mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
The -enable-requirement-machine and -disable-requirement-machine flags are now
replaced by a new flag -requirement-machine={on,off,verify}.
683 lines
24 KiB
C++
683 lines
24 KiB
C++
//===--- GenericSignatureQueries.cpp --------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implements the various operations on interface types in GenericSignature.
|
|
// Use those methods instead of calling into the RequirementMachine directly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "swift/AST/RequirementMachine.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include <vector>
|
|
|
|
#include "RequirementMachineImpl.h"
|
|
#include "EquivalenceClassMap.h"
|
|
#include "ProtocolGraph.h"
|
|
#include "RewriteContext.h"
|
|
#include "RewriteSystem.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
/// Collects all requirements on a type parameter that are used to construct
|
|
/// its ArchetypeType in a GenericEnvironment.
|
|
GenericSignature::LocalRequirements
|
|
RequirementMachine::getLocalRequirements(
|
|
Type depType,
|
|
TypeArrayView<GenericTypeParamType> genericParams) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto &protos = Impl->System.getProtocols();
|
|
|
|
GenericSignature::LocalRequirements result;
|
|
result.anchor = Impl->Context.getTypeForTerm(term, genericParams, protos);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return result;
|
|
|
|
if (equivClass->isConcreteType()) {
|
|
result.concreteType = equivClass->getConcreteType({}, protos,
|
|
Impl->Context);
|
|
return result;
|
|
}
|
|
|
|
if (equivClass->hasSuperclassBound()) {
|
|
result.superclass = equivClass->getSuperclassBound({}, protos,
|
|
Impl->Context);
|
|
}
|
|
|
|
for (const auto *proto : equivClass->getConformsToExcludingSuperclassConformances())
|
|
result.protos.push_back(const_cast<ProtocolDecl *>(proto));
|
|
|
|
result.layout = equivClass->getLayoutConstraint();
|
|
|
|
return result;
|
|
}
|
|
|
|
bool RequirementMachine::requiresClass(Type depType) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return false;
|
|
|
|
if (equivClass->isConcreteType())
|
|
return false;
|
|
|
|
auto layout = equivClass->getLayoutConstraint();
|
|
return (layout && layout->isClass());
|
|
}
|
|
|
|
LayoutConstraint RequirementMachine::getLayoutConstraint(Type depType) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return LayoutConstraint();
|
|
|
|
return equivClass->getLayoutConstraint();
|
|
}
|
|
|
|
bool RequirementMachine::requiresProtocol(Type depType,
|
|
const ProtocolDecl *proto) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return false;
|
|
|
|
if (equivClass->isConcreteType())
|
|
return false;
|
|
|
|
for (auto *otherProto : equivClass->getConformsTo()) {
|
|
if (otherProto == proto)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
GenericSignature::RequiredProtocols
|
|
RequirementMachine::getRequiredProtocols(Type depType) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return { };
|
|
|
|
if (equivClass->isConcreteType())
|
|
return { };
|
|
|
|
GenericSignature::RequiredProtocols result;
|
|
for (auto *otherProto : equivClass->getConformsTo()) {
|
|
result.push_back(const_cast<ProtocolDecl *>(otherProto));
|
|
}
|
|
|
|
ProtocolType::canonicalizeProtocols(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
Type RequirementMachine::getSuperclassBound(Type depType) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return Type();
|
|
|
|
if (!equivClass->hasSuperclassBound())
|
|
return Type();
|
|
|
|
auto &protos = Impl->System.getProtocols();
|
|
return equivClass->getSuperclassBound({ }, protos, Impl->Context);
|
|
}
|
|
|
|
bool RequirementMachine::isConcreteType(Type depType) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return false;
|
|
|
|
return equivClass->isConcreteType();
|
|
}
|
|
|
|
