberTypeContext =
|
|
Member->getDeclContext()->getInnermostTypeContext();
|
|
auto currentTypeContext = cs.DC->getInnermostTypeContext();
|
|
|
|
if (memberTypeContext && currentTypeContext &&
|
|
memberTypeContext->getSemanticDepth() <
|
|
currentTypeContext->getSemanticDepth()) {
|
|
emitDiagnostic(loc, diag::could_not_use_instance_member_on_type,
|
|
currentTypeContext->getDeclaredInterfaceType(), Name,
|
|
memberTypeContext->getDeclaredInterfaceType(), true)
|
|
.highlight(baseRange)
|
|
.highlight(Member->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (isa<TypeExpr>(getRawAnchor())) {
|
|
emitDiagnostic(loc, diag::instance_member_use_on_type, instanceTy, Name)
|
|
.highlight(getRawAnchor()->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
// Just emit a generic "instance member cannot be used" error
|
|
emitDiagnostic(loc, diag::could_not_use_instance_member_on_type, instanceTy,
|
|
Name, instanceTy, false)
|
|
.highlight(getAnchor()->getSourceRange());
|
|
return true;
|
|
} else {
|
|
// If the base of the lookup is a protocol metatype, suggest
|
|
// to replace the metatype with 'Self'
|
|
// error saying the lookup cannot be on a protocol metatype
|
|
Optional<InFlightDiagnostic> Diag;
|
|
auto baseTy = BaseType;
|
|
|
|
if (auto metatypeTy = baseTy->getAs<AnyMetatypeType>()) {
|
|
auto instanceTy = metatypeTy->getInstanceType();
|
|
|
|
// This will only happen if we have an unresolved dot expression
|
|
// (.foo) where foo is a protocol member and the contextual type is
|
|
// an optional protocol metatype.
|
|
if (auto objectTy = instanceTy->getOptionalObjectType()) {
|
|
instanceTy = objectTy;
|
|
baseTy = MetatypeType::get(objectTy);
|
|
}
|
|
|
|
if (instanceTy->isExistentialType()) {
|
|
// Give a customized message if we're accessing a member type
|
|
// of a protocol -- otherwise a diagnostic talking about
|
|
// static members doesn't make a whole lot of sense
|
|
if (auto TAD = dyn_cast<TypeAliasDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(loc, diag::typealias_outside_of_protocol,
|
|
TAD->getName()));
|
|
} else if (auto ATD = dyn_cast<AssociatedTypeDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(loc, diag::assoc_type_outside_of_protocol,
|
|
ATD->getName()));
|
|
} else if (isa<ConstructorDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(loc, diag::construct_protocol_by_name,
|
|
instanceTy));
|
|
} else {
|
|
Diag.emplace(emitDiagnostic(
|
|
loc, diag::could_not_use_type_member_on_protocol_metatype, baseTy,
|
|
Name));
|
|
}
|
|
|
|
Diag->highlight(baseRange).highlight(getAnchor()->getSourceRange());
|
|
|
|
// See through function decl context
|
|
if (auto parent = cs.DC->getInnermostTypeContext()) {
|
|
// If we are in a protocol extension of 'Proto' and we see
|
|
// 'Proto.static', suggest 'Self.static'
|
|
if (auto extensionContext = parent->getExtendedProtocolDecl()) {
|
|
if (extensionContext->getDeclaredType()->isEqual(instanceTy)) {
|
|
Diag->fixItReplace(getAnchor()->getSourceRange(), "Self");
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If this is a reference to a static member by one of the key path
|
|
// components, let's provide a tailored diagnostic and return because
|
|
// that is unsupported so there is no fix-it.
|
|
if (locator->isForKeyPathComponent()) {
|
|
InvalidStaticMemberRefInKeyPath failure(expr, cs, Member, locator);
|
|
return failure.diagnoseAsError();
|
|
}
|
|
|
|
if (isa<EnumElementDecl>(Member)) {
|
|
Diag.emplace(emitDiagnostic(
|
|
loc, diag::could_not_use_enum_element_on_instance, Name));
|
|
} else {
|
|
Diag.emplace(emitDiagnostic(
|
|
loc, diag::could_not_use_type_member_on_instance, baseTy, Name));
|
|
}
|
|
|
|
Diag->highlight(getAnchor()->getSourceRange());
|
|
|
|
if (Name.isSimpleName(DeclBaseName::createConstructor()) &&
|
|
!baseTy->is<AnyMetatypeType>()) {
|
|
if (auto ctorRef = dyn_cast<UnresolvedDotExpr>(getRawAnchor())) {
|
|
SourceRange fixItRng = ctorRef->getNameLoc().getSourceRange();
|
|
Diag->fixItInsert(fixItRng.Start, "type(of: ");
|
|
Diag->fixItInsertAfter(fixItRng.End, ")");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Determine the contextual type of the expression
|
|
Type contextualType;
|
|
for (auto iterateCS = &cs; contextualType.isNull() && iterateCS;
|
|
iterateCS = iterateCS->baseCS) {
|
|
contextualType = iterateCS->getContextualType();
|
|
}
|
|
|
|
// Try to provide a fix-it that only contains a '.'
