Files
swift-mirror/lib/SILOptimizer/Mandatory/OSLogOptimization.cpp
Ravi Kandhadai b7b46622aa [SIL Optimization] Add a mandatory optimization pass for optimizing
the new os log APIs based on string interpolation.
2019-05-13 19:40:39 -07:00

649 lines
25 KiB
C++

//===--- OSLogOptimizer.cpp - Optimizes calls to OS Log ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This pass implements SIL-level optimizations and diagnostics for the
// os log APIs based on string interpolations. The APIs are implemented
// in the files: OSLogMessage.swift, OSLog.swift.
// This pass is closely tied to the implementation of the APIs.
//
// Pass Dependencies: MandatoryInlining. This pass also uses
// `ConstExprStepEvaluator` defined in `Utils/ConstExpr.cpp`.
//
// Algorithm overview:
// This pass implements a function-level transformation that searches for calls
// to the os log APIs which are annotated with a @_semantics attribute. It finds
// the custom-string-interpolation argument passed to the log calls and runs the
// step-wise, constant evaluator on SIL instructions corresponding to the
// the custom string interpolation methods (such as appendLiteral and
// appendInterpolation). The constant evaluator discovers constants, especially
// the C-format string and the size of the byte buffer, passed to the C os_log
// ABIs. The uses of the constants in the body of the log calls are folded by
// generating necessary SIL code that would produce the constants.
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILConstants.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/ConstExpr.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "llvm/ADT/MapVector.h"
using namespace swift;
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&... args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
namespace {
/// If the given instruction is a call to the compiler-intrinsic initializer
/// of String that accepts string literals, return the called function.
/// Otherwise, return nullptr.
SILFunction *getStringMakeUTF8Init(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return nullptr;
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !callee->hasSemanticsAttr("string.makeUTF8"))
return nullptr;
return callee;
}
// A cache of string-related, SIL information that is needed to create and
// initalize strings from raw string literals. This information is
// extracted from instructions while they are constant evaluated. Though the
// information contained here can be constructed from scratch, extracting it
// from existing instructions is more efficient.
class StringSILInfo {
/// SILFunction corresponding to an intrinsic string initializer that
/// constructs a Swift String from a string literal.
SILFunction *stringInitIntrinsic = nullptr;
/// SIL metatype of String.
SILType stringMetatype = SILType();
public:
/// Extract and cache the required string-related information from the
/// given instruction, if possible.
void extractStringInfoFromInstruction(SILInstruction *inst) {
// If the cache is already initialized do nothing.
if (stringInitIntrinsic)
return;
SILFunction *callee = getStringMakeUTF8Init(inst);
if (!callee)
return;
this->stringInitIntrinsic = callee;
MetatypeInst *stringMetatypeInst =
dyn_cast<MetatypeInst>(inst->getOperand(4)->getDefiningInstruction());
this->stringMetatype = stringMetatypeInst->getType();
}
SILFunction *getStringInitIntrinsic() const {
assert(stringInitIntrinsic);
return stringInitIntrinsic;
}
SILType getStringMetatype() const {
assert(stringMetatype);
return stringMetatype;
}
};
/// State needed for constant folding.
class FoldState {
public:
/// Storage for symbolic values constructed during interpretation.
SymbolicValueBumpAllocator allocator;
/// Evaluator for evaluating instructions one by one.
ConstExprStepEvaluator constantEvaluator;
/// Information needed for folding strings.
StringSILInfo stringInfo;
private:
/// Single-valued instructions that were found to be constants during
/// constant evaluation.
SmallVector<SingleValueInstruction *, 4> constantValuedInstructions;
public:
FoldState(SILFunction *fun) : constantEvaluator(allocator, fun) {}
void addConstantInstruction(SingleValueInstruction *value) {
constantValuedInstructions.push_back(value);
}
ArrayRef<SingleValueInstruction *> getConstantInstructions() {
return ArrayRef<SingleValueInstruction *>(constantValuedInstructions);
}
};
/// Return true if and only if the given nominal type declaration is that of
/// a stdlib Int or stdlib Bool.
bool isStdlibIntegerOrBoolDecl(NominalTypeDecl *numberDecl,
ASTContext &astCtx) {
return (numberDecl == astCtx.getIntDecl() ||
numberDecl == astCtx.getInt8Decl() ||
numberDecl == astCtx.getInt16Decl() ||
numberDecl == astCtx.getInt32Decl() ||
numberDecl == astCtx.getInt64Decl() ||
numberDecl == astCtx.getUIntDecl() ||
numberDecl == astCtx.getUInt8Decl() ||
numberDecl == astCtx.getUInt16Decl() ||
numberDecl == astCtx.getUInt32Decl() ||
numberDecl == astCtx.getUInt64Decl() ||
numberDecl == astCtx.getBoolDecl());
}
/// Return true if and only if the given SIL type represents a String or
/// a Stdlib or builtin integer type.