Type RequirementMachine::getConcreteType(Type depType) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return Type();
|
|
|
|
if (!equivClass->isConcreteType())
|
|
return Type();
|
|
|
|
auto &protos = Impl->System.getProtocols();
|
|
return equivClass->getConcreteType({ }, protos, Impl->Context);
|
|
}
|
|
|
|
bool RequirementMachine::areSameTypeParameterInContext(Type depType1,
|
|
Type depType2) const {
|
|
auto term1 = Impl->Context.getMutableTermForType(depType1->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term1);
|
|
Impl->verify(term1);
|
|
|
|
auto term2 = Impl->Context.getMutableTermForType(depType2->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term2);
|
|
Impl->verify(term2);
|
|
|
|
return (term1 == term2);
|
|
}
|
|
|
|
MutableTerm
|
|
RequirementMachine::Implementation::getLongestValidPrefix(const MutableTerm &term) {
|
|
MutableTerm prefix;
|
|
|
|
for (auto atom : term) {
|
|
switch (atom.getKind()) {
|
|
case Atom::Kind::Name:
|
|
return prefix;
|
|
|
|
case Atom::Kind::Protocol:
|
|
assert(prefix.empty() &&
|
|
"Protocol atom can only appear at the start of a type term");
|
|
if (!System.getProtocols().isKnownProtocol(atom.getProtocol()))
|
|
return prefix;
|
|
|
|
break;
|
|
|
|
case Atom::Kind::GenericParam:
|
|
assert(prefix.empty() &&
|
|
"Generic parameter atom can only appear at the start of a type term");
|
|
break;
|
|
|
|
case Atom::Kind::AssociatedType: {
|
|
const auto *equivClass = Map.lookUpEquivalenceClass(prefix);
|
|
if (!equivClass)
|
|
return prefix;
|
|
|
|
auto conformsTo = equivClass->getConformsTo();
|
|
|
|
for (const auto *proto : atom.getProtocols()) {
|
|
if (!System.getProtocols().isKnownProtocol(proto))
|
|
return prefix;
|
|
|
|
// T.[P:A] is valid iff T conforms to P.
|
|
if (std::find(conformsTo.begin(), conformsTo.end(), proto)
|
|
== conformsTo.end())
|
|
return prefix;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Atom::Kind::Layout:
|
|
case Atom::Kind::Superclass:
|
|
case Atom::Kind::ConcreteType:
|
|
llvm_unreachable("Property atom cannot appear in a type term");
|
|
}
|
|
|
|
// This atom is valid, add it to the longest prefix.
|
|
prefix.add(atom);
|
|
}
|
|
|
|
return prefix;
|
|
}
|
|
|
|
/// Unlike most other queries, the input type can be any type, not just a
|
|
/// type parameter.
|
|
///
|
|
/// Returns true if all structural components that are type parameters are
|
|
/// in their canonical form, and are not concrete (in which case they're
|
|
/// not considered canonical, since they can be replaced with their
|
|
/// concrete type).
|
|
bool RequirementMachine::isCanonicalTypeInContext(Type type) const {
|
|
auto &protos = Impl->System.getProtocols();
|
|
|
|
// Look for non-canonical type parameters.
|
|
return !type.findIf([&](Type component) -> bool {
|
|
if (!component->isTypeParameter())
|
|
return false;
|
|
|
|
auto term = Impl->Context.getMutableTermForType(component->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return false;
|
|
|
|
if (equivClass->isConcreteType())
|
|
return true;
|
|
|
|
auto anchor = Impl->Context.getTypeForTerm(term, {}, protos);
|
|
return CanType(anchor) != CanType(component);
|
|
});
|
|
}
|
|
|
|
/// Unlike most other queries, the input type can be any type, not just a
|
|
/// type parameter.
|
|
///
|
|
/// Replaces all structural components that are type parameters with their
|
|
/// most canonical form, which is either a (possibly different)
|
|
/// type parameter, or a concrete type, in which case we recursively
|
|
/// simplify any type parameters appearing in structural positions of
|
|
/// that concrete type as well, and so on.
|
|
Type RequirementMachine::getCanonicalTypeInContext(
|
|
Type type,
|
|
TypeArrayView<GenericTypeParamType> genericParams) const {
|
|
const auto &protos = Impl->System.getProtocols();
|
|
|
|
return type.transformRec([&](Type t) -> Optional<Type> {
|
|
if (!t->isTypeParameter())
|
|
return None;
|
|
|
|
// Get a simplified term T.
