Files
swift-mirror/include/swift/ABI/Metadata.h
Doug Gregor b84f8ab080 Rename "suppressible protocols" to "invertible protocols".
We've decided to use the "invertible protocols" terminology throughout
the runtime and compiler, so move over to that terminology
consistently.
2024-03-29 11:31:48 -07:00

5185 lines
190 KiB
C++

//===--- Metadata.h - Swift Language ABI Metadata Support -------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Swift ABI describing metadata.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_ABI_METADATA_H
#define SWIFT_ABI_METADATA_H
#include <atomic>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
#include <string.h>
#include "llvm/ADT/ArrayRef.h"
#include "swift/Strings.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/Once.h"
#include "swift/ABI/GenericContext.h"
#include "swift/ABI/MetadataRef.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/ABI/System.h"
#include "swift/ABI/TargetLayout.h"
#include "swift/ABI/TrailingObjects.h"
#include "swift/ABI/ValueWitnessTable.h"
#include "swift/Basic/Malloc.h"
#include "swift/Basic/FlaggedPointer.h"
#include "swift/Basic/RelativePointer.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/Basic/Unreachable.h"
#include "swift/shims/HeapObject.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
namespace swift {
template <typename Runtime> struct TargetGenericMetadataInstantiationCache;
template <typename Runtime> struct TargetAnyClassMetadata;
template <typename Runtime> struct TargetAnyClassMetadataObjCInterop;
template <typename Runtime, typename TargetAnyClassMetadataVariant>
struct TargetClassMetadata;
template <typename Runtime> struct TargetStructMetadata;
template <typename Runtime> struct TargetOpaqueMetadata;
template <typename Runtime> struct TargetValueMetadata;
template <typename Runtime> struct TargetForeignClassMetadata;
template <typename Runtime> struct TargetForeignReferenceTypeMetadata;
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ContextDescriptor)
TargetContextDescriptor;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(TypeContextDescriptor)
TargetTypeContextDescriptor;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(ClassDescriptor)
TargetClassDescriptor;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(ValueTypeDescriptor)
TargetValueTypeDescriptor;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(EnumDescriptor)
TargetEnumDescriptor;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(StructDescriptor)
TargetStructDescriptor;
template <typename Runtime> struct TargetGenericMetadataPattern;
template <typename Runtime> struct TargetProtocolConformanceDescriptor;
struct HeapObject;
class WeakReference;
struct UnownedReference;
using HeapObjectDestroyer =
SWIFT_CC(swift) void(SWIFT_CONTEXT HeapObject *);
/// The result of requesting type metadata. Generally the return value of
/// a function.
///
/// For performance and ABI matching across Swift/C++, functions returning
/// this type must use SWIFT_CC so that the components are returned as separate
/// values.
struct MetadataResponse {
/// The requested metadata.
const Metadata *Value;
/// The current state of the metadata returned. Always use this
/// instead of trying to inspect the metadata directly to see if it
/// satisfies the request. An incomplete metadata may be getting
/// initialized concurrently. But this can generally be ignored if
/// the metadata request was for abstract metadata or if the request
/// is blocking.
MetadataState State;
};
/// A dependency on the metadata progress of other type, indicating that
/// initialization of a metadata cannot progress until another metadata
/// reaches a particular state.
///
/// For performance, functions returning this type should use SWIFT_CC so
/// that the components are returned as separate values.
struct MetadataDependency {
/// Either null, indicating that initialization was successful, or
/// a metadata on which initialization depends for further progress.
const Metadata *Value;
/// The state that Metadata needs to be in before initialization
/// can continue.
MetadataState Requirement;
MetadataDependency() : Value(nullptr) {}
MetadataDependency(const Metadata *metadata, MetadataState requirement)
: Value(metadata), Requirement(requirement) {}
explicit operator bool() const { return Value != nullptr; }
bool operator==(MetadataDependency other) const {
assert(Value && other.Value);
return Value == other.Value &&
Requirement == other.Requirement;
}
};
/// Prefix of a metadata header, containing a pointer to the
/// type layout string.
template <typename Runtime>
struct TargetTypeMetadataLayoutPrefix {
TargetSignedPointer<Runtime, const uint8_t *
__ptrauth_swift_type_layout_string>
layoutString;
};
/// The header before a metadata object which appears on all type
/// metadata. Note that heap metadata are not necessarily type
/// metadata, even for objects of a heap type: for example, objects of
/// Objective-C type possess a form of heap metadata (an Objective-C
/// Class pointer), but this metadata lacks the type metadata header.
/// This case can be distinguished using the isTypeMetadata() flag
/// on ClassMetadata.
template <typename Runtime>
struct TargetTypeMetadataHeaderBase {
/// A pointer to the value-witnesses for this type. This is only
/// present for type metadata.
TargetPointer<Runtime, const TargetValueWitnessTable<Runtime>> ValueWitnesses;
};
template <typename Runtime>
struct TargetTypeMetadataHeader
: TargetTypeMetadataLayoutPrefix<Runtime>,
TargetTypeMetadataHeaderBase<Runtime> {
TargetTypeMetadataHeader() = default;
constexpr TargetTypeMetadataHeader(
const TargetTypeMetadataLayoutPrefix<Runtime> &layout,
const TargetTypeMetadataHeaderBase<Runtime> &header)
: TargetTypeMetadataLayoutPrefix<Runtime>(layout),
TargetTypeMetadataHeaderBase<Runtime>(header) {}
};
using TypeMetadataHeader = TargetTypeMetadataHeader<InProcess>;
/// A "full" metadata pointer is simply an adjusted address point on a
/// metadata object; it points to the beginning of the metadata's
/// allocation, rather than to the canonical address point of the
/// metadata object.
template <class T> struct FullMetadata : T::HeaderType, T {
typedef typename T::HeaderType HeaderType;
FullMetadata() = default;
constexpr FullMetadata(const HeaderType &header, const T &metadata)
: HeaderType(header), T(metadata) {}
template <class... Args>
constexpr FullMetadata(const HeaderType &header, Args &&...metadataArgs)
: HeaderType(header), T(std::forward<Args>(metadataArgs)...) {}
};
/// Given a canonical metadata pointer, produce the adjusted metadata pointer.
template <class T>
static inline FullMetadata<T> *asFullMetadata(T *metadata) {
return (FullMetadata<T>*) (((typename T::HeaderType*) metadata) - 1);
}
template <class T>
static inline const FullMetadata<T> *asFullMetadata(const T *metadata) {
return asFullMetadata(const_cast<T*>(metadata));
}
// std::result_of is busted in Xcode 5. This is a simplified reimplementation
// that isn't SFINAE-safe.
namespace {
template<typename T> struct _ResultOf;
template<typename R, typename...A>
struct _ResultOf<R(*)(A...)> {
using type = R;
};
}
using TypeContextDescriptor = TargetTypeContextDescriptor<InProcess>;
template<template <typename Runtime> class ObjCInteropKind, unsigned PointerSize>
using ExternalTypeContextDescriptor = TargetTypeContextDescriptor<External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
// FIXME: https://github.com/apple/swift/issues/43763
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
/// Bounds for metadata objects.
template <typename Runtime>
struct TargetMetadataBounds {
using StoredSize = typename Runtime::StoredSize;
/// The negative extent of the metadata, in words.
uint32_t NegativeSizeInWords;
/// The positive extent of the metadata, in words.
uint32_t PositiveSizeInWords;
/// Return the total size of the metadata in bytes, including both
/// negatively- and positively-offset members.
StoredSize getTotalSizeInBytes() const {
return (StoredSize(NegativeSizeInWords) + StoredSize(PositiveSizeInWords))
* sizeof(void*);
}
/// Return the offset of the address point of the metadata from its
/// start, in bytes.
StoredSize getAddressPointInBytes() const {
return StoredSize(NegativeSizeInWords) * sizeof(void*);
}
};
using MetadataBounds = TargetMetadataBounds<InProcess>;
/// The common structure of all type metadata.
template <typename Runtime>
struct TargetMetadata {
using StoredPointer = typename Runtime::StoredPointer;
/// The basic header type.
typedef TargetTypeMetadataHeader<Runtime> HeaderType;
constexpr TargetMetadata()
: Kind(static_cast<StoredPointer>(MetadataKind::Class)) {}
constexpr TargetMetadata(MetadataKind Kind)
: Kind(static_cast<StoredPointer>(Kind)) {}
#if SWIFT_OBJC_INTEROP
protected:
constexpr TargetMetadata(TargetAnyClassMetadataObjCInterop<Runtime> *isa)
: Kind(reinterpret_cast<StoredPointer>(isa)) {}
#endif
private:
/// The kind. Only valid for non-class metadata; getKind() must be used to get
/// the kind value.
StoredPointer Kind;
public:
/// Get the metadata kind.
MetadataKind getKind() const {
return getEnumeratedMetadataKind(Kind);
}
/// Set the metadata kind.
void setKind(MetadataKind kind) {
Kind = static_cast<StoredPointer>(kind);
}
protected:
const TargetAnyClassMetadata<Runtime> *getClassISA() const {
return reinterpret_cast<const TargetAnyClassMetadata<Runtime> *>(Kind);
}
void setClassISA(const TargetAnyClassMetadata<Runtime> *isa) {
Kind = reinterpret_cast<StoredPointer>(isa);
}
public:
/// Is this a class object--the metadata record for a Swift class (which also
/// serves as the class object), or the class object for an ObjC class (which
/// is not metadata)?
bool isClassObject() const {
return static_cast<MetadataKind>(getKind()) == MetadataKind::Class;
}
/// Does the given metadata kind represent metadata for some kind of class?
static bool isAnyKindOfClass(MetadataKind k) {
switch (k) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
case MetadataKind::ForeignClass:
case MetadataKind::ForeignReferenceType:
return true;
default:
return false;
}
}
/// Is this metadata for an existential type?
bool isAnyExistentialType() const {
switch (getKind()) {
case MetadataKind::ExistentialMetatype:
case MetadataKind::Existential:
return true;
default:
return false;
}
}
/// Is this either type metadata or a class object for any kind of class?
bool isAnyClass() const {
return isAnyKindOfClass(getKind());
}
const uint8_t *getLayoutString() const {
assert(hasLayoutString());
// Classes should not have layout strings
assert(!isAnyClass());
return asFullMetadata(this)->layoutString;
}
const TargetValueWitnessTable<Runtime> *getValueWitnesses() const {
return asFullMetadata(this)->ValueWitnesses;
}
const TypeLayout *getTypeLayout() const {
return getValueWitnesses()->getTypeLayout();
}
void setValueWitnesses(const ValueWitnessTable *table) {
asFullMetadata(this)->ValueWitnesses = table;
}
void setLayoutString(const uint8_t *layoutString) {
if (isAnyClass()) {
asFullMetadata(reinterpret_cast<TargetAnyClassMetadata<Runtime> *>(this))
->layoutString = layoutString;
} else {
asFullMetadata(this)->layoutString = layoutString;
}
}
bool hasLayoutString() const {
if (auto *contextDescriptor = getTypeContextDescriptor()) {
return contextDescriptor->hasLayoutString();
}
return false;
}
// Define forwarders for value witnesses. These invoke this metadata's value
// witness table with itself as the 'self' parameter.
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define FUNCTION_VALUE_WITNESS(WITNESS, UPPER, RET_TYPE, PARAM_TYPES) \
template<typename...A> \
_ResultOf<ValueWitnessTypes::WITNESS ## Unsigned>::type \
vw_##WITNESS(A &&...args) const { \
return getValueWitnesses()->WITNESS(std::forward<A>(args)..., this); \
}
#define DATA_VALUE_WITNESS(LOWER, UPPER, TYPE)
#include "swift/ABI/ValueWitness.def"
unsigned vw_getEnumTag(const OpaqueValue *value) const {
return getValueWitnesses()->_asEVWT()->getEnumTag(const_cast<OpaqueValue*>(value), this);
}
void vw_destructiveProjectEnumData(OpaqueValue *value) const {
getValueWitnesses()->_asEVWT()->destructiveProjectEnumData(value, this);
}
void vw_destructiveInjectEnumTag(OpaqueValue *value, unsigned tag) const {
getValueWitnesses()->_asEVWT()->destructiveInjectEnumTag(value, tag, this);
}
size_t vw_size() const {
return getValueWitnesses()->getSize();
}
size_t vw_alignment() const {
return getValueWitnesses()->getAlignment();
}
size_t vw_stride() const {
return getValueWitnesses()->getStride();
}
unsigned vw_getNumExtraInhabitants() const {
return getValueWitnesses()->getNumExtraInhabitants();
}
/// Allocate an out-of-line buffer if values of this type don't fit in the
/// ValueBuffer.
/// NOTE: This is not a box for copy-on-write existentials.
OpaqueValue *allocateBufferIn(ValueBuffer *buffer) const;
/// Get the address of the memory previously allocated in the ValueBuffer.