bool isIntegerOrStringType(SILType silType, ASTContext &astContext) {
if (silType.is<BuiltinIntegerType>()) {
return true;
}
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
if (!nominalDecl) {
return false;
}
return (nominalDecl == astContext.getStringDecl()) ||
isStdlibIntegerOrBoolDecl(nominalDecl, astContext);
}
/// Decide if the given instruction (which could possibly be a call) should
/// be constant evaluated.
///
/// \returns true iff the given instruction is not a call or if it is, it calls
/// a known string operation, such as concat/append etc., or calls an os log
/// overlay function annotated with a semantics attribute.
bool shouldAttemptEvaluation(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return true;
SILFunction *calleeFun = apply->getCalleeFunction();
if (!calleeFun)
return false;
return calleeFun->hasSemanticsAttrThatStartsWith("string.") ||
calleeFun->hasSemanticsAttrThatStartsWith("oslog.");
}
/// Skip or evaluate the given instruction based on the evaluation policy and
/// handle errors. The policy is to evaluate all non-apply instructions as well
/// as apply instructions that either invoke a known string operation or an os
/// log specific function that constructs compile-time constants
/// (like format string). Every other function call is skipped.
/// This includes calls that manipulate runtime values such as the arguments
/// (i.e, interpolated expressions) or the raw byte buffer.
std::pair<Optional<SILBasicBlock::iterator>, Optional<SymbolicValue>>
evaluateOrSkip(ConstExprStepEvaluator &stepEval,
SILBasicBlock::iterator instI) {
SILInstruction *inst = &(*instI);
// Note that skipping a call conservatively approximates its effects on the
// interpreter state.
if (shouldAttemptEvaluation(inst)) {
return stepEval.tryEvaluateOrElseMakeEffectsNonConstant(instI);
}
return stepEval.skipByMakingEffectsNonConstant(instI);
}
/// Check whether a single-valued instruction is foldable. String or integer
/// valued instructions are foldable with the exceptions:
/// - Addresses-valued instructions cannot be folded.
/// - Literal instruction need not be folded.
/// - "String.makeUTF8" instrinsic initializer need not be folded as it is
/// used only on string literals.
/// - StructInst cannot be folded. We can only fold its arguments and not the
/// instruction itself.
bool isInstructionFoldable(SingleValueInstruction *inst) {
ASTContext &astContext = inst->getFunction()->getASTContext();
;
SILType silType = inst->getType();
return (!silType.isAddress() && !isa<LiteralInst>(inst) &&
!isa<StructInst>(inst) && !getStringMakeUTF8Init(inst) &&
isIntegerOrStringType(silType, astContext));
}
/// Constant evaluate the instructions in the range 'first' to 'last'.
/// Add foldable, constant-valued instructions discovered during the evaluation
/// to the 'foldState' passed in.
/// \returns error information for emitting diagnostics if the evaluation
/// failed.
Optional<SymbolicValue> collectConstants(SILBasicBlock::iterator first,
SILBasicBlock::iterator last,
FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
for (auto currI = first; currI != last;) {
SILInstruction *currInst = &(*currI);
// Initialize string info from this instruction if possible.
foldState.stringInfo.extractStringInfoFromInstruction(currInst);
Optional<SymbolicValue> errorInfo = None;
Optional<SILBasicBlock::iterator> nextI = None;
std::tie(nextI, errorInfo) = evaluateOrSkip(constantEvaluator, currI);
if (!nextI) {
return errorInfo;
}
// Set the next instruction to continue evaluation from.
currI = nextI.getValue();
// If the instruction is foldable and if we found a constant value for
// the result of the instruction, record it.
auto *singleValInst = dyn_cast<SingleValueInstruction>(currInst);
if (!singleValInst || !isInstructionFoldable(singleValInst)) {
continue;
}
Optional<SymbolicValue> constantVal =
constantEvaluator.lookupConstValue(singleValInst);
if (constantVal.hasValue()) {
foldState.addConstantInstruction(singleValInst);
}
}
return None; // No error.
}
/// Generate SIL code that computes the constant given by the symbolic value
/// `symVal`. Note that strings and struct-typed constant values will require
/// multiple instructions to be emitted.