|
|
auto term = Impl->Context.getMutableTermForType(t->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
|
|
// We need to handle "purely concrete" member types, eg if I have a
|
|
// signature <T where T == Foo>, and we're asked to canonicalize the
|
|
// type T.[P:A] where Foo : A.
|
|
//
|
|
// This comes up because we can derive the signature <T where T == Foo>
|
|
// from a generic signature like <T where T : P>; adding the
|
|
// concrete requirement 'T == Foo' renders 'T : P' redundant. We then
|
|
// want to take interface types written against the original signature
|
|
// and canonicalize them with respect to the derived signature.
|
|
//
|
|
// The problem is that T.[P:A] is not a valid term in the rewrite system
|
|
// for <T where T == Foo>, since we do not have the requirement T : P.
|
|
//
|
|
// A more principled solution would build a substitution map when
|
|
// building a derived generic signature that adds new requirements;
|
|
// interface types would first be substituted before being canonicalized
|
|
// in the new signature.
|
|
//
|
|
// For now, we handle this with a two-step process; we split a term up
|
|
// into a longest valid prefix, which must resolve to a concrete type,
|
|
// and the remaining suffix, which we use to perform a concrete
|
|
// substitution using subst().
|
|
|
|
// In the below, let T be a type term, with T == UV, where U is the
|
|
// longest valid prefix.
|
|
//
|
|
// Note that V can be empty if T is fully valid; we expect this to be
|
|
// true most of the time.
|
|
auto prefix = Impl->getLongestValidPrefix(term);
|
|
|
|
// Get a type (concrete or dependent) for U.
|
|
auto prefixType = [&]() -> Type {
|
|
Impl->verify(prefix);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(prefix);
|
|
if (equivClass && equivClass->isConcreteType()) {
|
|
auto concreteType = equivClass->getConcreteType(genericParams,
|
|
protos, Impl->Context);
|
|
if (!concreteType->hasTypeParameter())
|
|
return concreteType;
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getCanonicalTypeInContext(concreteType, genericParams);
|
|
}
|
|
|
|
return Impl->Context.getTypeForTerm(prefix, genericParams, protos);
|
|
}();
|
|
|
|
// If T is already valid, the longest valid prefix U of T is T itself, and
|
|
// V is empty. Just return the type we computed above.
|
|
//
|
|
// This is the only case where U is allowed to be dependent.
|
|
if (prefix.size() == term.size())
|
|
return prefixType;
|
|
|
|
// If U is not concrete, we have an invalid member type of a dependent
|
|
// type, which is not valid in this generic signature. Give up.
|
|
if (prefixType->isTypeParameter()) {
|
|
llvm::errs() << "Invalid type parameter in getCanonicalTypeInContext()\n";
|
|
llvm::errs() << "Original type: " << type << "\n";
|
|
llvm::errs() << "Simplified term: " << term << "\n";
|
|
llvm::errs() << "Longest valid prefix: " << prefix << "\n";
|
|
llvm::errs() << "Prefix type: " << prefixType << "\n";
|
|
llvm::errs() << "\n";
|
|
dump(llvm::errs());
|
|
abort();
|
|
}
|
|
|
|
// Compute the type of the unresolved suffix term V, rooted in the
|
|
// generic parameter τ_0_0.
|
|
auto origType = Impl->Context.getRelativeTypeForTerm(
|
|
term, prefix, Impl->System.getProtocols());
|
|
|
|
// Substitute τ_0_0 in the above relative type with the concrete type
|
|
// for U.