/// NOTE: This is not a box for copy-on-write existentials.
OpaqueValue *projectBufferFrom(ValueBuffer *buffer) const;
/// Deallocate an out-of-line buffer stored in 'buffer' if values of this type
/// are not stored inline in the ValueBuffer.
void deallocateBufferIn(ValueBuffer *buffer) const;
// Allocate an out-of-line buffer box (reference counted) if values of this
// type don't fit in the ValueBuffer.
// NOTE: This *is* a box for copy-on-write existentials.
OpaqueValue *allocateBoxForExistentialIn(ValueBuffer *Buffer) const;
// Deallocate an out-of-line buffer box if one is present.
void deallocateBoxForExistentialIn(ValueBuffer *Buffer) const;
/// Get the nominal type descriptor if this metadata describes a nominal type,
/// or return null if it does not.
ConstTargetMetadataPointer<Runtime, TargetTypeContextDescriptor>
getTypeContextDescriptor() const {
switch (getKind()) {
case MetadataKind::Class: {
const auto cls =
static_cast<const TargetClassMetadataType<Runtime> *>(this);
if (!cls->isTypeMetadata())
return nullptr;
if (cls->isArtificialSubclass())
return nullptr;
return cls->getDescription();
}
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
return static_cast<const TargetValueMetadata<Runtime> *>(this)
->Description;
case MetadataKind::ForeignClass:
return static_cast<const TargetForeignClassMetadata<Runtime> *>(this)
->Description;
case MetadataKind::ForeignReferenceType:
return static_cast<const TargetForeignReferenceTypeMetadata<Runtime> *>(this)
->Description;
default:
return nullptr;
}
}
/// Get the class object for this type if it has one, or return null if the
/// type is not a class (or not a class with a class object).
const TargetClassMetadataType<Runtime> *
getClassObject() const;
/// Retrieve the generic arguments of this type, if it has any.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> const *
getGenericArgs() const {
auto description = getTypeContextDescriptor();
if (!description)
return nullptr;
auto generics = description->getGenericContext();
if (!generics)
return nullptr;
auto asWords = reinterpret_cast<
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> const *>(this);
return asWords + description->getGenericArgumentOffset();
}
bool satisfiesClassConstraint() const;
const TypeContextDescriptor *getDescription() const;
bool isStaticallySpecializedGenericMetadata() const;
bool isCanonicalStaticallySpecializedGenericMetadata() const;
#if SWIFT_OBJC_INTEROP
/// Get the ObjC class object for this type if it has one, or return null if
/// the type is not a class (or not a class with a class object).
/// This is allowed for InProcess values only.
template <typename R = Runtime>
typename std::enable_if<std::is_same<R, InProcess>::value, Class>::type
getObjCClassObject() const {
return reinterpret_cast<Class>(
const_cast<TargetClassMetadata<
InProcess, TargetAnyClassMetadataObjCInterop<InProcess>> *>(
getClassObject()));
}
#endif
#ifndef NDEBUG
[[deprecated("Only meant for use in the debugger")]] void dump() const;
#endif
protected:
friend struct TargetOpaqueMetadata<Runtime>;
/// Metadata should not be publicly copied or moved.
constexpr TargetMetadata(const TargetMetadata &) = default;
TargetMetadata &operator=(const TargetMetadata &) = default;
constexpr TargetMetadata(TargetMetadata &&) = default;
TargetMetadata &operator=(TargetMetadata &&) = default;
};
/// The common structure of opaque metadata. Adds nothing.
template <typename Runtime>
struct TargetOpaqueMetadata {
typedef TargetTypeMetadataHeaderBase<Runtime> HeaderType;
// We have to represent this as a member so we can list-initialize it.
TargetMetadata<Runtime> base;
};
/// The prefix on a heap metadata.
template <typename Runtime>
struct TargetHeapMetadataHeaderPrefix {
/// Destroy the object, returning the allocated size of the object
/// or 0 if the object shouldn't be deallocated.
TargetSignedPointer<Runtime, HeapObjectDestroyer *
__ptrauth_swift_heap_object_destructor>
destroy;
};
using HeapMetadataHeaderPrefix =
TargetHeapMetadataHeaderPrefix<InProcess>;
/// The header present on all heap metadata.
template <typename Runtime>
struct TargetHeapMetadataHeader
: TargetTypeMetadataLayoutPrefix<Runtime>,
TargetHeapMetadataHeaderPrefix<Runtime>,
TargetTypeMetadataHeaderBase<Runtime> {
constexpr TargetHeapMetadataHeader(
const TargetTypeMetadataLayoutPrefix<Runtime> &typeLayoutPrefix,
const TargetHeapMetadataHeaderPrefix<Runtime> &heapPrefix,
const TargetTypeMetadataHeaderBase<Runtime> &typePrefix)
: TargetTypeMetadataLayoutPrefix<Runtime>(typeLayoutPrefix),
TargetHeapMetadataHeaderPrefix<Runtime>(heapPrefix),
TargetTypeMetadataHeaderBase<Runtime>(typePrefix) {}
};
using HeapMetadataHeader =
TargetHeapMetadataHeader<InProcess>;
/// The common structure of all metadata for heap-allocated types. A
/// pointer to one of these can be retrieved by loading the 'isa'
/// field of any heap object, whether it was managed by Swift or by
/// Objective-C. However, when loading from an Objective-C object,
/// this metadata may not have the heap-metadata header, and it may
/// not be the Swift type metadata for the object's dynamic type.
template <typename Runtime>
struct TargetHeapMetadata : TargetMetadata<Runtime> {
using HeaderType = TargetHeapMetadataHeader<Runtime>;
TargetHeapMetadata() = default;
constexpr TargetHeapMetadata(MetadataKind kind)
: TargetMetadata<Runtime>(kind) {}
constexpr TargetHeapMetadata(TargetAnyClassMetadataObjCInterop<Runtime> *isa)
: TargetMetadata<Runtime>(isa) {}
HeapObjectDestroyer *getHeapObjectDestroyer() const {
return asFullMetadata(this)->destroy;
}
void setHeapObjectDestroyer(HeapObjectDestroyer *destroy) {
asFullMetadata(this)->destroy = destroy;
}
};
using HeapMetadata = TargetHeapMetadata<InProcess>;
/// An opaque descriptor describing a class or protocol method. References to
/// these descriptors appear in the method override table of a class context
/// descriptor, or a resilient witness table pattern, respectively.
///
/// Clients should not assume anything about the contents of this descriptor
/// other than it having 4 byte alignment.
template <typename Runtime>
struct TargetMethodDescriptor {
/// Flags describing the method.
MethodDescriptorFlags Flags;
/// The method implementation.
union {
TargetCompactFunctionPointer<Runtime, void> Impl;
TargetRelativeDirectPointer<Runtime, void> AsyncImpl;
};
// TODO: add method types or anything else needed for reflection.
void *getImpl() const {
if (Flags.isAsync()) {
return AsyncImpl.get();
} else {
return Impl.get();
}
}
};
using MethodDescriptor = TargetMethodDescriptor<InProcess>;
/// Header for a class vtable descriptor. This is a variable-sized
/// structure that describes how to find and parse a vtable
/// within the type metadata for a class.
template <typename Runtime>
struct TargetVTableDescriptorHeader {
using StoredPointer = typename Runtime::StoredPointer;
private:
/// The offset of the vtable for this class in its metadata, if any,
/// in words.
///
/// If this class has a resilient superclass, this offset is relative to the
/// the start of the immediate class's metadata. Otherwise, it is relative
/// to the metadata address point.
uint32_t VTableOffset;
public:
/// The number of vtable entries. This is the number of MethodDescriptor
/// records following the vtable header in the class's nominal type
/// descriptor, which is equal to the number of words this subclass's vtable
/// entries occupy in instantiated class metadata.
uint32_t VTableSize;
uint32_t getVTableOffset(const TargetClassDescriptor<Runtime> *description) const {
if (description->hasResilientSuperclass()) {
auto bounds = description->getMetadataBounds();
return (bounds.ImmediateMembersOffset / sizeof(StoredPointer)
+ VTableOffset);
}
return VTableOffset;
}
};
template<typename Runtime> struct TargetMethodDescriptor;
template<typename Runtime>
using TargetRelativeMethodDescriptorPointer =
RelativeIndirectablePointer<const TargetMethodDescriptor<Runtime>,
/*nullable*/ true>;
using RelativeMethodDescriptorPointer =
TargetRelativeMethodDescriptorPointer<InProcess>;
template<typename Runtime> struct TargetProtocolRequirement;
template<typename Runtime>
using TargetRelativeProtocolRequirementPointer =
RelativeIndirectablePointer<const TargetProtocolRequirement<Runtime>,
/*nullable*/ true>;
using RelativeProtocolRequirementPointer =
TargetRelativeProtocolRequirementPointer<InProcess>;
/// An entry in the method override table, referencing a method from one of our
/// ancestor classes, together with an implementation.
template <typename Runtime>
struct TargetMethodOverrideDescriptor {
/// The class containing the base method.
TargetRelativeContextPointer<Runtime> Class;
/// The base method.
TargetRelativeMethodDescriptorPointer<Runtime> Method;
/// The implementation of the override.
union {
TargetCompactFunctionPointer<Runtime, void, /*nullable*/ true> Impl;
TargetRelativeDirectPointer<Runtime, void, /*nullable*/ true> AsyncImpl;
};
void *getImpl() const {
auto *baseMethod = Method.get();
assert(baseMethod && "no base method");
if (baseMethod->Flags.isAsync()) {
return AsyncImpl.get();
} else {
return Impl.get();
}
}
};
/// Header for a class vtable override descriptor. This is a variable-sized
/// structure that provides implementations for overrides of methods defined
/// in superclasses.
template <typename Runtime>
struct TargetOverrideTableHeader {
/// The number of MethodOverrideDescriptor records following the vtable
/// override header in the class's nominal type descriptor.
uint32_t NumEntries;
};
/// The bounds of a class metadata object.
///
/// This type is a currency type and is not part of the ABI.
/// See TargetStoredClassMetadataBounds for the type of the class
/// metadata bounds variable.
template <typename Runtime>
struct TargetClassMetadataBounds : TargetMetadataBounds<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
using StoredPointerDifference = typename Runtime::StoredPointerDifference;
using TargetMetadataBounds<Runtime>::NegativeSizeInWords;
using TargetMetadataBounds<Runtime>::PositiveSizeInWords;
using TargetClassMetadata = TargetClassMetadataType<Runtime>;
/// The offset from the address point of the metadata to the immediate
/// members.
StoredPointerDifference ImmediateMembersOffset;
constexpr TargetClassMetadataBounds() = default;
constexpr TargetClassMetadataBounds(
StoredPointerDifference immediateMembersOffset,
uint32_t negativeSizeInWords, uint32_t positiveSizeInWords)
: TargetMetadataBounds<Runtime>{negativeSizeInWords, positiveSizeInWords},
ImmediateMembersOffset(immediateMembersOffset) {}
/// Return the basic bounds of all Swift class metadata.
/// The immediate members offset will not be meaningful.
static constexpr TargetClassMetadataBounds<Runtime> forSwiftRootClass() {
using MetadataTy = FullMetadata<TargetClassMetadataType<Runtime>>;
return forAddressPointAndSize(sizeof(typename MetadataTy::HeaderType),
sizeof(MetadataTy));
}
/// Return the bounds of a Swift class metadata with the given address
/// point and size (both in bytes).
/// The immediate members offset will not be meaningful.
static constexpr TargetClassMetadataBounds<Runtime>
forAddressPointAndSize(StoredSize addressPoint, StoredSize totalSize) {
return {
// Immediate offset in bytes.
StoredPointerDifference(totalSize - addressPoint),
// Negative size in words.
uint32_t(addressPoint / sizeof(StoredPointer)),
// Positive size in words.
uint32_t((totalSize - addressPoint) / sizeof(StoredPointer))
};
}
/// Adjust these bounds for a subclass with the given immediate-members
/// section.
void adjustForSubclass(bool areImmediateMembersNegative,
uint32_t numImmediateMembers) {
if (areImmediateMembersNegative) {
NegativeSizeInWords += numImmediateMembers;
ImmediateMembersOffset =
-StoredPointerDifference(NegativeSizeInWords) * sizeof(StoredPointer);
} else {
ImmediateMembersOffset = PositiveSizeInWords * sizeof(StoredPointer);
PositiveSizeInWords += numImmediateMembers;
}
}
};
using ClassMetadataBounds =
TargetClassMetadataBounds<InProcess>;
/// The portion of a class metadata object that is compatible with
/// all classes, even non-Swift ones.
template <typename Runtime>
struct TargetAnyClassMetadata : public TargetHeapMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
using TargetClassMetadata = TargetClassMetadataType<Runtime>;
protected:
constexpr TargetAnyClassMetadata(
TargetAnyClassMetadataObjCInterop<Runtime> *isa,
TargetClassMetadata *superclass)
: TargetHeapMetadata<Runtime>(isa), Superclass(superclass) {}
public:
constexpr TargetAnyClassMetadata(TargetClassMetadata *superclass)
: TargetHeapMetadata<Runtime>(MetadataKind::Class),
Superclass(superclass) {}
// Note that ObjC classes do not have a metadata header.
