Files
swift-mirror/stdlib/include/llvm/Support/Alignment.h
Saleem Abdulrasool b72788c27a runtime: namespace LLVMSupport fork
This adds the `__swift::__runtime` inline namespace to the LLVMSupport
interfaces.  This avoids an ODR violation when LLVM and Swift are in the
same address space.  It also will aid in the process of pruning the
LLVMSupport library by ensuring that accidental leakage of the llvm
namespace does not allow us to remove symbols which we rely on.
2020-05-15 09:55:37 -07:00

451 lines
15 KiB
C++

//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains types to represent alignments.
// They are instrumented to guarantee some invariants are preserved and prevent
// invalid manipulations.
//
// - Align represents an alignment in bytes, it is always set and always a valid
// power of two, its minimum value is 1 which means no alignment requirements.
//
// - MaybeAlign is an optional type, it may be undefined or set. When it's set
// you can get the underlying Align type by using the getValue() method.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ALIGNMENT_H_
#define LLVM_SUPPORT_ALIGNMENT_H_
#include "llvm/ADT/Optional.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#ifndef NDEBUG
#include <string>
#endif // NDEBUG
inline namespace __swift { inline namespace __runtime {
namespace llvm {
#define ALIGN_CHECK_ISPOSITIVE(decl) \
assert(decl > 0 && (#decl " should be defined"))
#define ALIGN_CHECK_ISSET(decl) \
assert(decl.hasValue() && (#decl " should be defined"))
/// This struct is a compact representation of a valid (non-zero power of two)
/// alignment.
/// It is suitable for use as static global constants.
struct Align {
private:
uint8_t ShiftValue = 0; /// The log2 of the required alignment.
/// ShiftValue is less than 64 by construction.
friend struct MaybeAlign;
friend unsigned Log2(Align);
friend bool operator==(Align Lhs, Align Rhs);
friend bool operator!=(Align Lhs, Align Rhs);
friend bool operator<=(Align Lhs, Align Rhs);
friend bool operator>=(Align Lhs, Align Rhs);
friend bool operator<(Align Lhs, Align Rhs);
friend bool operator>(Align Lhs, Align Rhs);
friend unsigned encode(struct MaybeAlign A);
friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
/// A trivial type to allow construction of constexpr Align.
/// This is currently needed to workaround a bug in GCC 5.3 which prevents
/// definition of constexpr assign operators.
/// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
/// FIXME: Remove this, make all assign operators constexpr and introduce user
/// defined literals when we don't have to support GCC 5.3 anymore.
/// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
struct LogValue {
uint8_t Log;
};
public:
/// Default is byte-aligned.
constexpr Align() = default;
/// Do not perform checks in case of copy/move construct/assign, because the
/// checks have been performed when building `Other`.
constexpr Align(const Align &Other) = default;
constexpr Align(Align &&Other) = default;
Align &operator=(const Align &Other) = default;
Align &operator=(Align &&Other) = default;
explicit Align(uint64_t Value) {
assert(Value > 0 && "Value must not be 0");
assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2");
ShiftValue = Log2_64(Value);
assert(ShiftValue < 64 && "Broken invariant");
}
/// This is a hole in the type system and should not be abused.
/// Needed to interact with C for instance.
uint64_t value() const { return uint64_t(1) << ShiftValue; }
/// Returns a default constructed Align which corresponds to no alignment.
/// It was decided to deprecate Align::None because it's too close to
/// llvm::None which can be used to initialize `MaybeAlign`.
/// MaybeAlign = llvm::None means unspecified alignment,
/// Align = Align::None() means alignment of one byte.
LLVM_ATTRIBUTE_DEPRECATED(constexpr static const Align None(),
"Use Align() or Align(1) instead") {
return Align();
}
/// Allow constructions of constexpr Align.
template <size_t kValue> constexpr static LogValue Constant() {
return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
}
/// Allow constructions of constexpr Align from types.