|
|
//
|
|
// Example: if T == A.B.C and the longest valid prefix is A.B which
|
|
// maps to a concrete type Foo<Int>, then we have:
|
|
//
|
|
// U == A.B
|
|
// V == C
|
|
//
|
|
// prefixType == Foo<Int>
|
|
// origType == τ_0_0.C
|
|
// substType == Foo<Int>.C
|
|
//
|
|
auto substType = origType.subst(
|
|
[&](SubstitutableType *type) -> Type {
|
|
assert(cast<GenericTypeParamType>(type)->getDepth() == 0);
|
|
assert(cast<GenericTypeParamType>(type)->getIndex() == 0);
|
|
|
|
return prefixType;
|
|
},
|
|
LookUpConformanceInSignature(Impl->Sig.getPointer()));
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getCanonicalTypeInContext(substType, genericParams);
|
|
});
|
|
}
|
|
|
|
/// Replace 'Self' in the given dependent type (\c depTy) with the given
|
|
/// dependent type, producing a type that refers to
|
|
/// the nested type. This limited operation makes sure that it does not
|
|
/// create any new potential archetypes along the way, so it should only be
|
|
/// used in cases where we're reconstructing something that we know exists.
|
|
static Type replaceSelfWithType(Type selfType, Type depTy) {
|
|
if (auto depMemTy = depTy->getAs<DependentMemberType>()) {
|
|
Type baseType = replaceSelfWithType(selfType, depMemTy->getBase());
|
|
assert(depMemTy->getAssocType() && "Missing associated type");
|
|
return DependentMemberType::get(baseType, depMemTy->getAssocType());
|
|
}
|
|
|
|
assert(depTy->is<GenericTypeParamType>() && "missing Self?");
|
|
return selfType;
|
|
}
|
|
|
|
/// Retrieve the conformance access path used to extract the conformance of
|
|
/// interface \c type to the given \c protocol.
|
|
///
|
|
/// \param type The interface type whose conformance access path is to be
|
|
/// queried.
|
|
/// \param protocol A protocol to which \c type conforms.
|
|
///
|
|
/// \returns the conformance access path that starts at a requirement of
|
|
/// this generic signature and ends at the conformance that makes \c type
|
|
/// conform to \c protocol.
|
|
///
|
|
/// \seealso ConformanceAccessPath
|
|
ConformanceAccessPath
|
|
RequirementMachine::getConformanceAccessPath(Type type,
|
|
ProtocolDecl *protocol) {
|
|
auto canType = getCanonicalTypeInContext(type, { })->getCanonicalType();
|
|
assert(canType->isTypeParameter());
|
|
|
|
// Check if we've already cached the result before doing anything else.
|
|
auto found = Impl->ConformanceAccessPaths.find(
|
|
std::make_pair(canType, protocol));
|
|
if (found != Impl->ConformanceAccessPaths.end()) {
|
|
return found->second;
|
|
}
|
|
|
|
auto *Stats = Context.Stats;
|
|
|
|
FrontendStatsTracer tracer(Stats, "get-conformance-access-path");
|
|
|
|
auto recordPath = [&](CanType type, ProtocolDecl *proto,
|
|
ConformanceAccessPath path) {
|
|
// Add the path to the buffer.
|
|
Impl->CurrentConformanceAccessPaths.emplace_back(type, path);
|
|
|
|
// Add the path to the map.
|
|
auto key = std::make_pair(type, proto);
|
|
auto inserted = Impl->ConformanceAccessPaths.insert(
|
|
std::make_pair(key, path));
|
|
assert(inserted.second);
|
|
(void) inserted;
|
|
|
|
if (Stats)
|
|
++Stats->getFrontendCounters().NumConformanceAccessPathsRecorded;
|
|
};
|
|
|
|
// If this is the first time we're asked to look up a conformance access path,
|
|
// visit all of the root conformance requirements in our generic signature and
|
|
// add them to the buffer.
|
|
if (Impl->ConformanceAccessPaths.empty()) {
|
|
for (const auto &req : Impl->Sig->getRequirements()) {
|
|
// We only care about conformance requirements.