/// The metadata for the superclass. This is null for the root class.
TargetSignedPointer<Runtime, const TargetClassMetadata *
__ptrauth_swift_objc_superclass>
Superclass;
/// Is this object a valid swift type metadata? That is, can it be
/// safely downcast to ClassMetadata?
bool isTypeMetadata() const {
return true;
}
/// A different perspective on the same bit.
bool isPureObjC() const {
return !isTypeMetadata();
}
};
/// This is the class metadata object for all classes (Swift and ObjC) in a
/// runtime that has Objective-C interoperability.
template <typename Runtime>
struct TargetAnyClassMetadataObjCInterop
: public TargetAnyClassMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
using TargetClassMetadataObjCInterop =
// swift:: qualifier works around an MSVC quirk
swift::TargetClassMetadata<Runtime, TargetAnyClassMetadataObjCInterop<Runtime>>;
constexpr TargetAnyClassMetadataObjCInterop(
TargetAnyClassMetadataObjCInterop<Runtime> *isa,
TargetClassMetadataObjCInterop *superclass)
: TargetAnyClassMetadata<Runtime>(isa, superclass),
CacheData{nullptr, nullptr},
Data(SWIFT_CLASS_IS_SWIFT_MASK) {}
constexpr TargetAnyClassMetadataObjCInterop(
TargetClassMetadataObjCInterop *superclass)
: TargetAnyClassMetadata<Runtime>(superclass), CacheData{nullptr,
nullptr},
Data(SWIFT_CLASS_IS_SWIFT_MASK) {}
// Allow setting the metadata kind to a class ISA on class metadata.
using TargetMetadata<Runtime>::getClassISA;
using TargetMetadata<Runtime>::setClassISA;
/// The cache data is used for certain dynamic lookups; it is owned
/// by the runtime and generally needs to interoperate with
/// Objective-C's use.
TargetPointer<Runtime, void> CacheData[2];
/// The data pointer is used for out-of-line metadata and is
/// generally opaque, except that the compiler sets the low bit in
/// order to indicate that this is a Swift metatype and therefore
/// that the type metadata header is present.
StoredSize Data;
static constexpr StoredPointer offsetToData() {
return offsetof(TargetAnyClassMetadataObjCInterop, Data);
}
/// Is this object a valid swift type metadata? That is, can it be
/// safely downcast to ClassMetadata?
bool isTypeMetadata() const {
return (Data & SWIFT_CLASS_IS_SWIFT_MASK);
}
/// A different perspective on the same bit
bool isPureObjC() const {
return !isTypeMetadata();
}
};
using AnyClassMetadata = TargetAnyClassMetadataType<InProcess>;
using ClassIVarDestroyer =
SWIFT_CC(swift) void(SWIFT_CONTEXT HeapObject *);
/// The structure of all class metadata. This structure is embedded
/// directly within the class's heap metadata structure and therefore
/// cannot be extended without an ABI break.
///
/// Note that the layout of this type is compatible with the layout of
/// an Objective-C class.
///
/// If the Runtime supports Objective-C interoperability, this class inherits
/// from TargetAnyClassMetadataObjCInterop, otherwise it inherits from
/// TargetAnyClassMetadata.
template <typename Runtime, typename TargetAnyClassMetadataVariant>
struct TargetClassMetadata : public TargetAnyClassMetadataVariant {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
TargetClassMetadata() = default;
constexpr TargetClassMetadata(const TargetAnyClassMetadataVariant &base,
ClassFlags flags,
ClassIVarDestroyer *ivarDestroyer,
StoredPointer size, StoredPointer addressPoint,
StoredPointer alignMask,
StoredPointer classSize,
StoredPointer classAddressPoint)
: TargetAnyClassMetadataVariant(base), Flags(flags),
InstanceAddressPoint(addressPoint), InstanceSize(size),
InstanceAlignMask(alignMask), Reserved(0), ClassSize(classSize),
ClassAddressPoint(classAddressPoint), Description(nullptr),
IVarDestroyer(ivarDestroyer) {}
// The remaining fields are valid only when isTypeMetadata().
// The Objective-C runtime knows the offsets to some of these fields.
// Be careful when accessing them.
/// Swift-specific class flags.
ClassFlags Flags;
/// The address point of instances of this type.
uint32_t InstanceAddressPoint;
/// The required size of instances of this type.
/// 'InstanceAddressPoint' bytes go before the address point;
/// 'InstanceSize - InstanceAddressPoint' bytes go after it.
uint32_t InstanceSize;
/// The alignment mask of the address point of instances of this type.
uint16_t InstanceAlignMask;
/// Reserved for runtime use.
uint16_t Reserved;
/// The total size of the class object, including prefix and suffix
/// extents.
uint32_t ClassSize;
/// The offset of the address point within the class object.
uint32_t ClassAddressPoint;
// Description is by far the most likely field for a client to try
// to access directly, so we force access to go through accessors.
private:
/// An out-of-line Swift-specific description of the type, or null
/// if this is an artificial subclass. We currently provide no
/// supported mechanism for making a non-artificial subclass
/// dynamically.
TargetSignedPointer<Runtime, const TargetClassDescriptor<Runtime> * __ptrauth_swift_type_descriptor> Description;
public:
/// A function for destroying instance variables, used to clean up after an
/// early return from a constructor. If null, no clean up will be performed
/// and all ivars must be trivial.
TargetSignedPointer<Runtime, ClassIVarDestroyer * __ptrauth_swift_heap_object_destructor> IVarDestroyer;
// After this come the class members, laid out as follows:
// - class members for the superclass (recursively)
// - metadata reference for the parent, if applicable
// - generic parameters for this class
// - class variables (if we choose to support these)
// - "tabulated" virtual methods
using TargetAnyClassMetadataVariant::isTypeMetadata;
ConstTargetMetadataPointer<Runtime, TargetClassDescriptor>
getDescription() const {
assert(isTypeMetadata());
return Description;
}
typename Runtime::StoredSignedPointer
getDescriptionAsSignedPointer() const {
assert(isTypeMetadata());
return Description;
}
void setDescription(const TargetClassDescriptor<Runtime> *description) {
Description = description;
}
// [NOTE: Dynamic-subclass-KVO]
//
// Using Objective-C runtime, KVO can modify object behavior without needing
// to modify the object's code. This is done by dynamically creating an
// artificial subclass of the object's type.
//
// The isa pointer of the observed object is swapped out to point to
// the artificial subclass, which has the following properties:
// - Setters for observed keys are overridden to additionally post
// notifications.
// - The `-class` method is overridden to return the original class type
// instead of the artificial subclass type.
//
// For more details, see:
// https://www.mikeash.com/pyblog/friday-qa-2009-01-23.html
/// Is this class an artificial subclass, such as one dynamically
/// created for various dynamic purposes like KVO?
/// See [NOTE: Dynamic-subclass-KVO]
bool isArtificialSubclass() const {
assert(isTypeMetadata());
return Description == nullptr;
}
void setArtificialSubclass() {
assert(isTypeMetadata());
Description = nullptr;
}
ClassFlags getFlags() const {
assert(isTypeMetadata());
return Flags;
}
void setFlags(ClassFlags flags) {
assert(isTypeMetadata());
Flags = flags;
}
StoredSize getInstanceSize() const {
assert(isTypeMetadata());
return InstanceSize;
}
void setInstanceSize(StoredSize size) {
assert(isTypeMetadata());
InstanceSize = size;
}
StoredPointer getInstanceAddressPoint() const {
assert(isTypeMetadata());
return InstanceAddressPoint;
}
void setInstanceAddressPoint(StoredSize size) {
assert(isTypeMetadata());
InstanceAddressPoint = size;
}
StoredPointer getInstanceAlignMask() const {
assert(isTypeMetadata());
return InstanceAlignMask;
}
void setInstanceAlignMask(StoredSize mask) {
assert(isTypeMetadata());
InstanceAlignMask = mask;
}
StoredPointer getClassSize() const {
assert(isTypeMetadata());
return ClassSize;
}
void setClassSize(StoredSize size) {
assert(isTypeMetadata());
ClassSize = size;
}
StoredPointer getClassAddressPoint() const {
assert(isTypeMetadata());
return ClassAddressPoint;
}
void setClassAddressPoint(StoredSize offset) {
assert(isTypeMetadata());
ClassAddressPoint = offset;
}
uint16_t getRuntimeReservedData() const {
assert(isTypeMetadata());
return Reserved;
}
void setRuntimeReservedData(uint16_t data) {
assert(isTypeMetadata());
Reserved = data;
}
/// Get a pointer to the field offset vector, if present, or null.
const StoredPointer *getFieldOffsets() const {
assert(isTypeMetadata());
auto offset = getDescription()->getFieldOffsetVectorOffset();
if (offset == 0)
return nullptr;
auto asWords = reinterpret_cast<const void * const*>(this);
return reinterpret_cast<const StoredPointer *>(asWords + offset);
}
uint32_t getSizeInWords() const {
assert(isTypeMetadata());
uint32_t size = getClassSize() - getClassAddressPoint();
assert(size % sizeof(StoredPointer) == 0);
return size / sizeof(StoredPointer);
}
/// Given that this class is serving as the superclass of a Swift class,
/// return its bounds as metadata.
///
/// Note that the ImmediateMembersOffset member will not be meaningful.
TargetClassMetadataBounds<Runtime>
getClassBoundsAsSwiftSuperclass() const {
using Bounds = TargetClassMetadataBounds<Runtime>;
auto rootBounds = Bounds::forSwiftRootClass();
// If the class is not type metadata, just use the root-class bounds.
if (!isTypeMetadata())
return rootBounds;
// Otherwise, pull out the bounds from the metadata.
auto bounds = Bounds::forAddressPointAndSize(getClassAddressPoint(),
getClassSize());
// Round the bounds up to the required dimensions.
if (bounds.NegativeSizeInWords < rootBounds.NegativeSizeInWords)
bounds.NegativeSizeInWords = rootBounds.NegativeSizeInWords;
if (bounds.PositiveSizeInWords < rootBounds.PositiveSizeInWords)
bounds.PositiveSizeInWords = rootBounds.PositiveSizeInWords;
return bounds;
}
#if SWIFT_OBJC_INTEROP
/// Given a statically-emitted metadata template, this sets the correct
/// "is Swift" bit for the current runtime. Depending on the deployment
/// target a binary was compiled for, statically emitted metadata templates
/// may have a different bit set from the one that this runtime canonically
/// considers the "is Swift" bit.
void setAsTypeMetadata() {
// If the wrong "is Swift" bit is set, set the correct one.
//
// Note that the only time we should see the "new" bit set while
// expecting the "old" one is when running a binary built for a
// new OS on an old OS, which is not supported, however we do
// have tests that exercise this scenario.
auto otherSwiftBit = (3ULL - SWIFT_CLASS_IS_SWIFT_MASK);
assert(otherSwiftBit == 1ULL || otherSwiftBit == 2ULL);
if ((this->Data & 3) == otherSwiftBit) {
this->Data ^= 3;
}
// Otherwise there should be nothing to do, since only the old "is
// Swift" bit is used for backward-deployed runtimes.
assert(isTypeMetadata());
}
#endif
bool isStaticallySpecializedGenericMetadata() const {
auto *description = getDescription();
if (!description->isGeneric())
return false;
return this->Flags & ClassFlags::IsStaticSpecialization;
}
bool isCanonicalStaticallySpecializedGenericMetadata() const {
auto *description = getDescription();
if (!description->isGeneric())
return false;
return this->Flags & ClassFlags::IsCanonicalStaticSpecialization;
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Class;
}
};
using ClassMetadata = TargetClassMetadataType<InProcess>;
/// The structure of class metadata that's compatible with dispatch objects.
/// This includes Swift heap metadata, followed by the vtable entries that
/// dispatch expects to see, with padding to place them at the expected offsets.
template <typename Runtime>
struct TargetDispatchClassMetadata : public TargetHeapMetadata<Runtime> {
using InvokeCall = void (*)(void *, void *, uint32_t);
TargetDispatchClassMetadata(MetadataKind Kind, unsigned long VTableType,
InvokeCall Invoke)
: TargetHeapMetadata<Runtime>(Kind), VTableType(VTableType),
VTableInvoke(Invoke) {}
TargetPointer<Runtime, void> Opaque;
#if SWIFT_OBJC_INTEROP
TargetPointer<Runtime, void> OpaqueObjC[3];
#endif
unsigned long VTableType;
TargetSignedPointer<Runtime, InvokeCall __ptrauth_swift_dispatch_invoke_function> VTableInvoke;
};
using DispatchClassMetadata = TargetDispatchClassMetadata<InProcess>;
/// The structure of metadata for heap-allocated local variables.