|
|
if (contextualType && baseTy->isEqual(contextualType)) {
|
|
Diag->fixItInsert(loc, ".");
|
|
return true;
|
|
}
|
|
|
|
// Check if the expression is the matching operator ~=, most often used in
|
|
// case statements. If so, try to provide a single dot fix-it
|
|
const Expr *contextualTypeNode = nullptr;
|
|
ConstraintSystem *lastCS = nullptr;
|
|
for (auto iterateCS = &cs; iterateCS; iterateCS = iterateCS->baseCS) {
|
|
lastCS = iterateCS;
|
|
contextualTypeNode = iterateCS->getContextualTypeNode();
|
|
}
|
|
|
|
// The '~=' operator is an overloaded decl ref inside a binaryExpr
|
|
if (auto binaryExpr = dyn_cast<BinaryExpr>(contextualTypeNode)) {
|
|
if (auto overloadedFn
|
|
= dyn_cast<OverloadedDeclRefExpr>(binaryExpr->getFn())) {
|
|
if (!overloadedFn->getDecls().empty()) {
|
|
// Fetch any declaration to check if the name is '~='
|
|
ValueDecl *decl0 = overloadedFn->getDecls()[0];
|
|
|
|
if (decl0->getBaseName() == decl0->getASTContext().Id_MatchOperator) {
|
|
assert(binaryExpr->getArg()->getElements().size() == 2);
|
|
|
|
// If the rhs of '~=' is the enum type, a single dot suffixes
|
|
// since the type can be inferred
|
|
Type secondArgType =
|
|
lastCS->getType(binaryExpr->getArg()->getElement(1));
|
|
if (secondArgType->isEqual(baseTy)) {
|
|
Diag->fixItInsert(loc, ".");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fall back to a fix-it with a full type qualifier
|
|
if (auto *NTD = Member->getDeclContext()->getSelfNominalTypeDecl()) {
|
|
auto typeName = NTD->getSelfInterfaceType()->getString();
|
|
if (auto *SE = dyn_cast<SubscriptExpr>(getRawAnchor())) {
|
|
auto *baseExpr = SE->getBase();
|
|
Diag->fixItReplace(baseExpr->getSourceRange(), typeName);
|
|
} else {
|
|
Diag->fixItInsert(loc, typeName + ".");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PartialApplicationFailure::diagnoseAsError() {
|
|
auto &cs = getConstraintSystem();
|
|
auto *anchor = cast<UnresolvedDotExpr>(getRawAnchor());
|
|
|
|
RefKind kind = RefKind::MutatingMethod;
|
|
|
|
// If this is initializer delegation chain, we have a tailored message.
|
|
if (getOverloadChoiceIfAvailable(cs.getConstraintLocator(
|
|
anchor, ConstraintLocator::ConstructorMember))) {
|
|
kind = anchor->getBase()->isSuperExpr() ? RefKind::SuperInit
|
|
: RefKind::SelfInit;
|
|
}
|
|
|
|
auto diagnostic = CompatibilityWarning
|
|
? diag::partial_application_of_function_invalid_swift4
|
|
: diag::partial_application_of_function_invalid;
|
|
|
|
emitDiagnostic(anchor->getNameLoc(), diagnostic, kind);
|
|
return true;
|
|
}
|
|
|
|
bool InvalidDynamicInitOnMetatypeFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::dynamic_construct_class,
|
|
BaseType->getMetatypeInstanceType())
|
|
.highlight(BaseRange);
|
|
emitDiagnostic(Init, diag::note_nonrequired_initializer, Init->isImplicit(),
|
|
Init->getFullName());
|
|
return true;
|
|
}
|
|
|
|
bool InitOnProtocolMetatypeFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
if (IsStaticallyDerived) {
|
|
emitDiagnostic(anchor->getLoc(), diag::construct_protocol_by_name,
|
|
BaseType->getMetatypeInstanceType())
|
|
.highlight(BaseRange);
|
|
} else {
|
|
emitDiagnostic(anchor->getLoc(), diag::construct_protocol_value, BaseType)
|
|
.highlight(BaseRange);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImplicitInitOnNonConstMetatypeFailure::diagnoseAsError() {
|
|
auto *apply = cast<ApplyExpr>(getRawAnchor());
|
|
auto loc = apply->getArg()->getStartLoc();
|
|
emitDiagnostic(loc, diag::missing_init_on_metatype_initialization)
|
|
.fixItInsert(loc, ".init");
|
|
return true;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::diagnoseAsError() {
|
|
auto *locator = getLocator();
|
|
auto path = locator->getPath();
|
|
|
|
// TODO: Currently this is only intended to diagnose contextual failures.
|
|
if (path.empty() ||
|
|
!(path.back().getKind() == ConstraintLocator::ApplyArgToParam ||
|
|
path.back().getKind() == ConstraintLocator::ContextualType))
|
|
return false;
|
|
|
|
if (auto *closure = dyn_cast<ClosureExpr>(getAnchor()))
|
|
return diagnoseTrailingClosure(closure);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MissingArgumentsFailure::diagnoseTrailingClosure(ClosureExpr *closure) {
|
|
auto diff = Fn->getNumParams() - NumSynthesized;
|
|
|
|
// If the closure didn't specify any arguments and it is in a context that
|
|
// needs some, produce a fixit to turn "{...}" into "{ _,_ in ...}".
|
|
if (diff == 0) {
|
|
auto diag =
|
|
emitDiagnostic(closure->getStartLoc(),
|
|
diag::closure_argument_list_missing, NumSynthesized);
|
|
|
|
std::string fixText; // Let's provide fixits for up to 10 args.