/// \param symVal symbolic value for which SIL code needs to be emitted.
/// \param expectedType the expected type of the instruction that would be
/// computing the symbolic value `symVal`. The type is accepted as a
/// parameter as some symbolic values like integer constants can inhabit more
/// than one type.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the symbolic value
/// \param loc SILLocation to use in the emitted instructions.
/// \param stringInfo String.init and metatype information for generating code
/// for string literals.
SILValue emitCodeForSymbolicValue(SymbolicValue symVal, SILType &expectedType,
SILBuilder &builder, SILLocation &loc,
StringSILInfo &stringInfo) {
ASTContext &astContext = expectedType.getASTContext();
switch (symVal.getKind()) {
case SymbolicValue::String: {
assert(astContext.getStringDecl() ==
expectedType.getNominalOrBoundGenericNominal());
StringRef stringVal = symVal.getStringValue();
StringLiteralInst *stringLitInst = builder.createStringLiteral(
loc, stringVal, StringLiteralInst::Encoding::UTF8);
// Create a builtin word for the size of the string
IntegerLiteralInst *sizeInst = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), stringVal.size());
// Set isAscii to false.
IntegerLiteralInst *isAscii = builder.createIntegerLiteral(
loc, SILType::getBuiltinIntegerType(1, astContext), 0);
// Create a metatype inst.
MetatypeInst *metatypeInst =
builder.createMetatype(loc, stringInfo.getStringMetatype());
auto args = SmallVector<SILValue, 4>();
args.push_back(stringLitInst);
args.push_back(sizeInst);
args.push_back(isAscii);
args.push_back(metatypeInst);
FunctionRefInst *stringInitRef =
builder.createFunctionRef(loc, stringInfo.getStringInitIntrinsic());
ApplyInst *applyInst = builder.createApply(
loc, stringInitRef, SubstitutionMap(), ArrayRef<SILValue>(args), false);
return applyInst;
}
case SymbolicValue::Integer: { // Builtin integer types.
APInt resInt = symVal.getIntegerValue();
assert(expectedType.is<BuiltinIntegerType>());
IntegerLiteralInst *intLiteralInst =
builder.createIntegerLiteral(loc, expectedType, resInt);
return intLiteralInst;
}
case SymbolicValue::Aggregate: {
// Support only stdlib integer or bool structs.
StructDecl *structDecl = expectedType.getStructOrBoundGenericStruct();
assert(structDecl);
assert(isStdlibIntegerOrBoolDecl(structDecl, astContext));
VarDecl *propertyDecl = structDecl->getStoredProperties().front();
SILType propertyType =
expectedType.getFieldType(propertyDecl, builder.getModule());
SymbolicValue propertyVal = symVal.lookThroughSingleElementAggregates();
SILValue newPropertySIL = emitCodeForSymbolicValue(
propertyVal, propertyType, builder, loc, stringInfo);
StructInst *newStructInst = builder.createStruct(
loc, expectedType, ArrayRef<SILValue>(newPropertySIL));
return newStructInst;
}
default: {
assert(false && "Symbolic value kind is not supported");
}
}
}
/// Given a fold state with constant-valued instructions, substitute the
/// instructions with the constant values. The constant values could be strings
/// or Stdlib integer-struct values or builtin integers.
void substituteConstants(FoldState &foldState) {
ConstExprStepEvaluator &evaluator = foldState.constantEvaluator;
SmallVector<SILInstruction *, 4> deletedInsts;
for (SingleValueInstruction *constantInst :
foldState.getConstantInstructions()) {
SymbolicValue constantVal =
evaluator.lookupConstValue(constantInst).getValue();
SILBuilderWithScope builder(constantInst);
SILLocation loc = constantInst->getLoc();
SILType instType = constantInst->getType();
SILValue foldedSILVal = emitCodeForSymbolicValue(
constantVal, instType, builder, loc, foldState.stringInfo);
constantInst->replaceAllUsesWith(foldedSILVal);
deletedInsts.push_back(constantInst);
}
recursivelyDeleteTriviallyDeadInstructions(deletedInsts, true,
[&](SILInstruction *DeadI) {});
}
/// Detect and emit diagnostics for errors found during evaluation. Errors
/// can happen due to incorrect implementation of the os log API in the
/// overlay or due to incorrect use of the os log API.