/// Compile time equivalent to Align(alignof(T)).
template <typename T> constexpr static LogValue Of() {
return Constant<std::alignment_of<T>::value>();
}
/// Constexpr constructor from LogValue type.
constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
};
/// Treats the value 0 as a 1, so Align is always at least 1.
inline Align assumeAligned(uint64_t Value) {
return Value ? Align(Value) : Align();
}
/// This struct is a compact representation of a valid (power of two) or
/// undefined (0) alignment.
struct MaybeAlign : public llvm::Optional<Align> {
private:
using UP = llvm::Optional<Align>;
public:
/// Default is undefined.
MaybeAlign() = default;
/// Do not perform checks in case of copy/move construct/assign, because the
/// checks have been performed when building `Other`.
MaybeAlign(const MaybeAlign &Other) = default;
MaybeAlign &operator=(const MaybeAlign &Other) = default;
MaybeAlign(MaybeAlign &&Other) = default;
MaybeAlign &operator=(MaybeAlign &&Other) = default;
/// Use llvm::Optional<Align> constructor.
using UP::UP;
explicit MaybeAlign(uint64_t Value) {
assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&
"Alignment is neither 0 nor a power of 2");
if (Value)
emplace(Value);
}
/// For convenience, returns a valid alignment or 1 if undefined.
Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
};
/// Checks that SizeInBytes is a multiple of the alignment.
inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
return SizeInBytes % Lhs.value() == 0;
}
/// Checks that SizeInBytes is a multiple of the alignment.
/// Returns false if the alignment is undefined.
inline bool isAligned(MaybeAlign Lhs, uint64_t SizeInBytes) {
ALIGN_CHECK_ISSET(Lhs);
return SizeInBytes % (*Lhs).value() == 0;
}
/// Checks that Addr is a multiple of the alignment.
inline bool isAddrAligned(Align Lhs, const void *Addr) {
return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
}
/// Returns a multiple of A needed to store `Size` bytes.
inline uint64_t alignTo(uint64_t Size, Align A) {
const uint64_t Value = A.value();
// The following line is equivalent to `(Size + Value - 1) / Value * Value`.
// The division followed by a multiplication can be thought of as a right
// shift followed by a left shift which zeros out the extra bits produced in
// the bump; `~(Value - 1)` is a mask where all those bits being zeroed out
// are just zero.
// Most compilers can generate this code but the pattern may be missed when
// multiple functions gets inlined.
return (Size + Value - 1) & ~(Value - 1U);
}
/// If non-zero \p Skew is specified, the return value will be a minimal integer
/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
/// Skew mod \p A'.
///
/// Examples:
/// \code
/// alignTo(5, Align(8), 7) = 7
/// alignTo(17, Align(8), 1) = 17
/// alignTo(~0LL, Align(8), 3) = 3
/// \endcode
inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) {
const uint64_t Value = A.value();
Skew %= Value;
return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew;
}
/// Returns a multiple of A needed to store `Size` bytes.
/// Returns `Size` if current alignment is undefined.
inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
return A ? alignTo(Size, A.getValue()) : Size;
}
/// Aligns `Addr` to `Alignment` bytes, rounding up.
inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=
ArithAddr &&
"Overflow");
return alignTo(ArithAddr, Alignment);
}
/// Returns the offset to the next integer (mod 2**64) that is greater than
/// or equal to \p Value and is a multiple of \p Align.
inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
return alignTo(Value, Alignment) - Value;
}
/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
/// bytes, rounding up.
inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
}
/// Returns the log2 of the alignment.
inline unsigned Log2(Align A) { return A.ShiftValue; }
/// Returns the log2 of the alignment.