|
|
if (Fn->getNumParams() <= 10) {
|
|
fixText += " ";
|
|
interleave(
|
|
Fn->getParams(),
|
|
[&fixText](const AnyFunctionType::Param ¶m) { fixText += '_'; },
|
|
[&fixText] { fixText += ','; });
|
|
fixText += " in ";
|
|
}
|
|
|
|
if (!fixText.empty()) {
|
|
// Determine if there is already a space after the { in the closure to
|
|
// make sure we introduce the right whitespace.
|
|
auto afterBrace = closure->getStartLoc().getAdvancedLoc(1);
|
|
auto text = getASTContext().SourceMgr.extractText({afterBrace, 1});
|
|
if (text.size() == 1 && text == " ")
|
|
fixText = fixText.erase(fixText.size() - 1);
|
|
else
|
|
fixText = fixText.erase(0, 1);
|
|
diag.fixItInsertAfter(closure->getStartLoc(), fixText);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
auto params = closure->getParameters();
|
|
bool onlyAnonymousParams =
|
|
std::all_of(params->begin(), params->end(),
|
|
[](ParamDecl *param) { return !param->hasName(); });
|
|
|
|
auto diag =
|
|
emitDiagnostic(params->getStartLoc(), diag::closure_argument_list_tuple,
|
|
resolveType(Fn), Fn->getNumParams(), diff, diff == 1);
|
|
|
|
// If the number of parameters is less than number of inferred
|
|
// let's try to suggest a fix-it with the rest of the missing parameters.
|
|
if (!closure->hasExplicitResultType() &&
|
|
closure->getInLoc().isValid()) {
|
|
SmallString<32> fixIt;
|
|
llvm::raw_svector_ostream OS(fixIt);
|
|
|
|
OS << ",";
|
|
for (unsigned i = 0; i != NumSynthesized; ++i) {
|
|
OS << ((onlyAnonymousParams) ? "_" : "<#arg#>");
|
|
OS << ((i == NumSynthesized - 1) ? " " : ",");
|
|
}
|
|
|
|
diag.fixItInsertAfter(params->getEndLoc(), OS.str());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ClosureParamDestructuringFailure::diagnoseAsError() {
|
|
auto *closure = cast<ClosureExpr>(getAnchor());
|
|
auto params = closure->getParameters();
|
|
|
|
// In case of implicit parameters e.g. $0, $1 we
|
|
// can't really provide good fix-it because
|
|
// structure of parameter type itself is unclear.
|
|
for (auto *param : params->getArray()) {
|
|
if (param->isImplicit()) {
|
|
emitDiagnostic(params->getStartLoc(),
|
|
diag::closure_tuple_parameter_destructuring_implicit,
|
|
getParameterType());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto diag = emitDiagnostic(params->getStartLoc(),
|
|
diag::closure_tuple_parameter_destructuring,
|
|
getParameterType());
|
|
|
|
auto *closureBody = closure->getBody();
|
|
if (!closureBody)
|
|
return true;
|
|
|
|
auto &sourceMgr = getASTContext().SourceMgr;
|
|
auto bodyStmts = closureBody->getElements();
|
|
|
|
SourceLoc bodyLoc;
|
|
// If the body is empty let's put the cursor
|
|
// right after "in", otherwise make it start
|
|
// location of the first statement in the body.
|
|
if (bodyStmts.empty())
|
|
bodyLoc = Lexer::getLocForEndOfToken(sourceMgr, closure->getInLoc());
|
|
else
|
|
bodyLoc = bodyStmts.front().getStartLoc();
|
|
|
|
SmallString<64> fixIt;
|
|
llvm::raw_svector_ostream OS(fixIt);
|
|
|
|
// If this is multi-line closure we'd have to insert new lines
|
|
// in the suggested 'let' to keep the structure of the code intact,
|
|
// otherwise just use ';' to keep everything on the same line.
|
|
auto inLine = sourceMgr.getLineNumber(closure->getInLoc());
|
|
auto bodyLine = sourceMgr.getLineNumber(bodyLoc);
|
|
auto isMultiLineClosure = bodyLine > inLine;
|
|
auto indent =
|
|
bodyStmts.empty() ? "" : Lexer::getIndentationForLine(sourceMgr, bodyLoc);
|
|
|
|
SmallString<16> parameter;
|
|
llvm::raw_svector_ostream parameterOS(parameter);
|
|
|
|
parameterOS << "(";
|
|
interleave(
|
|
params->getArray(),
|
|
[&](const ParamDecl *param) { parameterOS << param->getNameStr(); },
|
|
[&] { parameterOS << ", "; });
|
|
parameterOS << ")";
|
|
|
|
// Check if there are any explicit types associated
|
|
// with parameters, if there are, we'll have to add
|
|
// type information to the replacement argument.
|
|
bool explicitTypes =
|
|
llvm::any_of(params->getArray(), [](const ParamDecl *param) {
|
|
return param->getTypeLoc().getTypeRepr();
|
|
});
|
|
|
|
if (isMultiLineClosure)
|
|
OS << '\n' << indent;
|
|
|
|
// Let's form 'let <name> : [<type>]? = arg' expression.
|
|
OS << "let " << parameterOS.str() << " = arg"
|
|
<< (isMultiLineClosure ? "\n" + indent : "; ");
|
|
|
|
SmallString<64> argName;
|
|
llvm::raw_svector_ostream nameOS(argName);
|
|
if (explicitTypes) {
|
|
nameOS << "(arg: " << getParameterType()->getString() << ")";
|
|
} else {
|
|
nameOS << "(arg)";
|
|
}
|
|
|
|
if (closure->hasSingleExpressionBody()) {
|
|
// Let's see if we need to add result type to the argument/fix-it:
|
|
// - if the there is a result type associated with the closure;
|
|
// - and it's not a void type;
|
|
// - and it hasn't been explicitly written.