/// This is non-type metadata.
template <typename Runtime>
struct TargetHeapLocalVariableMetadata
: public TargetHeapMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
uint32_t OffsetToFirstCapture;
TargetPointer<Runtime, const char> CaptureDescription;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::HeapLocalVariable;
}
constexpr TargetHeapLocalVariableMetadata()
: TargetHeapMetadata<Runtime>(MetadataKind::HeapLocalVariable),
OffsetToFirstCapture(0), CaptureDescription(nullptr) {}
};
using HeapLocalVariableMetadata
= TargetHeapLocalVariableMetadata<InProcess>;
/// The structure of wrapper metadata for Objective-C classes. This
/// is used as a type metadata pointer when the actual class isn't
/// Swift-compiled.
template <typename Runtime>
struct TargetObjCClassWrapperMetadata : public TargetMetadata<Runtime> {
ConstTargetMetadataPointer<Runtime, TargetClassMetadataObjCInterop> Class;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ObjCClassWrapper;
}
};
using ObjCClassWrapperMetadata
= TargetObjCClassWrapperMetadata<InProcess>;
/// The structure of metadata for foreign types where the source
/// language doesn't provide any sort of more interesting metadata for
/// us to use.
template <typename Runtime>
struct TargetForeignTypeMetadata : public TargetMetadata<Runtime> {
};
using ForeignTypeMetadata = TargetForeignTypeMetadata<InProcess>;
/// The structure of metadata objects for foreign class types.
/// A foreign class is a foreign type with reference semantics and
/// Swift-supported reference counting. Generally this requires
/// special logic in the importer.
///
/// We assume for now that foreign classes are entirely opaque
/// to Swift introspection.
template <typename Runtime>
struct TargetForeignClassMetadata : public TargetForeignTypeMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
/// An out-of-line description of the type.
TargetSignedPointer<Runtime, const TargetClassDescriptor<Runtime> * __ptrauth_swift_type_descriptor> Description;
/// The superclass of the foreign class, if any.
ConstTargetMetadataPointer<Runtime, swift::TargetForeignClassMetadata>
Superclass;
/// Reserved space. For now, this should be zero-initialized.
/// If this is used for anything in the future, at least some of these
/// first bits should be flags.
StoredPointer Reserved[1];
ConstTargetMetadataPointer<Runtime, TargetClassDescriptor>
getDescription() const {
return Description;
}
typename Runtime::StoredSignedPointer
getDescriptionAsSignedPointer() const {
return Description;
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ForeignClass;
}
};
using ForeignClassMetadata = TargetForeignClassMetadata<InProcess>;
/// The structure of metadata objects for foreign reference types.
/// A foreign reference type is a non-Swift, non-Objective-C foreign type with
/// reference semantics. Foreign reference types are pointers/reference to
/// value types marked with the "import_as_ref" attribute.
///
/// Foreign reference types may have *custom* reference counting operations, or
/// they may be immortal (and therefore trivial).
///
/// We assume for now that foreign reference types are entirely opaque
/// to Swift introspection.
template <typename Runtime>
struct TargetForeignReferenceTypeMetadata : public TargetForeignTypeMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
/// An out-of-line description of the type.
TargetSignedPointer<Runtime, const TargetClassDescriptor<Runtime> * __ptrauth_swift_type_descriptor> Description;
/// Reserved space. For now, this should be zero-initialized.
/// If this is used for anything in the future, at least some of these
/// first bits should be flags.
StoredPointer Reserved[1];
ConstTargetMetadataPointer<Runtime, TargetClassDescriptor>
getDescription() const {
return Description;
}
typename Runtime::StoredSignedPointer
getDescriptionAsSignedPointer() const {
return Description;
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ForeignReferenceType;
}
};
using ForeignReferenceTypeMetadata = TargetForeignReferenceTypeMetadata<InProcess>;
/// The common structure of metadata for structs and enums.
template <typename Runtime>
struct TargetValueMetadata : public TargetMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
TargetValueMetadata(MetadataKind Kind,
const TargetTypeContextDescriptor<Runtime> *description)
: TargetMetadata<Runtime>(Kind), Description(description) {}
/// An out-of-line description of the type.
TargetSignedPointer<Runtime, const TargetValueTypeDescriptor<Runtime> * __ptrauth_swift_type_descriptor> Description;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Struct
|| metadata->getKind() == MetadataKind::Enum
|| metadata->getKind() == MetadataKind::Optional;
}
ConstTargetMetadataPointer<Runtime, TargetValueTypeDescriptor>
getDescription() const {
return Description;
}
typename Runtime::StoredSignedPointer
getDescriptionAsSignedPointer() const {
return Description;
}
};
using ValueMetadata = TargetValueMetadata<InProcess>;
/// The structure of type metadata for structs.
template <typename Runtime>
struct TargetStructMetadata : public TargetValueMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using TargetValueMetadata<Runtime>::TargetValueMetadata;
const TargetStructDescriptor<Runtime> *getDescription() const {
return llvm::cast<TargetStructDescriptor<Runtime>>(this->Description);
}
// The first trailing field of struct metadata is always the generic
// argument array.
/// Get a pointer to the field offset vector, if present, or null.
const uint32_t *getFieldOffsets() const {
auto offset = getDescription()->FieldOffsetVectorOffset;
if (offset == 0)
return nullptr;
auto asWords = reinterpret_cast<const void * const*>(this);
return reinterpret_cast<const uint32_t *>(asWords + offset);
}
bool isStaticallySpecializedGenericMetadata() const {
auto *description = getDescription();
if (!description->isGeneric())
return false;
auto *trailingFlags = getTrailingFlags();
if (trailingFlags == nullptr)
return false;
return trailingFlags->isStaticSpecialization();
}
bool isCanonicalStaticallySpecializedGenericMetadata() const {
auto *description = getDescription();
if (!description->isGeneric())
return false;
auto *trailingFlags = getTrailingFlags();
if (trailingFlags == nullptr)
return false;
return trailingFlags->isCanonicalStaticSpecialization();
}
const MetadataTrailingFlags *getTrailingFlags() const {
auto description = getDescription();
auto flags = description->getFullGenericContextHeader()
.DefaultInstantiationPattern->PatternFlags;
if (!flags.hasTrailingFlags())
return nullptr;
auto fieldOffset = description->FieldOffsetVectorOffset;
auto offset =
fieldOffset +
// Pad to the nearest pointer.
((description->NumFields * sizeof(uint32_t) + sizeof(void *) - 1) /
sizeof(void *));
auto asWords = reinterpret_cast<const void *const *>(this);
return reinterpret_cast<const MetadataTrailingFlags *>(asWords + offset);
}
static constexpr int32_t getGenericArgumentOffset() {
return sizeof(TargetStructMetadata<Runtime>) / sizeof(StoredPointer);
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Struct;
}
};
using StructMetadata = TargetStructMetadata<InProcess>;
/// The structure of type metadata for enums.
template <typename Runtime>
struct TargetEnumMetadata : public TargetValueMetadata<Runtime> {
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
using TargetValueMetadata<Runtime>::TargetValueMetadata;
const TargetEnumDescriptor<Runtime> *getDescription() const {
return llvm::cast<TargetEnumDescriptor<Runtime>>(this->Description);
}
// The first trailing field of enum metadata is always the generic
// argument array.
/// True if the metadata records the size of the payload area.
bool hasPayloadSize() const {
return getDescription()->hasPayloadSizeOffset();
}
/// Retrieve the size of the payload area.
///
/// `hasPayloadSize` must be true for this to be valid.
StoredSize getPayloadSize() const {
assert(hasPayloadSize());
auto offset = getDescription()->getPayloadSizeOffset();
const StoredSize *asWords = reinterpret_cast<const StoredSize *>(this);
asWords += offset;
return *asWords;
}
StoredSize &getPayloadSize() {
assert(hasPayloadSize());
auto offset = getDescription()->getPayloadSizeOffset();
StoredSize *asWords = reinterpret_cast<StoredSize *>(this);
asWords += offset;
return *asWords;
}
bool isStaticallySpecializedGenericMetadata() const {
auto *description = getDescription();
if (!description->isGeneric())
return false;
auto *trailingFlags = getTrailingFlags();
if (trailingFlags == nullptr)
return false;
return trailingFlags->isStaticSpecialization();
}
bool isCanonicalStaticallySpecializedGenericMetadata() const {
auto *description = getDescription();
if (!description->isGeneric())
return false;
auto *trailingFlags = getTrailingFlags();
if (trailingFlags == nullptr)
return false;
return trailingFlags->isCanonicalStaticSpecialization();
}
const MetadataTrailingFlags *getTrailingFlags() const {
auto description = getDescription();
auto flags = description->getFullGenericContextHeader()
.DefaultInstantiationPattern->PatternFlags;
if (!flags.hasTrailingFlags())
return nullptr;
auto offset =
getGenericArgumentOffset() +
description->getFullGenericContextHeader().Base.getNumArguments() +
(hasPayloadSize() ? 1 : 0);
auto asWords = reinterpret_cast<const void *const *>(this);
return reinterpret_cast<const MetadataTrailingFlags *>(asWords + offset);
}
static constexpr int32_t getGenericArgumentOffset() {
return sizeof(TargetEnumMetadata<Runtime>) / sizeof(StoredPointer);
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Enum
|| metadata->getKind() == MetadataKind::Optional;
}
};
using EnumMetadata = TargetEnumMetadata<InProcess>;
template <typename Runtime>
struct TargetFunctionGlobalActorMetadata {
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> GlobalActorType;
};
using FunctionGlobalActorMetadata = TargetFunctionGlobalActorMetadata<InProcess>;
template <typename Runtime>
struct TargetFunctionThrownErrorMetadata {
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> ThrownErrorType;
};
using FunctionThrownErrorMetadata = TargetFunctionThrownErrorMetadata<InProcess>;
/// The structure of function type metadata.
template <typename Runtime>
struct TargetFunctionTypeMetadata : public TargetMetadata<Runtime>,
swift::ABI::TrailingObjects<
TargetFunctionTypeMetadata<Runtime>,
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>,
ParameterFlags,
TargetFunctionMetadataDifferentiabilityKind<typename Runtime::StoredSize>,
TargetFunctionGlobalActorMetadata<Runtime>,
ExtendedFunctionTypeFlags,
TargetFunctionThrownErrorMetadata<Runtime>> {
using StoredSize = typename Runtime::StoredSize;
using Parameter = ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>;
private:
using TrailingObjects =
swift::ABI::TrailingObjects<
TargetFunctionTypeMetadata<Runtime>,
Parameter,
ParameterFlags,
TargetFunctionMetadataDifferentiabilityKind<StoredSize>,
TargetFunctionGlobalActorMetadata<Runtime>,
ExtendedFunctionTypeFlags,
TargetFunctionThrownErrorMetadata<Runtime>>;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
public:
TargetFunctionTypeFlags<StoredSize> Flags;
/// The type metadata for the result type.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> ResultType;
private:
size_t numTrailingObjects(OverloadToken<Parameter>) const {
return getNumParameters();
}
size_t numTrailingObjects(OverloadToken<ParameterFlags>) const {
return hasParameterFlags() ? getNumParameters() : 0;
}
size_t numTrailingObjects(
OverloadToken<TargetFunctionMetadataDifferentiabilityKind<StoredSize>>
) const {
return isDifferentiable() ? 1 : 0;
}
size_t numTrailingObjects(
OverloadToken<TargetFunctionGlobalActorMetadata<Runtime>>
) const {
return hasGlobalActor() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<ExtendedFunctionTypeFlags>) const {
return hasExtendedFlags() ? 1 : 0;
}
size_t numTrailingObjects(
OverloadToken<TargetFunctionThrownErrorMetadata<Runtime>>
) const {
return hasThrownError() ? 1 : 0;
}
public:
Parameter *getParameters() {
return this->template getTrailingObjects<Parameter>();
}
const Parameter *getParameters() const {
return this->template getTrailingObjects<Parameter>();
}
Parameter getParameter(unsigned index) const {
assert(index < getNumParameters());
return getParameters()[index];
}
ParameterFlags getParameterFlags(unsigned index) const {
assert(index < getNumParameters());
return hasParameterFlags() ? getParameterFlags()[index] : ParameterFlags();
}
StoredSize getNumParameters() const {
return Flags.getNumParameters();
}
FunctionMetadataConvention getConvention() const {
return Flags.getConvention();
}
bool isAsync() const { return Flags.isAsync(); }
bool isThrowing() const { return Flags.isThrowing(); }
bool isSendable() const { return Flags.isSendable(); }
bool isDifferentiable() const { return Flags.isDifferentiable(); }
bool hasParameterFlags() const { return Flags.hasParameterFlags(); }
bool isEscaping() const { return Flags.isEscaping(); }
bool hasGlobalActor() const { return Flags.hasGlobalActor(); }
bool hasExtendedFlags() const { return Flags.hasExtendedFlags(); }
bool hasThrownError() const {
if (!Flags.hasExtendedFlags())
return false;
return getExtendedFlags().isTypedThrows();
}
static constexpr StoredSize OffsetToFlags = sizeof(TargetMetadata<Runtime>);
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Function;
}
ParameterFlags *getParameterFlags() {
return this->template getTrailingObjects<ParameterFlags>();
}
const ParameterFlags *getParameterFlags() const {
return this->template getTrailingObjects<ParameterFlags>();
}
TargetFunctionMetadataDifferentiabilityKind<StoredSize> *
getDifferentiabilityKindAddress() {
assert(isDifferentiable());
return this->template getTrailingObjects<TargetFunctionMetadataDifferentiabilityKind<StoredSize>>();
}
TargetFunctionMetadataDifferentiabilityKind<StoredSize>
getDifferentiabilityKind() const {
if (isDifferentiable()) {
return *(this->template getTrailingObjects<TargetFunctionMetadataDifferentiabilityKind<StoredSize>>());
}
return TargetFunctionMetadataDifferentiabilityKind<StoredSize>
::NonDifferentiable;
}
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> *
getGlobalActorAddr() {
assert(hasGlobalActor());
auto globalActorAddr =
this->template getTrailingObjects<TargetFunctionGlobalActorMetadata<Runtime>>();
return &globalActorAddr->GlobalActorType;
}
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>
getGlobalActor() const {
if (!hasGlobalActor())
return ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>();
auto globalActorAddr =
this->template getTrailingObjects<TargetFunctionGlobalActorMetadata<Runtime>>();
return globalActorAddr->GlobalActorType;
}
ExtendedFunctionTypeFlags *getExtendedFlagsAddr() {
assert(hasExtendedFlags());
return this->template getTrailingObjects<ExtendedFunctionTypeFlags>();
}
ExtendedFunctionTypeFlags getExtendedFlags() const {
if (!hasExtendedFlags())
return ExtendedFunctionTypeFlags();
return this->template getTrailingObjects<ExtendedFunctionTypeFlags>()[0];
}
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> *
getThrownErrorAddr() {
assert(hasThrownError());
auto thrownErrorAddr =
this->template getTrailingObjects<TargetFunctionThrownErrorMetadata<Runtime>>();
return &thrownErrorAddr->ThrownErrorType;
}
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>
getThrownError() const {
if (!hasThrownError())
return ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>();
auto thrownErrorAddr =
this->template getTrailingObjects<TargetFunctionThrownErrorMetadata<Runtime>>();
return thrownErrorAddr->ThrownErrorType;
}
};
using FunctionTypeMetadata = TargetFunctionTypeMetadata<InProcess>;
/// The structure of metadata for metatypes.