/// \pre A must be defined.
inline unsigned Log2(MaybeAlign A) {
ALIGN_CHECK_ISSET(A);
return Log2(A.getValue());
}
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline Align commonAlignment(Align A, uint64_t Offset) {
return Align(MinAlign(A.value(), Offset));
}
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
return A && B ? commonAlignment(*A, *B) : A ? A : B;
}
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
return MaybeAlign(MinAlign((*A).value(), Offset));
}
/// Returns a representation of the alignment that encodes undefined as 0.
inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
/// Dual operation of the encode function above.
inline MaybeAlign decodeMaybeAlign(unsigned Value) {
if (Value == 0)
return MaybeAlign();
Align Out;
Out.ShiftValue = Value - 1;
return Out;
}
/// Returns a representation of the alignment, the encoded value is positive by
/// definition.
inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
/// Comparisons between Align and scalars. Rhs must be positive.
inline bool operator==(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() == Rhs;
}
inline bool operator!=(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() != Rhs;
}
inline bool operator<=(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() <= Rhs;
}
inline bool operator>=(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() >= Rhs;
}
inline bool operator<(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() < Rhs;
}
inline bool operator>(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() > Rhs;
}
/// Comparisons between MaybeAlign and scalars.
inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
}
inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
}
inline bool operator<=(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() <= Rhs;
}
inline bool operator>=(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() >= Rhs;
}
inline bool operator<(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() < Rhs;
}
inline bool operator>(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() > Rhs;
}
/// Comparisons operators between Align.
inline bool operator==(Align Lhs, Align Rhs) {
return Lhs.ShiftValue == Rhs.ShiftValue;
}
inline bool operator!=(Align Lhs, Align Rhs) {
return Lhs.ShiftValue != Rhs.ShiftValue;
}
inline bool operator<=(Align Lhs, Align Rhs) {
return Lhs.ShiftValue <= Rhs.ShiftValue;
}
inline bool operator>=(Align Lhs, Align Rhs) {
return Lhs.ShiftValue >= Rhs.ShiftValue;
}
inline bool operator<(Align Lhs, Align Rhs) {
return Lhs.ShiftValue < Rhs.ShiftValue;
}
inline bool operator>(Align Lhs, Align Rhs) {
return Lhs.ShiftValue > Rhs.ShiftValue;
}
/// Comparisons operators between Align and MaybeAlign.
inline bool operator==(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() == (*Rhs).value();
}
inline bool operator!=(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() != (*Rhs).value();
}
inline bool operator<=(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() <= (*Rhs).value();
}
inline bool operator>=(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() >= (*Rhs).value();
}
inline bool operator<(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() < (*Rhs).value();
}
inline bool operator>(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() > (*Rhs).value();
}
/// Comparisons operators between MaybeAlign and Align.
inline bool operator==(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() == Rhs.value();
}
inline bool operator!=(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() != Rhs.value();
}
inline bool operator<=(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() <= Rhs.value();
}
inline bool operator>=(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() >= Rhs.value();
}
inline bool operator<(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() < Rhs.value();
}
inline bool operator>(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() > Rhs.value();
}
inline Align operator*(Align Lhs, uint64_t Rhs) {
assert(Rhs > 0 && "Rhs must be positive");
return Align(Lhs.value() * Rhs);
}
inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) {
assert(Rhs > 0 && "Rhs must be positive");
return Lhs ? Lhs.getValue() * Rhs : MaybeAlign();
}
inline Align operator/(Align Lhs, uint64_t Divisor) {
assert(llvm::isPowerOf2_64(Divisor) &&
"Divisor must be positive and a power of 2");
assert(Lhs != 1 && "Can't halve byte alignment");
return Align(Lhs.value() / Divisor);
}
inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
assert(llvm::isPowerOf2_64(Divisor) &&
"Divisor must be positive and a power of 2");
return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
}
inline Align max(MaybeAlign Lhs, Align Rhs) {
return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
}
inline Align max(Align Lhs, MaybeAlign Rhs) {
return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
}
#ifndef NDEBUG
// For usage in LLVM_DEBUG macros.
inline std::string DebugStr(const Align &A) {
return std::to_string(A.value());
}
// For usage in LLVM_DEBUG macros.
inline std::string DebugStr(const MaybeAlign &MA) {
if (MA)
return std::to_string(MA->value());
return "None";
}
#endif // NDEBUG
#undef ALIGN_CHECK_ISPOSITIVE
#undef ALIGN_CHECK_ISSET
} // namespace llvm
}} // namespace swift::runtime
#endif // LLVM_SUPPORT_ALIGNMENT_H_