|
|
auto resultType = resolveType(ContextualType->getResult());
|
|
auto hasResult = [](Type resultType) -> bool {
|
|
return resultType && !resultType->isVoid();
|
|
};
|
|
|
|
auto isValidType = [](Type resultType) -> bool {
|
|
return resultType && !resultType->hasUnresolvedType() &&
|
|
!resultType->hasTypeVariable();
|
|
};
|
|
|
|
// If there an expected result type but it hasn't been explicitly
|
|
// provided, let's add it to the argument.
|
|
if (hasResult(resultType) && !closure->hasExplicitResultType()) {
|
|
nameOS << " -> ";
|
|
if (isValidType(resultType))
|
|
nameOS << resultType->getString();
|
|
else
|
|
nameOS << "<#Result#>";
|
|
}
|
|
|
|
if (auto stmt = bodyStmts.front().get<Stmt *>()) {
|
|
// If the body is a single expression with implicit return.
|
|
if (isa<ReturnStmt>(stmt) && stmt->isImplicit()) {
|
|
// And there is non-void expected result type,
|
|
// because we add 'let' expression to the body
|
|
// we need to make such 'return' explicit.
|
|
if (hasResult(resultType))
|
|
OS << "return ";
|
|
}
|
|
}
|
|
}
|
|
|
|
diag.fixItReplace(params->getSourceRange(), nameOS.str())
|
|
.fixItInsert(bodyLoc, OS.str());
|
|
return true;
|
|
}
|
|
|
|
bool OutOfOrderArgumentFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
auto *argExpr = isa<TupleExpr>(anchor) ? anchor : getArgumentExprFor(anchor);
|
|
if (!argExpr)
|
|
return false;
|
|
|
|
auto *tuple = cast<TupleExpr>(argExpr);
|
|
|
|
Identifier first = tuple->getElementName(ArgIdx);
|
|
Identifier second = tuple->getElementName(PrevArgIdx);
|
|
|
|
// Build a mapping from arguments to parameters.
|
|
SmallVector<unsigned, 4> argBindings(tuple->getNumElements());
|
|
for (unsigned paramIdx = 0; paramIdx != Bindings.size(); ++paramIdx) {
|
|
for (auto argIdx : Bindings[paramIdx])
|
|
argBindings[argIdx] = paramIdx;
|
|
}
|
|
|
|
auto argRange = [&](unsigned argIdx, Identifier label) -> SourceRange {
|
|
auto range = tuple->getElement(argIdx)->getSourceRange();
|
|
if (!label.empty())
|
|
range.Start = tuple->getElementNameLoc(argIdx);
|
|
|
|
unsigned paramIdx = argBindings[argIdx];
|
|
if (Bindings[paramIdx].size() > 1)
|
|
range.End = tuple->getElement(Bindings[paramIdx].back())->getEndLoc();
|
|
|
|
return range;
|
|
};
|
|
|
|
auto firstRange = argRange(ArgIdx, first);
|
|
auto secondRange = argRange(PrevArgIdx, second);
|
|
|
|
SourceLoc diagLoc = firstRange.Start;
|
|
|
|
auto addFixIts = [&](InFlightDiagnostic diag) {
|
|
diag.highlight(firstRange).highlight(secondRange);
|
|
|
|
// Move the misplaced argument by removing it from one location and
|
|
// inserting it in another location. To maintain argument comma
|
|
// separation, since the argument is always moving to an earlier index
|
|
// the preceding comma and whitespace is removed and a new trailing
|
|
// comma and space is inserted with the moved argument.
|
|
auto &SM = getASTContext().SourceMgr;
|
|
auto text = SM.extractText(
|
|
Lexer::getCharSourceRangeFromSourceRange(SM, firstRange));
|
|
|
|
auto removalRange =
|
|
SourceRange(Lexer::getLocForEndOfToken(
|
|
SM, tuple->getElement(ArgIdx - 1)->getEndLoc()),
|
|
firstRange.End);
|
|
diag.fixItRemove(removalRange);
|
|
diag.fixItInsert(secondRange.Start, text.str() + ", ");
|
|
};
|
|
|
|
// There are 4 diagnostic messages variations depending on
|
|
// labeled/unlabeled arguments.
|
|
if (first.empty() && second.empty()) {
|
|
addFixIts(emitDiagnostic(diagLoc,
|
|
diag::argument_out_of_order_unnamed_unnamed,
|
|
ArgIdx + 1, PrevArgIdx + 1));
|
|
} else if (first.empty() && !second.empty()) {
|
|
addFixIts(emitDiagnostic(diagLoc, diag::argument_out_of_order_unnamed_named,
|
|
ArgIdx + 1, second));
|
|
} else if (!first.empty() && second.empty()) {
|
|
addFixIts(emitDiagnostic(diagLoc, diag::argument_out_of_order_named_unnamed,
|
|
first, PrevArgIdx + 1));
|
|
} else {
|
|
addFixIts(emitDiagnostic(diagLoc, diag::argument_out_of_order_named_named,
|
|
first, second));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool InaccessibleMemberFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
// Let's try to avoid over-diagnosing chains of inaccessible
|
|
// members e.g.:
|
|
//
|
|
// struct A {
|
|
// struct B {
|
|
// struct C {}
|
|
// }
|
|
// }
|
|
//
|
|
// _ = A.B.C()
|
|
//
|
|
// We'll have a fix for each `B', `C` and `C.init` but it makes
|
|
// sense to diagnose only `B` and consider the rest hidden.