template <typename Runtime>
struct TargetMetatypeMetadata : public TargetMetadata<Runtime> {
/// The type metadata for the element.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> InstanceType;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Metatype;
}
};
using MetatypeMetadata = TargetMetatypeMetadata<InProcess>;
/// The structure of tuple type metadata.
template <typename Runtime>
struct TargetTupleTypeMetadata : public TargetMetadata<Runtime> {
using StoredSize = typename Runtime::StoredSize;
using HeaderType = TargetTypeMetadataHeaderBase<Runtime>;
TargetTupleTypeMetadata() = default;
constexpr TargetTupleTypeMetadata(const TargetMetadata<Runtime> &base,
uint32_t numElements,
TargetPointer<Runtime, const char> labels)
: TargetMetadata<Runtime>(base),
NumElements(numElements),
Labels(labels) {}
/// The number of elements.
StoredSize NumElements;
/// The labels string; see swift_getTupleTypeMetadata.
TargetPointer<Runtime, const char> Labels;
struct Element {
/// The type of the element.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> Type;
/// The offset of the tuple element within the tuple.
#if __APPLE__
StoredSize Offset;
#else
uint32_t Offset;
#endif
OpaqueValue *findIn(OpaqueValue *tuple) const {
return (OpaqueValue*) (((char*) tuple) + Offset);
}
const TypeLayout *getTypeLayout() const {
return Type->getTypeLayout();
}
};
static_assert(sizeof(Element) == sizeof(StoredSize) * 2,
"element size should be two words");
Element *getElements() {
return reinterpret_cast<Element*>(this + 1);
}
const Element *getElements() const {
return reinterpret_cast<const Element*>(this + 1);
}
const Element &getElement(unsigned i) const {
return getElements()[i];
}
Element &getElement(unsigned i) {
return getElements()[i];
}
static constexpr StoredSize getOffsetToNumElements();
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Tuple;
}
};
using TupleTypeMetadata = TargetTupleTypeMetadata<InProcess>;
template <typename Runtime>
constexpr inline auto
TargetTupleTypeMetadata<Runtime>::getOffsetToNumElements() -> StoredSize {
return offsetof(TargetTupleTypeMetadata<Runtime>, NumElements);
}
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ProtocolDescriptor)
TargetProtocolDescriptor;
/// A protocol requirement descriptor. This describes a single protocol
/// requirement in a protocol descriptor. The index of the requirement in
/// the descriptor determines the offset of the witness in a witness table
/// for this protocol.
template <typename Runtime>
struct TargetProtocolRequirement {
ProtocolRequirementFlags Flags;
// TODO: name, type
/// The optional default implementation of the protocol.
union {
TargetCompactFunctionPointer<Runtime, void, /*nullable*/ true> DefaultFuncImplementation;
TargetRelativeDirectPointer<Runtime, void, /*nullable*/ true> DefaultImplementation;
};
void *getDefaultImplementation() const {
if (Flags.isFunctionImpl()) {
return DefaultFuncImplementation.get();
} else {
return DefaultImplementation.get();
}
}
};
using ProtocolRequirement = TargetProtocolRequirement<InProcess>;
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ProtocolDescriptor)
TargetProtocolDescriptor;
using ProtocolDescriptor = TargetProtocolDescriptor<InProcess>;
template<template <typename Runtime> class ObjCInteropKind, unsigned PointerSize>
using ExternalProtocolDescriptor = TargetProtocolDescriptor<External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
/// A witness table for a protocol.
///
/// With the exception of the initial protocol conformance descriptor,
/// the layout of a witness table is dependent on the protocol being
/// represented.
template <typename Runtime>
class TargetWitnessTable {
/// The protocol conformance descriptor from which this witness table
/// was generated.
ConstTargetMetadataPointer<Runtime, TargetProtocolConformanceDescriptor>
Description;
public:
const TargetProtocolConformanceDescriptor<Runtime> *getDescription() const {
return Description;
}
};
using WitnessTable = TargetWitnessTable<InProcess>;
template <typename Runtime>
using TargetWitnessTablePointer =
ConstTargetMetadataPointer<Runtime, TargetWitnessTable>;
using WitnessTablePointer = TargetWitnessTablePointer<InProcess>;
using AssociatedWitnessTableAccessFunction =
SWIFT_CC(swift) WitnessTable *(const Metadata *associatedType,
const Metadata *self,
const WitnessTable *selfConformance);
template<typename Runtime>
using TargetRelativeProtocolConformanceDescriptorPointer =
RelativeIndirectablePointer<const TargetProtocolConformanceDescriptor<Runtime>,
/*nullable*/ false>;
/// A relative witness table for a protocol.
///
/// With the exception of the initial protocol conformance descriptor,
/// the layout of a witness table is dependent on the protocol being
/// represented.
/// Entries are relative pointers.
template <typename Runtime>
class TargetRelativeWitnessTable {
/// The protocol conformance descriptor from which this witness table
/// was generated.
TargetRelativeProtocolConformanceDescriptorPointer<Runtime> Description;
public:
const TargetProtocolConformanceDescriptor<Runtime> *getDescription() const {
return Description;
}
};
using RelativeWitnessTable = TargetRelativeWitnessTable<InProcess>;
using AssociatedRelativeWitnessTableAccessFunction =
SWIFT_CC(swift) RelativeWitnessTable *(const Metadata *associatedType,
const Metadata *self,
const RelativeWitnessTable *selfConformance);
/// The possible physical representations of existential types.
enum class ExistentialTypeRepresentation {
/// The type uses an opaque existential representation.
Opaque,
/// The type uses a class existential representation.
Class,
/// The type uses the Error boxed existential representation.
Error,
};
/// The structure of type metadata for simple existential types which
/// don't require an extended existential descriptor:
///
/// - They are existential over a single type T.
/// - Their head type is that type T.
/// - Their existential constraints are a composition of protocol
/// requirements, superclass constraints, and possibly a class
/// layout constraint on T.
template <typename Runtime>
struct TargetExistentialTypeMetadata
: TargetMetadata<Runtime>,
swift::ABI::TrailingObjects<
TargetExistentialTypeMetadata<Runtime>,
ConstTargetMetadataPointer<Runtime, TargetMetadata>,
TargetProtocolDescriptorRef<Runtime>> {
using HeaderType = TargetTypeMetadataHeaderBase<Runtime>;
private:
using ProtocolDescriptorRef = TargetProtocolDescriptorRef<Runtime>;
using MetadataPointer =
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata>;
using TrailingObjects =
swift::ABI::TrailingObjects<
TargetExistentialTypeMetadata<Runtime>,
MetadataPointer,
ProtocolDescriptorRef>;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
size_t numTrailingObjects(OverloadToken<ProtocolDescriptorRef>) const {
return NumProtocols;
}
size_t numTrailingObjects(OverloadToken<MetadataPointer>) const {
return Flags.hasSuperclassConstraint() ? 1 : 0;
}
public:
using StoredPointer = typename Runtime::StoredPointer;
/// The number of witness tables and class-constrained-ness of the type.
ExistentialTypeFlags Flags;
/// The number of protocols.
uint32_t NumProtocols;
constexpr TargetExistentialTypeMetadata()
: TargetMetadata<Runtime>(MetadataKind::Existential),
Flags(ExistentialTypeFlags()), NumProtocols(0) {}
explicit constexpr TargetExistentialTypeMetadata(ExistentialTypeFlags Flags)
: TargetMetadata<Runtime>(MetadataKind::Existential),
Flags(Flags), NumProtocols(0) {}
/// Get the representation form this existential type uses.
ExistentialTypeRepresentation getRepresentation() const;
/// True if it's valid to take ownership of the value in the existential
/// container if we own the container.
bool mayTakeValue(const OpaqueValue *container) const;
/// Clean up an existential container whose value is uninitialized.
void deinitExistentialContainer(OpaqueValue *container) const;
/// Project the value pointer from an existential container of the type
/// described by this metadata.
const OpaqueValue *projectValue(const OpaqueValue *container) const;
OpaqueValue *projectValue(OpaqueValue *container) const {
return const_cast<OpaqueValue *>(projectValue((const OpaqueValue*)container));
}
/// Get the dynamic type from an existential container of the type described
/// by this metadata.
const TargetMetadata<Runtime> *
getDynamicType(const OpaqueValue *container) const;
/// Get a witness table from an existential container of the type described
/// by this metadata.
const TargetWitnessTable<Runtime> * getWitnessTable(
const OpaqueValue *container,
unsigned i) const;
/// Return true iff all the protocol constraints are @objc.
bool isObjC() const {
return isClassBounded() && Flags.getNumWitnessTables() == 0;
}
bool isClassBounded() const {
return Flags.getClassConstraint() == ProtocolClassConstraint::Class;
}
/// Retrieve the set of protocols required by the existential.
llvm::ArrayRef<ProtocolDescriptorRef> getProtocols() const {
return { this->template getTrailingObjects<ProtocolDescriptorRef>(),
NumProtocols };
}
MetadataPointer getSuperclassConstraint() const {
if (!Flags.hasSuperclassConstraint())
return MetadataPointer();
return this->template getTrailingObjects<MetadataPointer>()[0];
}
/// Retrieve the set of protocols required by the existential.
llvm::MutableArrayRef<ProtocolDescriptorRef> getMutableProtocols() {
return { this->template getTrailingObjects<ProtocolDescriptorRef>(),
NumProtocols };
}
/// Set the superclass.
void setSuperclassConstraint(MetadataPointer superclass) {
assert(Flags.hasSuperclassConstraint());
assert(superclass != nullptr);
this->template getTrailingObjects<MetadataPointer>()[0] = superclass;
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::Existential;
}
};
using ExistentialTypeMetadata
= TargetExistentialTypeMetadata<InProcess>;
template<typename Runtime>
struct TargetExistentialTypeExpression {
/// The type expression.
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> name;
};
/// A description of the shape of an existential type.
///
/// An existential type has the general form:
/// \exists <signature> . <type>
///
/// The signature is called the requirement signature. In the most
/// common case (the only one Swift currently supports), it has exactly
/// one type parameter. The types and conformances required by this
/// signature must be stored in the existential container at runtime.