|
|
if (req.getKind() != RequirementKind::Conformance)
|
|
continue;
|
|
|
|
auto rootType = CanType(req.getFirstType());
|
|
auto *rootProto = req.getProtocolDecl();
|
|
|
|
ConformanceAccessPath::Entry root(rootType, rootProto);
|
|
ArrayRef<ConformanceAccessPath::Entry> path(root);
|
|
ConformanceAccessPath result(Context.AllocateCopy(path));
|
|
|
|
recordPath(rootType, rootProto, result);
|
|
}
|
|
}
|
|
|
|
// We enumerate conformance access paths in lexshort order until we find the
|
|
// path whose corresponding type canonicalizes to the one we are looking for.
|
|
while (true) {
|
|
auto found = Impl->ConformanceAccessPaths.find(
|
|
std::make_pair(canType, protocol));
|
|
if (found != Impl->ConformanceAccessPaths.end()) {
|
|
return found->second;
|
|
}
|
|
|
|
assert(Impl->CurrentConformanceAccessPaths.size() > 0);
|
|
|
|
// The buffer consists of all conformance access paths of length N.
|
|
// Swap it out with an empty buffer, and fill it with all paths of
|
|
// length N+1.
|
|
std::vector<std::pair<CanType, ConformanceAccessPath>> oldPaths;
|
|
std::swap(Impl->CurrentConformanceAccessPaths, oldPaths);
|
|
|
|
for (const auto &pair : oldPaths) {
|
|
const auto &lastElt = pair.second.back();
|
|
auto *lastProto = lastElt.second;
|
|
|
|
// A copy of the current path, populated as needed.
|
|
SmallVector<ConformanceAccessPath::Entry, 4> entries;
|
|
|
|
for (const auto &req : lastProto->getRequirementSignature()) {
|
|
// We only care about conformance requirements.
|
|
if (req.getKind() != RequirementKind::Conformance)
|
|
continue;
|
|
|
|
auto nextSubjectType = req.getFirstType()->getCanonicalType();
|
|
auto *nextProto = req.getProtocolDecl();
|
|
|
|
// Compute the canonical anchor for this conformance requirement.
|
|
auto nextType = replaceSelfWithType(pair.first, nextSubjectType);
|
|
auto nextCanType = getCanonicalTypeInContext(nextType, { })
|
|
->getCanonicalType();
|
|
|
|
// Skip "derived via concrete" sources.
|
|
if (!nextCanType->isTypeParameter())
|
|
continue;
|
|
|
|
// If we've already seen a path for this conformance, skip it and
|
|
// don't add it to the buffer. Note that because we iterate over
|
|
// conformance access paths in lexshort order, the existing
|
|
// conformance access path is shorter than the one we found just now.
|
|
if (Impl->ConformanceAccessPaths.count(
|
|
std::make_pair(nextCanType, nextProto)))
|
|
continue;
|
|
|
|
if (entries.empty()) {
|
|
// Fill our temporary vector.
|
|
entries.insert(entries.begin(),
|
|
pair.second.begin(),
|
|
pair.second.end());
|
|
}
|
|
|
|
// Add the next entry.
|
|
entries.emplace_back(nextSubjectType, nextProto);
|
|
ConformanceAccessPath result = Context.AllocateCopy(entries);
|
|
entries.pop_back();
|
|
|
|
recordPath(nextCanType, nextProto, result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compare two associated types.
|
|
static int compareAssociatedTypes(AssociatedTypeDecl *assocType1,
|
|
AssociatedTypeDecl *assocType2) {
|
|
// - by name.
|
|
if (int result = assocType1->getName().str().compare(
|
|
assocType2->getName().str()))
|
|
return result;
|
|
|
|
// Prefer an associated type with no overrides (i.e., an anchor) to one
|
|
// that has overrides.
|
|
bool hasOverridden1 = !assocType1->getOverriddenDecls().empty();
|
|
bool hasOverridden2 = !assocType2->getOverriddenDecls().empty();
|
|
if (hasOverridden1 != hasOverridden2)
|
|
return hasOverridden1 ? +1 : -1;
|
|
|
|
// - by protocol, so t_n_m.`P.T` < t_n_m.`Q.T` (given P < Q)
|
|
auto proto1 = assocType1->getProtocol();
|
|
auto proto2 = assocType2->getProtocol();
|
|
if (int compareProtocols = TypeDecl::compare(proto1, proto2))
|
|
return compareProtocols;
|
|
|
|
// Error case: if we have two associated types with the same name in the
|
|
// same protocol, just tie-break based on address.