|
|
Expr *baseExpr = nullptr;
|
|
DeclNameLoc nameLoc;
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor)) {
|
|
baseExpr = UDE->getBase();
|
|
nameLoc = UDE->getNameLoc();
|
|
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(anchor)) {
|
|
nameLoc = UME->getNameLoc();
|
|
} else if (auto *SE = dyn_cast<SubscriptExpr>(anchor)) {
|
|
baseExpr = SE->getBase();
|
|
} else if (auto *call = dyn_cast<CallExpr>(anchor)) {
|
|
baseExpr = call->getFn();
|
|
}
|
|
|
|
if (baseExpr) {
|
|
auto &cs = getConstraintSystem();
|
|
auto *locator =
|
|
cs.getConstraintLocator(baseExpr, ConstraintLocator::Member);
|
|
if (llvm::any_of(cs.getFixes(), [&](const ConstraintFix *fix) {
|
|
return fix->getLocator() == locator;
|
|
}))
|
|
return false;
|
|
}
|
|
|
|
auto loc = nameLoc.isValid() ? nameLoc.getStartLoc() : anchor->getLoc();
|
|
auto accessLevel = Member->getFormalAccessScope().accessLevelForDiagnostics();
|
|
if (auto *CD = dyn_cast<ConstructorDecl>(Member)) {
|
|
emitDiagnostic(loc, diag::init_candidate_inaccessible,
|
|
CD->getResultInterfaceType(), accessLevel)
|
|
.highlight(nameLoc.getSourceRange());
|
|
} else {
|
|
emitDiagnostic(loc, diag::candidate_inaccessible, Member->getBaseName(),
|
|
accessLevel)
|
|
.highlight(nameLoc.getSourceRange());
|
|
}
|
|
|
|
emitDiagnostic(Member, diag::decl_declared_here, Member->getFullName());
|
|
return true;
|
|
}
|
|
|
|
bool AnyObjectKeyPathRootFailure::diagnoseAsError() {
|
|
// Diagnose use of AnyObject as root for a keypath
|
|
|
|
auto anchor = getAnchor();
|
|
auto loc = anchor->getLoc();
|
|
auto range = anchor->getSourceRange();
|
|
|
|
if (auto KPE = dyn_cast<KeyPathExpr>(anchor)) {
|
|
if (auto rootTyRepr = KPE->getRootType()) {
|
|
loc = rootTyRepr->getLoc();
|
|
range = rootTyRepr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(loc, diag::expr_swift_keypath_anyobject_root).highlight(range);
|
|
return true;
|
|
}
|
|
|
|
bool KeyPathSubscriptIndexHashableFailure::diagnoseAsError() {
|
|
auto *anchor = getRawAnchor();
|
|
auto *locator = getLocator();
|
|
|
|
auto loc = anchor->getLoc();
|
|
if (locator->isKeyPathSubscriptComponent()) {
|
|
auto *KPE = cast<KeyPathExpr>(anchor);
|
|
for (auto &elt : locator->getPath()) {
|
|
if (elt.isKeyPathComponent()) {
|
|
loc = KPE->getComponents()[elt.getValue()].getLoc();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
emitDiagnostic(loc, diag::expr_keypath_subscript_index_not_hashable,
|
|
resolveType(NonConformingType));
|
|
return true;
|
|
}
|
|
|
|
SourceLoc InvalidMemberRefInKeyPath::getLoc() const {
|
|
auto *anchor = getRawAnchor();
|
|
|
|
if (auto *KPE = dyn_cast<KeyPathExpr>(anchor)) {
|
|
auto *locator = getLocator();
|
|
auto component =
|
|
llvm::find_if(locator->getPath(), [](const LocatorPathElt &elt) {
|
|
return elt.isKeyPathComponent();
|
|
});
|
|
|
|
assert(component != locator->getPath().end());
|
|
return KPE->getComponents()[component->getValue()].getLoc();
|
|
}
|
|
|
|
return anchor->getLoc();
|
|
}
|
|
|
|
bool InvalidStaticMemberRefInKeyPath::diagnoseAsError() {
|
|
emitDiagnostic(getLoc(), diag::expr_keypath_static_member, getName(),
|
|
isForKeyPathDynamicMemberLookup());
|
|
return true;
|
|
}
|
|
|
|
bool InvalidMemberWithMutatingGetterInKeyPath::diagnoseAsError() {
|
|
emitDiagnostic(getLoc(), diag::expr_keypath_mutating_getter, getName(),
|
|
isForKeyPathDynamicMemberLookup());
|
|
return true;
|
|
}
|
|
|
|
bool InvalidMethodRefInKeyPath::diagnoseAsError() {
|
|
emitDiagnostic(getLoc(), diag::expr_keypath_not_property, getKind(),
|
|
getName(), isForKeyPathDynamicMemberLookup());
|
|
return true;
|
|
}
|
|
|
|
SourceLoc InvalidUseOfAddressOf::getLoc() const {
|
|
auto *anchor = getAnchor();
|
|
|
|
if (auto *assign = dyn_cast<AssignExpr>(anchor))
|
|
anchor = assign->getSrc();
|
|
|
|
return anchor->getLoc();
|
|
}
|
|
|
|
bool InvalidUseOfAddressOf::diagnoseAsError() {
|
|
emitDiagnostic(getLoc(), diag::extraneous_address_of);
|
|
return true;
|
|
}
|
|
|
|
bool ExtraneousReturnFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
emitDiagnostic(anchor->getLoc(), diag::cannot_return_value_from_void_func);
|
|
return true;
|
|
}
|