///
/// The type is called the type (sub)expression, and it is expressed
/// in terms of the type parameters introduced by the requirement
/// signature. It is required to name each of the type parameters in
/// an identity position (outside of the base type of a member type
/// expression). In the most common case, it is the unique type
/// parameter type. Swift currently only supports existential
/// subexpressions that are either the (unique) type parameter or
/// a metatype thereof (possibly multiply-derived).
///
/// In order to efficiently support generic substitution of the
/// constraints of existential types, extended existential type
/// descriptors represent a generalizable form of the existential:
/// \forall <gen sig> . \exists <req sig> . <type>
///
/// The new signature is called the generalization signature of the
/// shape. All concrete references to types within the requirement
/// signature and head type which are not expressed in terms of
/// the requirement signature are replaced with type parameters freshly
/// added to the generalization signature. Any given existential type
/// is then a specialization of this generalization.
///
/// For example, the existential type
/// \exists <T: Collection where T.Element == Int> . T
/// is generalized as
/// \forall <U> . \exists <T: Collection where T.Element == U> . T
/// and is the application of this generalization at <Int>.
///
/// The soundness condition on this is that the generalization
/// signatures, requirement signatures, and head types must be
/// identical for any two existential types for which a generic
/// substitution can carry one to the other.
///
/// Only particularly complex existential types are represented with
/// an explicit existential shape. Types which are a simple composition
/// of layout, superclass, and unconstrained protocol constraints on
/// an opaque or (metatype-of)+-opaque are represented with
/// ExistentialTypeMetadata or ExistentialMetatypeMetadata.
/// Types which *can* be represented with those classes *must*
/// be represented with them.
template <typename Runtime>
struct TargetExtendedExistentialTypeShape
: swift::ABI::TrailingObjects<
TargetExtendedExistentialTypeShape<Runtime>,
// Optional generalization signature header
TargetGenericContextDescriptorHeader<Runtime>,
// Optional type subexpression
TargetExistentialTypeExpression<Runtime>,
// Optional suggested value witnesses
TargetRelativeIndirectablePointer<Runtime, const TargetValueWitnessTable<Runtime>,
/*nullable*/ false>,
// Parameters for requirement signature, followed by parameters
// for generalization signature
GenericParamDescriptor,
// Requirements for requirement signature, followed by requirements
// for generalization signature
TargetGenericRequirementDescriptor<Runtime>,
// Optional header describing any type packs in the generalization
// signature.
GenericPackShapeHeader,
// For each type pack in the generalization signature, a descriptor
// storing the shape class.
GenericPackShapeDescriptor> {
private:
using RelativeValueWitnessTablePointer =
TargetRelativeIndirectablePointer<Runtime,
const TargetValueWitnessTable<Runtime>,
/*nullable*/ false>;
using TrailingObjects =
swift::ABI::TrailingObjects<
TargetExtendedExistentialTypeShape<Runtime>,
TargetGenericContextDescriptorHeader<Runtime>,
TargetExistentialTypeExpression<Runtime>,
RelativeValueWitnessTablePointer,
GenericParamDescriptor,
TargetGenericRequirementDescriptor<Runtime>,
GenericPackShapeHeader,
GenericPackShapeDescriptor>;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
size_t numTrailingObjects(OverloadToken<TargetGenericContextDescriptorHeader<Runtime>>) const {
return Flags.hasGeneralizationSignature();
}
size_t numTrailingObjects(OverloadToken<TargetExistentialTypeExpression<Runtime>>) const {
return Flags.hasTypeExpression();
}
size_t numTrailingObjects(OverloadToken<RelativeValueWitnessTablePointer>) const {
return Flags.hasSuggestedValueWitnesses();
}
size_t numTrailingObjects(OverloadToken<GenericParamDescriptor>) const {
return (Flags.hasImplicitReqSigParams() ? 0 : getNumReqSigParams())
+ (Flags.hasImplicitGenSigParams() ? 0 : getNumGenSigParams());
}
size_t numTrailingObjects(OverloadToken<TargetGenericRequirementDescriptor<Runtime>>) const {
return getNumGenSigRequirements() + getNumReqSigRequirements();
}
size_t numTrailingObjects(OverloadToken<GenericPackShapeHeader>) const {
return (Flags.hasTypePacks() ? 1 : 0);
}
size_t numTrailingObjects(OverloadToken<GenericPackShapeDescriptor>) const {
if (!Flags.hasTypePacks())
return 0;
return getGenSigPackShapeHeader().NumTypePacks;
}
const TargetGenericContextDescriptorHeader<Runtime> *
getGenSigHeader() const {
assert(hasGeneralizationSignature());
return this->template getTrailingObjects<
TargetGenericContextDescriptorHeader<Runtime>>();
}
public:
using SpecialKind = ExtendedExistentialTypeShapeFlags::SpecialKind;
/// Flags for the existential shape.
ExtendedExistentialTypeShapeFlags Flags;
/// The mangling of the generalized existential type, expressed
/// (if necessary) in terms of the type parameters of the
/// generalization signature.
///
/// If this shape is non-unique, this is always a flat string, not a
/// "symbolic" mangling which can contain relative references. This
/// allows uniquing to simply compare the string content.
///
/// In principle, the content of the requirement signature and type
/// expression are derivable from this type. We store them separately
/// so that code which only needs to work with the logical content of
/// the type doesn't have to break down the existential type string.
/// This both (1) allows those operations to work substantially more
/// efficiently (and without needing code to produce a requirement
/// signature from an existential type to exist in the runtime) and
/// (2) potentially allows old runtimes to support new existential
/// types without as much invasive code.
///
/// The content of this string is *not* necessarily derivable from
/// the requirement signature. This is because there may be multiple
/// existential types that have equivalent logical content but which
/// we nonetheless distinguish at compile time. Storing this also
/// allows us to far more easily produce a formal type from this
/// shape reflectively.
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false>
ExistentialType;
/// The header describing the requirement signature of the existential.
TargetGenericContextDescriptorHeader<Runtime> ReqSigHeader;
RuntimeGenericSignature<Runtime> getRequirementSignature() const {
return {ReqSigHeader, getReqSigParams(), getReqSigRequirements(),
{0, 0}, nullptr};
}
unsigned getNumReqSigParams() const {
return ReqSigHeader.NumParams;
}
const GenericParamDescriptor *getReqSigParams() const {
return Flags.hasImplicitReqSigParams()
? swift::targetImplicitGenericParamDescriptors<Runtime>()
: this->template getTrailingObjects<GenericParamDescriptor>();
}
unsigned getNumReqSigRequirements() const {
return ReqSigHeader.NumRequirements;
}
const TargetGenericRequirementDescriptor<Runtime> *
getReqSigRequirements() const {
return this->template getTrailingObjects<
TargetGenericRequirementDescriptor<Runtime>>();
}
/// The type expression of the existential, as a symbolic mangled type
/// string. Must be null if the header is just the (single)
/// requirement type parameter.
const TargetExistentialTypeExpression<Runtime> *getTypeExpression() const {
return Flags.hasTypeExpression()
? this->template getTrailingObjects<
TargetExistentialTypeExpression<Runtime>>()
: nullptr;
}
bool isTypeExpressionOpaque() const {
return !Flags.hasTypeExpression();
}
/// The suggested value witness table for the existential.
/// Required if:
/// - the special kind is SpecialKind::ExplicitLayout
/// - the special kind is SpecialKind::None and the type head
/// isn't opaque
TargetPointer<Runtime, const TargetValueWitnessTable<Runtime>>
getSuggestedValueWitnesses() const {
return Flags.hasSuggestedValueWitnesses()
? this->template getTrailingObjects<
RelativeValueWitnessTablePointer>()->get()
: nullptr;
}
/// Return the amount of space used in the existential container
/// for storing the existential arguments (including both the
/// type metadata and the conformances).
unsigned getContainerSignatureLayoutSizeInWords() const {
unsigned rawSize = ReqSigHeader.getArgumentLayoutSizeInWords();
switch (Flags.getSpecialKind()) {
// The default and explicitly-sized-value-layout cases don't optimize
// the storage of the signature.
case SpecialKind::None:
case SpecialKind::ExplicitLayout:
return rawSize;
// The class and metadata cases don't store type metadata.
case SpecialKind::Class:
case SpecialKind::Metatype:
// Requirement signatures won't have non-key parameters.
return rawSize - ReqSigHeader.NumParams;
}
// Assume any future cases don't optimize metadata storage.
return rawSize;
}
bool hasGeneralizationSignature() const {
return Flags.hasGeneralizationSignature();
}
RuntimeGenericSignature<Runtime> getGeneralizationSignature() const {
if (!hasGeneralizationSignature()) return RuntimeGenericSignature<Runtime>();
return {*getGenSigHeader(), getGenSigParams(), getGenSigRequirements(),
getGenSigPackShapeHeader(), getGenSigPackShapeDescriptors()};
}
unsigned getNumGenSigParams() const {
return hasGeneralizationSignature()
? getGenSigHeader()->NumParams : 0;
}
const GenericParamDescriptor *getGenSigParams() const {
assert(hasGeneralizationSignature());
if (Flags.hasImplicitGenSigParams())
return swift::targetImplicitGenericParamDescriptors<Runtime>();
auto base = this->template getTrailingObjects<GenericParamDescriptor>();
if (!Flags.hasImplicitReqSigParams())
base += getNumReqSigParams();
return base;
}
unsigned getNumGenSigRequirements() const {
return hasGeneralizationSignature()
? getGenSigHeader()->NumRequirements : 0;
}
const TargetGenericRequirementDescriptor<Runtime> *
getGenSigRequirements() const {
assert(hasGeneralizationSignature());
return getReqSigRequirements() + ReqSigHeader.NumRequirements;
}
GenericPackShapeHeader getGenSigPackShapeHeader() const {
assert(hasGeneralizationSignature());
if (!Flags.hasTypePacks())
return {0, 0};
return *this->template getTrailingObjects<GenericPackShapeHeader>();
}
const GenericPackShapeDescriptor *getGenSigPackShapeDescriptors() const {
assert(hasGeneralizationSignature());
if (!Flags.hasTypePacks())
return nullptr;
return this->template getTrailingObjects<GenericPackShapeDescriptor>();
}
/// Return the amount of space used in ExtendedExistentialTypeMetadata
/// for this shape to store the generalization arguments.
unsigned getGenSigArgumentLayoutSizeInWords() const {
if (!hasGeneralizationSignature()) return 0;
return getGenSigHeader()->getArgumentLayoutSizeInWords();
}
};
using ExtendedExistentialTypeShape
= TargetExtendedExistentialTypeShape<InProcess>;
/// A hash which is guaranteed (ignoring a weakness in the
/// selected cryptographic hash algorithm) to be unique for the
/// source string. Cryptographic hashing is reasonable to use
/// for certain kinds of complex uniquing performed by the
/// runtime when the representation being uniqued would otherwise
/// be prohibitively difficult to hash and compare, such as a
/// generic signature.
///
/// The hash is expected to be computed at compile time and simply
/// trusted at runtime. We are therefore not concerned about
/// malicious collisions: an attacker would have to control the
/// program text, and there is nothing they can accomplish from a
/// hash collision that they couldn't do more easily by just changing
/// the program to do what they want. We just want a hash with
/// minimal chance of a birthday-problem collision. As long as
/// we use a cryptographic hash algorithm, even a 64-bit hash would
/// probably do the trick just fine, since the number of objects
/// being uniqued will be far less than 2^32. Still, to stay on the
/// safe side, we use a 128-bit hash; the additional 8 bytes is
/// fairly marginal compared to the size of (e.g.) even the smallest
/// existential shape.
///
/// We'd like to use BLAKE3 for this, but pending acceptance of
/// that into LLVM, we're using SHA-256. We simply truncate the
/// hash to the desired length.
struct UniqueHash {
static_assert(NumBytes_UniqueHash % sizeof(uint32_t) == 0,
"NumBytes_UniqueHash not a multiple of 4");
enum { NumChunks = NumBytes_UniqueHash / sizeof(uint32_t) };
uint32_t Data[NumChunks];
friend bool operator==(const UniqueHash &lhs, const UniqueHash &rhs) {
for (unsigned i = 0; i != NumChunks; ++i)
if (lhs.Data[i] != rhs.Data[i])
return false;
return true;
}
friend uint32_t hash_value(const UniqueHash &hash) {
// It's a cryptographic hash, so there's no point in merging
// hash data from multiple chunks.
return hash.Data[0];
}
};
/// A descriptor for an extended existential type descriptor which
/// needs to be uniqued at runtime.
///
/// Uniquing is performed by comparing the existential type strings
/// of the shapes.
template <typename Runtime>
struct TargetNonUniqueExtendedExistentialTypeShape {
/// A reference to memory that can be used to cache a globally-unique
/// descriptor for this existential shape.