|
|
if (assocType1 != assocType2)
|
|
return assocType1 < assocType2 ? -1 : +1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void lookupConcreteNestedType(NominalTypeDecl *decl,
|
|
Identifier name,
|
|
SmallVectorImpl<TypeDecl *> &concreteDecls) {
|
|
SmallVector<ValueDecl *, 2> foundMembers;
|
|
decl->getParentModule()->lookupQualified(
|
|
decl, DeclNameRef(name),
|
|
NL_QualifiedDefault | NL_OnlyTypes | NL_ProtocolMembers,
|
|
foundMembers);
|
|
for (auto member : foundMembers)
|
|
concreteDecls.push_back(cast<TypeDecl>(member));
|
|
}
|
|
|
|
static TypeDecl *
|
|
findBestConcreteNestedType(SmallVectorImpl<TypeDecl *> &concreteDecls) {
|
|
return *std::min_element(concreteDecls.begin(), concreteDecls.end(),
|
|
[](TypeDecl *type1, TypeDecl *type2) {
|
|
return TypeDecl::compare(type1, type2) < 0;
|
|
});
|
|
}
|
|
|
|
TypeDecl *
|
|
RequirementMachine::lookupNestedType(Type depType, Identifier name) const {
|
|
auto term = Impl->Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
Impl->System.simplify(term);
|
|
Impl->verify(term);
|
|
|
|
auto *equivClass = Impl->Map.lookUpEquivalenceClass(term);
|
|
if (!equivClass)
|
|
return nullptr;
|
|
|
|
// Look for types with the given name in protocols that we know about.
|
|
AssociatedTypeDecl *bestAssocType = nullptr;
|
|
SmallVector<TypeDecl *, 4> concreteDecls;
|
|
|
|
for (const auto *proto : equivClass->getConformsTo()) {
|
|
// Look for an associated type and/or concrete type with this name.
|
|
for (auto member : const_cast<ProtocolDecl *>(proto)->lookupDirect(name)) {
|
|
// If this is an associated type, record whether it is the best
|
|
// associated type we've seen thus far.
|
|
if (auto assocType = dyn_cast<AssociatedTypeDecl>(member)) {
|
|
// Retrieve the associated type anchor.
|
|
assocType = assocType->getAssociatedTypeAnchor();
|
|
|
|
if (!bestAssocType ||
|
|
compareAssociatedTypes(assocType, bestAssocType) < 0)
|
|
bestAssocType = assocType;
|
|
|
|
continue;
|
|
}
|
|
|
|
// If this is another type declaration, record it.
|
|
if (auto type = dyn_cast<TypeDecl>(member)) {
|
|
concreteDecls.push_back(type);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we haven't found anything yet but have a concrete type or a superclass,
|
|
// look for a type in that.
|
|
// FIXME: Shouldn't we always look here?
|
|
if (!bestAssocType && concreteDecls.empty()) {
|
|
Type typeToSearch;
|
|
if (equivClass->isConcreteType())
|
|
typeToSearch = equivClass->getConcreteType();
|
|
else if (equivClass->hasSuperclassBound())
|
|
typeToSearch = equivClass->getSuperclassBound();
|
|
|
|
if (typeToSearch)
|
|
if (auto *decl = typeToSearch->getAnyNominal())
|
|
lookupConcreteNestedType(decl, name, concreteDecls);
|
|
}
|
|
|
|
if (bestAssocType) {
|
|
assert(bestAssocType->getOverriddenDecls().empty() &&
|
|
"Lookup should never keep a non-anchor associated type");
|
|
return bestAssocType;
|
|
|
|
} else if (!concreteDecls.empty()) {
|
|
// Find the best concrete type.
|
|
return findBestConcreteNestedType(concreteDecls);
|
|
}
|
|
|
|
return nullptr;
|
|
} |