|
|
|
bool CollectionElementContextualFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto *locator = getLocator();
|
|
|
|
auto eltType = getFromType();
|
|
auto contextualType = getToType();
|
|
|
|
Optional<InFlightDiagnostic> diagnostic;
|
|
if (isa<ArrayExpr>(getRawAnchor())) {
|
|
diagnostic.emplace(emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_convert_array_element,
|
|
eltType, contextualType));
|
|
}
|
|
|
|
if (isa<DictionaryExpr>(getRawAnchor())) {
|
|
const auto &eltLoc = locator->getPath().back();
|
|
|
|
switch (eltLoc.getValue()) {
|
|
case 0: // key
|
|
diagnostic.emplace(emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_convert_dict_key, eltType,
|
|
contextualType));
|
|
break;
|
|
|
|
case 1: // value
|
|
diagnostic.emplace(emitDiagnostic(anchor->getLoc(),
|
|
diag::cannot_convert_dict_value,
|
|
eltType, contextualType));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (locator->isForSequenceElementType()) {
|
|
diagnostic.emplace(
|
|
emitDiagnostic(anchor->getLoc(),
|
|
contextualType->isExistentialType()
|
|
? diag::cannot_convert_sequence_element_protocol
|
|
: diag::cannot_convert_sequence_element_value,
|
|
eltType, contextualType));
|
|
}
|
|
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
(void)trySequenceSubsequenceFixIts(*diagnostic, getConstraintSystem(),
|
|
eltType, contextualType, anchor);
|
|
return true;
|
|
}
|
|
|
|
bool MissingContextualConformanceFailure::diagnoseAsError() {
|
|
auto *anchor = getAnchor();
|
|
auto path = getLocator()->getPath();
|
|
|
|
Optional<Diag<Type, Type>> diagnostic;
|
|
if (path.empty()) {
|
|
assert(isa<AssignExpr>(anchor));
|
|
if (isa<SubscriptExpr>(cast<AssignExpr>(anchor)->getDest())) {
|
|
diagnostic = getDiagnosticFor(CTP_SubscriptAssignSource);
|
|
} else {
|
|
diagnostic = getDiagnosticFor(CTP_AssignSource);
|
|
}
|
|
} else {
|
|
const auto &last = path.back();
|
|
switch (last.getKind()) {
|
|
case ConstraintLocator::ContextualType:
|
|
assert(Context != CTP_Unused);
|
|
diagnostic = getDiagnosticFor(Context);
|
|
break;
|
|
|
|
case ConstraintLocator::SequenceElementType: {
|
|
diagnostic = diag::cannot_convert_sequence_element_protocol;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!diagnostic)
|
|
return false;
|
|
|
|
auto srcType = getFromType();
|
|
auto dstType = getToType();
|
|
|
|
emitDiagnostic(anchor->getLoc(), *diagnostic, srcType, dstType);
|
|
|
|
if (isa<InOutExpr>(anchor))
|
|
return true;
|
|
|
|
if (srcType->isAny() && dstType->isAnyObject()) {
|
|
emitDiagnostic(anchor->getLoc(), diag::any_as_anyobject_fixit)
|
|
.fixItInsertAfter(anchor->getEndLoc(), " as AnyObject");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Optional<Diag<Type, Type>>
|
|
MissingContextualConformanceFailure::getDiagnosticFor(
|
|
ContextualTypePurpose context) {
|
|
switch (context) {
|
|
case CTP_Initialization:
|
|
return diag::cannot_convert_initializer_value_protocol;
|
|
case CTP_ReturnStmt:
|
|
case CTP_ReturnSingleExpr:
|
|
return diag::cannot_convert_to_return_type_protocol;
|
|
case CTP_EnumCaseRawValue:
|
|
return diag::cannot_convert_raw_initializer_value;
|
|
case CTP_DefaultParameter:
|
|
return diag::cannot_convert_default_arg_value_protocol;
|
|
case CTP_YieldByValue:
|
|
return diag::cannot_convert_yield_value_protocol;
|
|
case CTP_CallArgument:
|
|
return diag::cannot_convert_argument_value_protocol;
|
|
case CTP_ClosureResult:
|
|
return diag::cannot_convert_closure_result_protocol;
|
|
case CTP_ArrayElement:
|
|
return diag::cannot_convert_array_element_protocol;
|
|
case CTP_DictionaryKey:
|
|
return diag::cannot_convert_dict_key_protocol;
|
|
case CTP_DictionaryValue:
|
|
return diag::cannot_convert_dict_value_protocol;
|
|
case CTP_CoerceOperand:
|
|
return diag::cannot_convert_coerce_protocol;
|
|
case CTP_AssignSource:
|
|
return diag::cannot_convert_assign_protocol;
|
|
case CTP_SubscriptAssignSource:
|
|
return diag::cannot_convert_subscript_assign_protocol;
|
|
|
|
case CTP_ThrowStmt:
|
|
case CTP_Unused:
|
|
case CTP_CannotFail:
|
|
case CTP_YieldByReference:
|
|
case CTP_CalleeResult:
|
|