TargetRelativeDirectPointer<Runtime,
std::atomic<ConstTargetMetadataPointer<Runtime,
TargetExtendedExistentialTypeShape>>> UniqueCache;
llvm::StringRef getExistentialTypeStringForUniquing() const {
// When we have a non-unique shape, we're guaranteed that
// ExistentialType contains no symbolic references, so we can just
// recover it this way rather than having to parse it.
return LocalCopy.ExistentialType.get();
}
/// The local copy of the existential shape descriptor.
TargetExtendedExistentialTypeShape<Runtime> LocalCopy;
};
using NonUniqueExtendedExistentialTypeShape
= TargetNonUniqueExtendedExistentialTypeShape<InProcess>;
/// The structure of type metadata for existential types which require
/// an extended existential descriptor.
///
/// An extended existential type metadata is a concrete application of
/// an extended existential descriptor to its generalization arguments,
/// which there may be none of. See ExtendedExistentialDescriptor.
template <typename Runtime>
struct TargetExtendedExistentialTypeMetadata
: TargetMetadata<Runtime>,
swift::ABI::TrailingObjects<
TargetExtendedExistentialTypeMetadata<Runtime>,
ConstTargetPointer<Runtime, void>> {
using StoredSize = typename Runtime::StoredSize;
private:
using TrailingObjects =
swift::ABI::TrailingObjects<
TargetExtendedExistentialTypeMetadata<Runtime>,
ConstTargetPointer<Runtime, void>>;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
size_t numTrailingObjects(OverloadToken<ConstTargetPointer<Runtime, void>>) const {
return Shape->getGenSigArgumentLayoutSizeInWords();
}
public:
static constexpr StoredSize OffsetToArguments = sizeof(TargetMetadata<Runtime>);
public:
explicit constexpr
TargetExtendedExistentialTypeMetadata(const ExtendedExistentialTypeShape *shape)
: TargetMetadata<Runtime>(MetadataKind::ExtendedExistential),
Shape(shape) {}
TargetSignedPointer<Runtime, const ExtendedExistentialTypeShape *
__ptrauth_swift_nonunique_extended_existential_type_shape>
Shape;
ConstTargetPointer<Runtime, void> const *getGeneralizationArguments() const {
return this->template getTrailingObjects<ConstTargetPointer<Runtime, void>>();
}
public:
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ExtendedExistential;
}
};
using ExtendedExistentialTypeMetadata
= TargetExtendedExistentialTypeMetadata<InProcess>;
/// The basic layout of an existential metatype type.
template <typename Runtime>
struct TargetExistentialMetatypeContainer {
ConstTargetMetadataPointer<Runtime, TargetMetadata> Value;
TargetWitnessTablePointer<Runtime> *getWitnessTables() {
return reinterpret_cast<TargetWitnessTablePointer<Runtime> *>(this + 1);
}
TargetWitnessTablePointer<Runtime> const *getWitnessTables() const {
return reinterpret_cast<TargetWitnessTablePointer<Runtime> const *>(this+1);
}
void copyTypeInto(TargetExistentialMetatypeContainer *dest,
unsigned numTables) const {
for (unsigned i = 0; i != numTables; ++i)
dest->getWitnessTables()[i] = getWitnessTables()[i];
}
};
using ExistentialMetatypeContainer
= TargetExistentialMetatypeContainer<InProcess>;
/// The structure of metadata for existential metatypes.
template <typename Runtime>
struct TargetExistentialMetatypeMetadata
: public TargetMetadata<Runtime> {
/// The type metadata for the element.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> InstanceType;
/// The number of witness tables and class-constrained-ness of the
/// underlying type.
ExistentialTypeFlags Flags;
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::ExistentialMetatype;
}
/// Return true iff all the protocol constraints are @objc.
bool isObjC() const {
return isClassBounded() && Flags.getNumWitnessTables() == 0;
}
bool isClassBounded() const {
return Flags.getClassConstraint() == ProtocolClassConstraint::Class;
}
};
using ExistentialMetatypeMetadata
= TargetExistentialMetatypeMetadata<InProcess>;
/// Heap metadata for a box, which may have been generated statically by the
/// compiler or by the runtime.
template <typename Runtime>
struct TargetBoxHeapMetadata : public TargetHeapMetadata<Runtime> {
/// The offset from the beginning of a box to its value.
unsigned Offset;
constexpr TargetBoxHeapMetadata(MetadataKind kind, unsigned offset)
: TargetHeapMetadata<Runtime>(kind), Offset(offset) {}
};
using BoxHeapMetadata = TargetBoxHeapMetadata<InProcess>;
/// Heap metadata for runtime-instantiated generic boxes.
template <typename Runtime>
struct TargetGenericBoxHeapMetadata : public TargetBoxHeapMetadata<Runtime> {
using super = TargetBoxHeapMetadata<Runtime>;
using super::Offset;
/// The type inside the box.
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> BoxedType;
constexpr
TargetGenericBoxHeapMetadata(MetadataKind kind, unsigned offset,
ConstTargetMetadataPointer<Runtime, swift::TargetMetadata> boxedType)
: TargetBoxHeapMetadata<Runtime>(kind, offset), BoxedType(boxedType)
{}
static unsigned getHeaderOffset(const Metadata *boxedType) {
// Round up the header size to alignment.
unsigned alignMask = boxedType->getValueWitnesses()->getAlignmentMask();
return (sizeof(HeapObject) + alignMask) & ~alignMask;
}
/// Project the value out of a box of this type.
OpaqueValue *project(HeapObject *box) const {
auto bytes = reinterpret_cast<char*>(box);
return reinterpret_cast<OpaqueValue *>(bytes + Offset);
}
/// Get the allocation size of this box.
unsigned getAllocSize() const {
return Offset + BoxedType->getValueWitnesses()->getSize();
}
/// Get the allocation alignment of this box.
unsigned getAllocAlignMask() const {
// Heap allocations are at least pointer aligned.
return BoxedType->getValueWitnesses()->getAlignmentMask()
| (alignof(void*) - 1);
}
static bool classof(const TargetMetadata<Runtime> *metadata) {
return metadata->getKind() == MetadataKind::HeapGenericLocalVariable;
}
};
using GenericBoxHeapMetadata = TargetGenericBoxHeapMetadata<InProcess>;
/// The control structure of a generic or resilient protocol
/// conformance witness.
///
/// Resilient conformances must use a pattern where new requirements
/// with default implementations can be added and the order of existing
/// requirements can be changed.
///
/// This is accomplished by emitting an order-independent series of
/// relative pointer pairs, consisting of a protocol requirement together
/// with a witness. The requirement is identified by an indirectable relative
/// pointer to the protocol requirement descriptor.
template <typename Runtime>
struct TargetResilientWitness {
TargetRelativeProtocolRequirementPointer<Runtime> Requirement;
union {
TargetRelativeDirectPointer<Runtime, void> Impl;
TargetCompactFunctionPointer<Runtime, void> FuncImpl;
};
void *getWitness(ProtocolRequirementFlags flags) const {
if (flags.isFunctionImpl()) {
return FuncImpl.get();
} else {
return Impl.get();
}
}
};
using ResilientWitness = TargetResilientWitness<InProcess>;
template <typename Runtime>
struct TargetResilientWitnessTable final
: public swift::ABI::TrailingObjects<
TargetResilientWitnessTable<Runtime>,
TargetResilientWitness<Runtime>> {
uint32_t NumWitnesses;
using TrailingObjects = swift::ABI::TrailingObjects<
TargetResilientWitnessTable<Runtime>,
TargetResilientWitness<Runtime>>;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
size_t numTrailingObjects(
OverloadToken<TargetResilientWitness<Runtime>>) const {
return NumWitnesses;
}
llvm::ArrayRef<TargetResilientWitness<Runtime>>
getWitnesses() const {
return {this->template getTrailingObjects<TargetResilientWitness<Runtime>>(),
NumWitnesses};
}
const TargetResilientWitness<Runtime> &
getWitness(unsigned i) const {
return getWitnesses()[i];
}
};
using ResilientWitnessTable = TargetResilientWitnessTable<InProcess>;
/// The control structure of a generic or resilient protocol
/// conformance, which is embedded in the protocol conformance descriptor.
///
/// Witness tables need to be instantiated at runtime in these cases:
/// - For a generic conforming type, associated type requirements might be
/// dependent on the conforming type.
/// - For a type conforming to a resilient protocol, the runtime size of
/// the witness table is not known because default requirements can be
/// added resiliently.
///
/// One per conformance.
template <typename Runtime>
struct TargetGenericWitnessTable {
/// The size of the witness table in words. This amount is copied from
/// the witness table template into the instantiated witness table.
uint16_t WitnessTableSizeInWords;
/// The amount of private storage to allocate before the address point,
/// in words. This memory is zeroed out in the instantiated witness table
/// template.
///
/// The low bit is used to indicate whether this witness table is known
/// to require instantiation.
uint16_t WitnessTablePrivateSizeInWordsAndRequiresInstantiation;
/// The instantiation function, which is called after the template is copied.
TargetCompactFunctionPointer<
Runtime,
void(TargetWitnessTable<Runtime> *instantiatedTable,
const TargetMetadata<Runtime> *type,
const void *const *instantiationArgs),
/*nullable*/ true>
Instantiator;
using PrivateDataType = void *[swift::NumGenericMetadataPrivateDataWords];
/// Private data for the instantiator. Out-of-line so that the rest
/// of this structure can be constant. Might be null when building with
/// -disable-preallocated-instantiation-caches.
RelativeDirectPointer<PrivateDataType> PrivateData;
uint16_t getWitnessTablePrivateSizeInWords() const {
return WitnessTablePrivateSizeInWordsAndRequiresInstantiation >> 1;
}
/// This bit doesn't really mean anything. Currently, the compiler always
/// sets it when emitting a generic witness table.
uint16_t requiresInstantiation() const {
return WitnessTablePrivateSizeInWordsAndRequiresInstantiation & 0x01;
}
};
using GenericWitnessTable = TargetGenericWitnessTable<InProcess>;
/// The structure of a type metadata record.
///
/// This contains enough static information to recover type metadata from a
/// name.
template <typename Runtime>
struct TargetTypeMetadataRecord {
private:
union {
/// A direct reference to a nominal type descriptor.
RelativeDirectPointerIntPair<TargetContextDescriptor<Runtime>,
TypeReferenceKind>
DirectNominalTypeDescriptor;
/// An indirect reference to a nominal type descriptor.
RelativeDirectPointerIntPair<TargetSignedPointer<Runtime, TargetContextDescriptor<Runtime> * __ptrauth_swift_type_descriptor>,
TypeReferenceKind>
IndirectNominalTypeDescriptor;
// We only allow a subset of the TypeReferenceKinds here.
// Should we just acknowledge that this is a different enum?
};
public:
TypeReferenceKind getTypeKind() const {
return DirectNominalTypeDescriptor.getInt();
}
const TargetContextDescriptor<Runtime> *
getContextDescriptor() const {
switch (getTypeKind()) {
case TypeReferenceKind::DirectTypeDescriptor:
return DirectNominalTypeDescriptor.getPointer();
case TypeReferenceKind::IndirectTypeDescriptor:
return *IndirectNominalTypeDescriptor.getPointer();
// These types (and any others we might add to TypeReferenceKind
// in the future) are just never used in these lists.
case TypeReferenceKind::DirectObjCClassName:
case TypeReferenceKind::IndirectObjCClass:
return nullptr;
}
return nullptr;
}
};
using TypeMetadataRecord = TargetTypeMetadataRecord<InProcess>;
/// The structure of a protocol reference record.
template <typename Runtime>
struct TargetProtocolRecord {
/// The protocol referenced.
///
/// The remaining low bit is reserved for future use.
RelativeContextPointerIntPair<Runtime, /*reserved=*/bool,
TargetProtocolDescriptor>
Protocol;
};
using ProtocolRecord = TargetProtocolRecord<InProcess>;
template<typename Runtime> class TargetGenericRequirementDescriptor;
/// Header containing information about the resilient witnesses in a
/// protocol conformance descriptor.
template <typename Runtime>
struct TargetResilientWitnessesHeader {
uint32_t NumWitnesses;
};
using ResilientWitnessesHeader = TargetResilientWitnessesHeader<InProcess>;
/// The structure of a protocol conformance.
///
/// This contains enough static information to recover the witness table for a
/// type's conformance to a protocol.
template <typename Runtime>
struct TargetProtocolConformanceDescriptor final
: public swift::ABI::TrailingObjects<
TargetProtocolConformanceDescriptor<Runtime>,
TargetRelativeContextPointer<Runtime>,
TargetGenericRequirementDescriptor<Runtime>,
GenericPackShapeDescriptor,
TargetResilientWitnessesHeader<Runtime>,
TargetResilientWitness<Runtime>,
TargetGenericWitnessTable<Runtime>> {
using TrailingObjects = swift::ABI::TrailingObjects<
TargetProtocolConformanceDescriptor<Runtime>,
TargetRelativeContextPointer<Runtime>,
TargetGenericRequirementDescriptor<Runtime>,
GenericPackShapeDescriptor,
TargetResilientWitnessesHeader<Runtime>,
TargetResilientWitness<Runtime>,
TargetGenericWitnessTable<Runtime>>;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
public:
using GenericRequirementDescriptor =
TargetGenericRequirementDescriptor<Runtime>;
using ResilientWitnessesHeader = TargetResilientWitnessesHeader<Runtime>;
using ResilientWitness = TargetResilientWitness<Runtime>;
using GenericWitnessTable = TargetGenericWitnessTable<Runtime>;
private:
/// The protocol being conformed to.