/// TODO: some of the checks here would be made redundant by a dedicated
/// diagnostics check that will happen before the optimization starts.
bool detectAndDiagnoseErrors(Optional<SymbolicValue> errorInfo,
SingleValueInstruction *osLogMessageAddr,
FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILLocation loc = osLogMessageAddr->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
SILFunction *fn = osLogMessageAddr->getFunction();
SILModule &module = fn->getModule();
ASTContext &astContext = fn->getASTContext();
bool errorDetected = false;
// If we have errorInfo that indicates a fail-stop error, diagnose it.
if (errorInfo && constantEvaluator.isFailStopError(*errorInfo)) {
assert(errorInfo->getKind() == SymbolicValue::Unknown);
diagnose(astContext, sourceLoc, diag::oslog_const_evaluation_error);
errorInfo->emitUnknownDiagnosticNotes(loc);
errorDetected = true;
}
// Check if the OSLogMessage and OSLogInterpolation instances are correctly
// inferred as constants. If not, it implies incorrect implementation
// of the os log API in the overlay. Diagnostics here are for os log
// library authors.
Optional<SymbolicValue> osLogMessageAddrValueOpt =
constantEvaluator.lookupConstValue(osLogMessageAddr);
assert(osLogMessageAddrValueOpt.hasValue() &&
osLogMessageAddrValueOpt->getKind() == SymbolicValue::Address);
SmallVector<unsigned, 2> accessPath;
SymbolicValue osLogMessageValue =
osLogMessageAddrValueOpt->getAddressValue(accessPath)->getValue();
if (!osLogMessageValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_message);
return true;
}
SymbolicValue osLogInterpolationValue =
osLogMessageValue.lookThroughSingleElementAggregates();
if (!osLogInterpolationValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_interpolation);
return true;
}
// Check if every proprety of the OSLogInterpolation instance that is a
// string or integer has a constant value. If this is violated this could
// be an indication of an error in the usage of the API. Diagnostics emitted
// here are for the users of the os log APIs.
SILType osLogMessageType = osLogMessageAddr->getType();
StructDecl *structDecl = osLogMessageType.getStructOrBoundGenericStruct();
assert(structDecl);
VarDecl *interpolationPropDecl = structDecl->getStoredProperties().front();
SILType osLogInterpolationType =
osLogMessageType.getFieldType(interpolationPropDecl, module);
StructDecl *interpolationStruct =
osLogInterpolationType.getStructOrBoundGenericStruct();
assert(interpolationStruct);
auto propertyDecls = interpolationStruct->getStoredProperties();
ArrayRef<SymbolicValue> propertyValues =
osLogInterpolationValue.getAggregateValue();
auto propValueI = propertyValues.begin();
for (auto *propDecl : propertyDecls) {
SymbolicValue propertyValue = *(propValueI++);
if (propertyValue.isConstant()) {
continue;
}
if (!isIntegerOrStringType(
osLogInterpolationType.getFieldType(propDecl, module),
astContext)) {
continue;
}
diagnose(astContext, sourceLoc, diag::oslog_property_not_constant,
propDecl->getNameStr());
errorDetected = true;
break;
}
return errorDetected;
}
/// Given a range of instructions from `first` to `last`, fold the constants
/// that could be discovered by constant evaluating the instructions.
void constantFold(SILBasicBlock::iterator first, SILBasicBlock::iterator last) {
SILInstruction *firstInst = &(*first);
// Initialize fold state.
FoldState state(firstInst->getFunction());
auto errorInfo = collectConstants(first, last, state);
// At this point, the `OSLogMessage` instance should be mapped to a symbolic
// value in the interpreter state. Furthermore, its format string and
// interger-valued fields (other than `OSLogArguments`) must be constants.
// If this is not the case, it means the formatting options or privacy
// qualifiers provided by the user were not inferred as compile-time
// constants. Detect and diagnose this scenario.
assert(isa<SingleValueInstruction>(firstInst));
bool errorDetected = detectAndDiagnoseErrors(
errorInfo, dyn_cast<SingleValueInstruction>(firstInst), state);
if (errorDetected)
return;
substituteConstants(state);
}
/// Find an argument of type OSLogMessage from the given os log call.
SILValue findOSLogMessageArgument(ApplyInst *oslogCall) {
ASTContext &astContext = oslogCall->getFunction()->getASTContext();
for (auto argument : oslogCall->getArguments()) {
SILType argumentType = argument->getType();
auto *structDecl = argumentType.getStructOrBoundGenericStruct();
if (!structDecl)
continue;
if (structDecl->getName() == astContext.Id_OSLogMessage) {
return argument;
}
}
return SILValue();
}
/// Given an os log call that is passed a string interpolation,
/// find the first instruction that marks the begining of the string
/// interpolation. Normally, this instruction is the alloc_stack of the
/// string interpolation type, which in this case if 'OSLogMessage'.