break;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::hasLoc(GenericTypeParamType *GP) const {
|
|
return GP->getDecl()->getStartLoc().isValid();
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::diagnoseAsError() {
|
|
llvm::SmallDenseMap<TypeRepr *, SmallVector<GenericTypeParamType *, 4>>
|
|
scopedParameters;
|
|
|
|
auto isScoped =
|
|
findArgumentLocations([&](TypeRepr *base, GenericTypeParamType *GP) {
|
|
scopedParameters[base].push_back(GP);
|
|
});
|
|
|
|
if (!isScoped)
|
|
return diagnoseForAnchor(getAnchor(), Parameters);
|
|
|
|
bool diagnosed = false;
|
|
for (const auto &scope : scopedParameters)
|
|
diagnosed |= diagnoseForAnchor(scope.first, scope.second);
|
|
return diagnosed;
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::diagnoseForAnchor(
|
|
Anchor anchor, ArrayRef<GenericTypeParamType *> params) const {
|
|
bool diagnosed = false;
|
|
for (auto *GP : params)
|
|
diagnosed |= diagnoseParameter(anchor, GP);
|
|
|
|
if (!diagnosed)
|
|
return false;
|
|
|
|
auto *DC = getDeclContext();
|
|
if (auto *SD = dyn_cast<SubscriptDecl>(DC)) {
|
|
emitDiagnostic(SD, diag::note_call_to_subscript, SD->getFullName());
|
|
return true;
|
|
}
|
|
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(DC)) {
|
|
if (isa<ConstructorDecl>(AFD)) {
|
|
emitDiagnostic(AFD, diag::note_call_to_initializer);
|
|
} else {
|
|
emitDiagnostic(AFD,
|
|
AFD->isOperator() ? diag::note_call_to_operator
|
|
: diag::note_call_to_func,
|
|
AFD->getFullName());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
emitGenericSignatureNote(anchor);
|
|
return true;
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::diagnoseParameter(
|
|
Anchor anchor, GenericTypeParamType *GP) const {
|
|
auto &cs = getConstraintSystem();
|
|
|
|
auto loc = anchor.is<Expr *>() ? anchor.get<Expr *>()->getLoc()
|
|
: anchor.get<TypeRepr *>()->getLoc();
|
|
|
|
auto *locator = getLocator();
|
|
// Type variables associated with missing generic parameters are
|
|
// going to be completely cut off from the rest of constraint system,
|
|
// that's why we'd get two fixes in this case which is not ideal.
|
|
if (locator->isForContextualType() &&
|
|
llvm::count_if(cs.DefaultedConstraints,
|
|
[&GP](const ConstraintLocator *locator) {
|
|
return locator->getGenericParameter() == GP;
|
|
}) > 1) {
|
|
return false;
|
|
}
|
|
|
|
if (auto *CE = dyn_cast<ExplicitCastExpr>(getRawAnchor())) {
|
|
auto castTo = getType(CE->getCastTypeLoc());
|
|
auto *NTD = castTo->getAnyNominal();
|
|
emitDiagnostic(loc, diag::unbound_generic_parameter_cast, GP,
|
|
NTD ? NTD->getDeclaredType() : castTo);
|
|
} else {
|
|
emitDiagnostic(loc, diag::unbound_generic_parameter, GP);
|
|
}
|
|
|
|
if (!hasLoc(GP))
|
|
return true;
|
|
|
|
Type baseTyForNote;
|
|
auto *DC = getDeclContext();
|
|
|
|
if (auto *NTD =
|
|
dyn_cast_or_null<NominalTypeDecl>(DC->getSelfNominalTypeDecl())) {
|
|
baseTyForNote = NTD->getDeclaredType();
|
|
} else if (auto *TAD = dyn_cast<TypeAliasDecl>(DC)) {
|
|
baseTyForNote = TAD->getUnboundGenericType();
|
|
} else {
|
|
return true;
|
|
}
|
|
|
|
emitDiagnostic(GP->getDecl(), diag::archetype_declared_in_type, GP,
|
|
baseTyForNote);
|
|
return true;
|
|
}
|
|
|
|
void MissingGenericArgumentsFailure::emitGenericSignatureNote(
|
|
Anchor anchor) const {
|
|
auto &cs = getConstraintSystem();
|
|
auto &TC = getTypeChecker();
|
|
auto *paramDC = getDeclContext();
|
|
|
|
auto *GTD = dyn_cast<GenericTypeDecl>(paramDC);
|
|
if (!GTD || anchor.is<Expr *>())
|
|
return;
|
|
|
|
auto getParamDecl =
|
|
[](const ConstraintLocator *locator) -> GenericTypeParamDecl * {
|
|
return locator->isForGenericParameter()
|
|
? locator->getGenericParameter()->getDecl()
|
|
: nullptr;
|
|
};
|
|
|
|
llvm::SmallDenseMap<GenericTypeParamDecl *, Type> params;
|
|
for (auto *typeVar : cs.getTypeVariables()) {
|
|
auto *GP = typeVar->getImpl().getGenericParameter();
|
|
if (!GP)
|
|
continue;
|
|
|
|
auto type = resolveType(typeVar);
|
|
// This could happen if the diagnostic is used by CSDiag.
|
|
if (type->is<TypeVariableType>())
|
|
continue;
|
|
|
|
// If this is one of the defaulted parameter types, attempt
|
|
// to emit placeholder for it instead of `Any`.
|
|
if (llvm::any_of(cs.DefaultedConstraints,
|
|
[&](const ConstraintLocator *locator) {
|
|
return GP->getDecl() == getParamDecl(locator);
|
|
}))
|
|
continue;
|
|
|
|
params[GP->getDecl()] = type;
|
|
}
|
|
|
|
auto getPreferredType = [&](const GenericTypeParamDecl *GP) -> Type {
|
|
auto type = params.find(GP);
|
|
return (type == params.end()) ? Type() : type->second;
|
|
};
|
|
|
|
SmallString<64> paramsAsString;
|
|
auto baseType = anchor.get<TypeRepr *>();
|
|
if (TC.getDefaultGenericArgumentsString(paramsAsString, GTD,
|
|
getPreferredType)) {
|
|
auto diagnostic = emitDiagnostic(
|
|
baseType->getLoc(), diag::unbound_generic_parameter_explicit_fix);
|
|
|
|
if (auto *genericTy = dyn_cast<GenericIdentTypeRepr>(baseType)) {
|
|
// If some of the eneric arguments have been specified, we need to
|
|
// replace existing signature with a new one.
|
|
diagnostic.fixItReplace(genericTy->getAngleBrackets(), paramsAsString);
|
|
} else {
|
|
// Otherwise we can simply insert new generic signature.
|
|
diagnostic.fixItInsertAfter(baseType->getEndLoc(), paramsAsString);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MissingGenericArgumentsFailure::findArgumentLocations(
|
|
llvm::function_ref<void(TypeRepr *, GenericTypeParamType *)> callback) {
|
|
using Callback = llvm::function_ref<void(TypeRepr *, GenericTypeParamType *)>;
|
|
|
|
auto *anchor = getRawAnchor();
|
|
|
|
TypeLoc typeLoc;
|
|
if (auto *TE = dyn_cast<TypeExpr>(anchor))
|
|
typeLoc = TE->getTypeLoc();
|
|
else if (auto *ECE = dyn_cast<ExplicitCastExpr>(anchor))
|
|
typeLoc = ECE->getCastTypeLoc();
|
|
|
|
if (!typeLoc.hasLocation())
|
|
return false;
|
|
|
|
struct AssociateMissingParams : public ASTWalker {
|
|
llvm::SmallVector<GenericTypeParamType *, 4> Params;
|
|
Callback Fn;
|
|
|
|
AssociateMissingParams(ArrayRef<GenericTypeParamType *> params,
|
|
Callback callback)
|
|
: Params(params.begin(), params.end()), Fn(callback) {}
|
|
|
|
bool walkToTypeReprPre(TypeRepr *T) override {
|
|
if (Params.empty())
|
|
return false;
|
|
|
|
auto *ident = dyn_cast<ComponentIdentTypeRepr>(T);
|
|
if (!ident)
|
|
return true;
|
|
|
|
auto *decl = dyn_cast_or_null<GenericTypeDecl>(ident->getBoundDecl());
|
|
if (!decl)
|
|
return true;
|
|
|
|
auto *paramList = decl->getGenericParams();
|
|
if (!paramList)
|
|
return true;
|
|
|
|
// There could a situation like `S<S>()`, so we need to be
|
|
// careful not to point at first `S` because it has all of
|
|
// its generic parameters specified.
|
|
if (auto *generic = dyn_cast<GenericIdentTypeRepr>(ident)) {
|
|
if (paramList->size() == generic->getNumGenericArgs())
|
|
return true;
|
|
}
|
|
|
|
for (auto *candidate : paramList->getParams()) {
|
|
auto result =
|
|
llvm::find_if(Params, [&](const GenericTypeParamType *param) {
|
|
return candidate == param->getDecl();
|
|
});
|
|
|
|
if (result != Params.end()) {
|
|
Fn(ident, *result);
|
|
Params.erase(result);
|
|
}
|
|
}
|
|
|
|
// Keep walking.
|
|
return true;
|
|
}
|
|
|
|
bool allParamsAssigned() const { return Params.empty(); }
|
|
|
|
} associator(Parameters, callback);
|
|
|
|
typeLoc.getTypeRepr()->walk(associator);
|
|
return associator.allParamsAssigned();
|
|
}
|
|
|
|
bool SkipUnhandledConstructInFunctionBuilderFailure::diagnoseAsError() {
|
|
if (auto stmt = unhandled.dyn_cast<Stmt *>()) {
|
|
emitDiagnostic(stmt->getStartLoc(),
|
|
diag::function_builder_control_flow,
|
|
builder->getFullName());
|
|
} else {
|
|
auto decl = unhandled.get<Decl *>();
|
|
emitDiagnostic(decl,
|
|
diag::function_builder_decl,
|
|
builder->getFullName());
|
|
}
|
|
|
|
emitDiagnostic(builder,
|
|
diag::kind_declname_declared_here,
|
|
builder->getDescriptiveKind(),
|
|
builder->getFullName());
|
|
return true;
|
|
}
|
|
|
|
bool SkipUnhandledConstructInFunctionBuilderFailure::diagnoseAsNote() {
|
|
if (auto stmt = unhandled.dyn_cast<Stmt *>()) {
|
|
emitDiagnostic(stmt->getStartLoc(),
|
|
diag::note_function_builder_control_flow,
|
|
builder->getFullName());
|
|
} else {
|
|
auto decl = unhandled.get<Decl *>();
|
|
emitDiagnostic(decl,
|
|
diag::note_function_builder_decl,
|
|
builder->getFullName());
|
|
}
|
|
|
|
return true;
|
|
}
|