/// Constant evaluation and folding must begin from this instruction.
Optional<SILBasicBlock::iterator> beginOfInterpolation(ApplyInst *oslogCall) {
SILFunction *caller = oslogCall->getFunction();
// Find an argument to the call with name 'OSLogMessage'. Since the log
// function definition may change/shuffle its arguments and also since mock
// test helpers for log functions do exist, do not rely on the position of
// the argument and instead look for an argument with a name.
auto &astContext = caller->getASTContext();
auto oslogMessageArgument = findOSLogMessageArgument(oslogCall);
assert(oslogMessageArgument && "No argument of type 'OSLogMessage' in the "
"os log call");
auto *stringInterpolAllocInst =
oslogMessageArgument->getDefiningInstruction();
if (!stringInterpolAllocInst ||
!isa<AllocStackInst>(stringInterpolAllocInst)) {
diagnose(astContext, oslogCall->getLoc().getSourceLoc(),
diag::oslog_dynamic_message);
return None;
}
// Assumption: the alloc_stack of the string interpolation type 'OSLogMessage'
// must precede every other instruction relevant to the string interpolation.
return stringInterpolAllocInst->getIterator();
}
/// If the SILInstruction is a call to an os log function, return the call
/// as an ApplyInst. Otherwise, return nullptr.
ApplyInst *getAsOSLogCall(SILInstruction *inst) {
auto *applyInst = dyn_cast<ApplyInst>(inst);
if (!applyInst) {
return nullptr;
}
SILFunction *callee = applyInst->getCalleeFunction();
if (!callee || !callee->hasSemanticsAttrThatStartsWith("oslog.log")) {
return nullptr;
}
// Default argument generators created for a function also inherit
// the semantics attribute of the function. Therefore, check that there are
// at least two operands for this apply instruction.
if (applyInst->getNumOperands() > 1) {
return applyInst;
}
return nullptr;
}
class OSLogOptimization : public SILFunctionTransform {
~OSLogOptimization() override {}
/// Inline the given os log Call, by loading and linking the callee if it has
/// not been loaded yet, and return the last inlined instruction.
/// \param oslogCall log call instruction to inline.
/// \returns last instruction of the callee after inlining.
SILBasicBlock::iterator inlineLogCallAndGetLast(ApplyInst *oslogCall) {
SILFunction *callee = oslogCall->getReferencedFunction();
assert(callee);
// Load and link the called os log function before inlining. This is needed
// to link shared functions that are used in the callee body.
if (callee->isExternalDeclaration()) {
callee->getModule().loadFunction(callee);
assert(!callee->isExternalDeclaration());
oslogCall->getFunction()->getModule().linkFunction(
callee, SILModule::LinkingMode::LinkNormal);
}
// Inline the log call into the caller and find the last instruction of the
// log call.
SILOptFunctionBuilder funcBuilder(*this);
SILBasicBlock *lastBB =
SILInliner::inlineFullApply(
oslogCall, SILInliner::InlineKind::PerformanceInline, funcBuilder)
.second;
return lastBB->end();
}
/// The entry point to the transformation.
void run() override {
// Don't rerun optimization on deserialized functions or stdlib functions.
if (getFunction()->wasDeserializedCanonical()) {
return;
}
auto &fun = *getFunction();
// Collect all os log calls in the function.
SmallVector<ApplyInst *, 4> oslogCalls;
for (auto &bb : fun) {
for (auto &inst : bb) {
auto oslogCall = getAsOSLogCall(&inst);
if (!oslogCall)
continue;
oslogCalls.push_back(oslogCall);
}
}
// Optimize each os log call found. Optimizing a call will change the
// function body by inlining functions and folding constants.
for (auto *oslogCall : oslogCalls) {
// Find the range of instructions that have to be constant evaluated
// and folded. The relevant instructions start at the begining of the
// string interpolation passed to the log call and end at the last
// instruction of the body of the called os log function (which will be
// inlined).
Optional<SILBasicBlock::iterator> firstI =
beginOfInterpolation(oslogCall);
if (!firstI)
continue;
SILBasicBlock::iterator lastI = inlineLogCallAndGetLast(oslogCall);
constantFold(firstI.getValue(), lastI);
}
}
};
} // end anonymous namespace
SILTransform *swift::createOSLogOptimization() {
return new OSLogOptimization();
}