TargetRelativeContextPointer<Runtime, TargetProtocolDescriptor> Protocol;
// Some description of the type that conforms to the protocol.
TargetTypeReference<Runtime> TypeRef;
/// The witness table pattern, which may also serve as the witness table.
RelativeDirectPointer<const TargetWitnessTable<Runtime>> WitnessTablePattern;
/// Various flags, including the kind of conformance.
ConformanceFlags Flags;
public:
ConstTargetPointer<Runtime, TargetProtocolDescriptor<Runtime>>
getProtocol() const {
return Protocol;
}
TypeReferenceKind getTypeKind() const {
return Flags.getTypeReferenceKind();
}
const char *getDirectObjCClassName() const {
return TypeRef.getDirectObjCClassName(getTypeKind());
}
const TargetClassMetadataObjCInterop<Runtime> *const *
getIndirectObjCClass() const {
return TypeRef.getIndirectObjCClass(getTypeKind());
}
const TargetContextDescriptor<Runtime> *getTypeDescriptor() const {
return TypeRef.getTypeDescriptor(getTypeKind());
}
constexpr inline auto
getTypeRefDescriptorOffset() const -> typename Runtime::StoredSize {
return offsetof(typename std::remove_reference<decltype(*this)>::type, TypeRef);
}
constexpr inline auto
getProtocolDescriptorOffset() const -> typename Runtime::StoredSize {
return offsetof(typename std::remove_reference<decltype(*this)>::type, Protocol);
}
TargetContextDescriptor<Runtime> * __ptrauth_swift_type_descriptor *
_getTypeDescriptorLocation() const {
if (getTypeKind() != TypeReferenceKind::IndirectTypeDescriptor)
return nullptr;
return TypeRef.IndirectTypeDescriptor.get();
}
/// Retrieve the context of a retroactive conformance.
const TargetContextDescriptor<Runtime> *getRetroactiveContext() const {
if (!Flags.isRetroactive()) return nullptr;
return this->template getTrailingObjects<
TargetRelativeContextPointer<Runtime>>();
}
/// Whether this conformance is non-unique because it has been synthesized
/// for a foreign type.
bool isSynthesizedNonUnique() const {
return Flags.isSynthesizedNonUnique();
}
/// Whether this conformance has any conditional requirements that need to
/// be evaluated.
bool hasConditionalRequirements() const {
return Flags.getNumConditionalRequirements() > 0;
}
/// Retrieve the conditional requirements that must also be
/// satisfied
llvm::ArrayRef<TargetGenericRequirementDescriptor<Runtime>>
getConditionalRequirements() const {
return {this->template getTrailingObjects<TargetGenericRequirementDescriptor<Runtime>>(),
Flags.getNumConditionalRequirements()};
}
/// Retrieve the pack shape descriptors for the conditional pack requirements.
llvm::ArrayRef<GenericPackShapeDescriptor>
getConditionalPackShapeDescriptors() const {
return {this->template getTrailingObjects<GenericPackShapeDescriptor>(),
Flags.getNumConditionalPackShapeDescriptors()};
}
/// Get the directly-referenced witness table pattern, which may also
/// serve as the witness table.
const swift::TargetWitnessTable<Runtime> *getWitnessTablePattern() const {
return WitnessTablePattern;
}
/// Get the canonical metadata for the type referenced by this record, or
/// return null if the record references a generic or universal type.
const TargetMetadata<Runtime> *getCanonicalTypeMetadata() const;
/// Get the witness table for the specified type, realizing it if
/// necessary, or return null if the conformance does not apply to the
/// type.
const swift::TargetWitnessTable<Runtime> *
getWitnessTable(const TargetMetadata<Runtime> *type) const;
/// Retrieve the resilient witnesses.
llvm::ArrayRef<ResilientWitness> getResilientWitnesses() const {
if (!Flags.hasResilientWitnesses())
return { };
return llvm::ArrayRef<ResilientWitness>(
this->template getTrailingObjects<ResilientWitness>(),
numTrailingObjects(OverloadToken<ResilientWitness>()));
}
ConstTargetPointer<Runtime, GenericWitnessTable>
getGenericWitnessTable() const {
if (!Flags.hasGenericWitnessTable())
return nullptr;
return this->template getTrailingObjects<GenericWitnessTable>();
}
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
void dump() const;
#endif
#ifndef NDEBUG
/// Verify that the protocol descriptor obeys all invariants.
///
/// We currently check that the descriptor:
///
/// 1. Has a valid TypeReferenceKind.
/// 2. Has a valid conformance kind.
void verify() const;
#endif
private:
size_t numTrailingObjects(
OverloadToken<TargetRelativeContextPointer<Runtime>>) const {
return Flags.isRetroactive() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<GenericRequirementDescriptor>) const {
return Flags.getNumConditionalRequirements();
}
size_t numTrailingObjects(OverloadToken<GenericPackShapeDescriptor>) const {
return Flags.getNumConditionalPackShapeDescriptors();
}
size_t numTrailingObjects(OverloadToken<ResilientWitnessesHeader>) const {
return Flags.hasResilientWitnesses() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<ResilientWitness>) const {
return Flags.hasResilientWitnesses()
? this->template getTrailingObjects<ResilientWitnessesHeader>()
->NumWitnesses
: 0;
}
size_t numTrailingObjects(OverloadToken<GenericWitnessTable>) const {
return Flags.hasGenericWitnessTable() ? 1 : 0;
}
};
using ProtocolConformanceDescriptor
= TargetProtocolConformanceDescriptor<InProcess>;
template<typename Runtime>
using TargetProtocolConformanceRecord =
RelativeDirectPointer<TargetProtocolConformanceDescriptor<Runtime>,
/*Nullable=*/false>;
using ProtocolConformanceRecord = TargetProtocolConformanceRecord<InProcess>;
template<template <typename Runtime> class ObjCInteropKind, unsigned PointerSize>
using ExternalProtocolConformanceDescriptor = TargetProtocolConformanceDescriptor<External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
template<template <typename Runtime> class ObjCInteropKind, unsigned PointerSize>
using ExternalProtocolConformanceRecord = TargetProtocolConformanceRecord<External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ModuleContextDescriptor)
TargetModuleContextDescriptor;
/// Base class for all context descriptors.
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ContextDescriptor)
TargetContextDescriptor {
/// Flags describing the context, including its kind and format version.
ContextDescriptorFlags Flags;
/// The parent context, or null if this is a top-level context.
TargetRelativeContextPointer<Runtime> Parent;
bool isGeneric() const { return Flags.isGeneric(); }
bool isUnique() const { return Flags.isUnique(); }
bool hasInvertibleProtocols() const {
return Flags.hasInvertibleProtocols();
}
ContextDescriptorKind getKind() const { return Flags.getKind(); }
/// Get the generic context information for this context, or null if the
/// context is not generic.
const TargetGenericContext<Runtime> *getGenericContext() const;
/// Get the module context for this context.
const TargetModuleContextDescriptor<Runtime> *getModuleContext() const;
/// Retrieve the set of protocols that are inverted by this type's
/// primary definition.
///
/// This type might still conditionally conform to any of the protocols
/// that are inverted here, but that information is recorded in the
/// conditional inverted protocols of the corresponding `GenericContext`.
const InvertibleProtocolSet *
getInvertedProtocols() const;
/// Is this context part of a C-imported module?
bool isCImportedContext() const;
unsigned getNumGenericParams() const {
auto *genericContext = getGenericContext();
return genericContext
? genericContext->getGenericContextHeader().NumParams
: 0;
}
constexpr inline auto
getParentOffset() const -> typename Runtime::StoredSize {
return offsetof(typename std::remove_reference<decltype(*this)>::type, Parent);
}
#ifndef NDEBUG
[[deprecated("Only meant for use in the debugger")]] void dump() const;
#endif
private:
TargetContextDescriptor(const TargetContextDescriptor &) = delete;
TargetContextDescriptor(TargetContextDescriptor &&) = delete;
TargetContextDescriptor &operator=(const TargetContextDescriptor &) = delete;
TargetContextDescriptor &operator=(TargetContextDescriptor &&) = delete;
};
using ContextDescriptor = TargetContextDescriptor<InProcess>;
template<template <typename Runtime> class ObjCInteropKind, unsigned PointerSize>
using ExternalContextDescriptor = TargetContextDescriptor<External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
inline bool isCImportedModuleName(llvm::StringRef name) {
// This does not include MANGLING_MODULE_CLANG_IMPORTER because that's
// used only for synthesized declarations and not actual imported
// declarations.
return name == MANGLING_MODULE_OBJC;
}
/// Descriptor for a module context.
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ModuleContextDescriptor)
TargetModuleContextDescriptor final : TargetContextDescriptor<Runtime> {
/// The module name.
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> Name;
/// Is this module a special C-imported module?
bool isCImportedContext() const {
return isCImportedModuleName(Name.get());
}
constexpr inline auto
getNameOffset() const -> typename Runtime::StoredSize {
return offsetof(typename std::remove_reference<decltype(*this)>::type, Name);
}
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Module;
}
};
using ModuleContextDescriptor = TargetModuleContextDescriptor<InProcess>;
template<template <typename Runtime> class ObjCInteropKind, unsigned PointerSize>
using ExternalModuleContextDescriptor = TargetModuleContextDescriptor<External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
template<typename Runtime>
inline bool TargetContextDescriptor<Runtime>::isCImportedContext() const {
return getModuleContext()->isCImportedContext();
}
template<typename Runtime>
inline const TargetModuleContextDescriptor<Runtime> *
TargetContextDescriptor<Runtime>::getModuleContext() const {
// All context chains should eventually find a module.
for (auto cur = this; true; cur = cur->Parent.get()) {
if (auto module = dyn_cast<TargetModuleContextDescriptor<Runtime>>(cur))
return module;
}
}
/// Descriptor for an extension context.
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ExtensionContextDescriptor)
TargetExtensionContextDescriptor final
: TargetContextDescriptor<Runtime>,
TrailingGenericContextObjects<TargetExtensionContextDescriptor<Runtime>>
{
private:
using TrailingGenericContextObjects =
swift::TrailingGenericContextObjects<TargetExtensionContextDescriptor<Runtime>>;
public:
/// A mangling of the `Self` type context that the extension extends.
/// The mangled name represents the type in the generic context encoded by
/// this descriptor. For example, a nongeneric nominal type extension will
/// encode the nominal type name. A generic nominal type extension will encode
/// the instance of the type with any generic arguments bound.
///
/// Note that the Parent of the extension will be the module context the
/// extension is declared inside.
TargetRelativeDirectPointer<Runtime, const char> ExtendedContext;
using TrailingGenericContextObjects::getGenericContext;
llvm::StringRef getMangledExtendedContext() const {
return Demangle::makeSymbolicMangledNameStringRef(ExtendedContext.get());
}
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Extension;
}
};
using ExtensionContextDescriptor = TargetExtensionContextDescriptor<InProcess>;
template<typename Runtime>
struct TargetMangledContextName {
/// The mangled name of the context.
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> name;
};
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(AnonymousContextDescriptor)
TargetAnonymousContextDescriptor final
: TargetContextDescriptor<Runtime>,
TrailingGenericContextObjects<TargetAnonymousContextDescriptor<Runtime>,
TargetGenericContextDescriptorHeader,
TargetMangledContextName<Runtime>>
{
private:
using TrailingGenericContextObjects =
swift::TrailingGenericContextObjects<TargetAnonymousContextDescriptor<Runtime>,
TargetGenericContextDescriptorHeader,
TargetMangledContextName<Runtime>>;
using TrailingObjects =
typename TrailingGenericContextObjects::TrailingObjects;
friend TrailingObjects;
public:
using MangledContextName = TargetMangledContextName<Runtime>;
using TrailingGenericContextObjects::getGenericContext;
using TrailingGenericContextObjects::getGenericContextHeader;
using TrailingGenericContextObjects::getFullGenericContextHeader;
using TrailingGenericContextObjects::getGenericParams;
AnonymousContextDescriptorFlags getAnonymousContextDescriptorFlags() const {
return AnonymousContextDescriptorFlags(this->Flags.getKindSpecificFlags());
}
/// Whether this anonymous context descriptor contains a full mangled name,
/// which can be used to match the anonymous type to its textual form.
bool hasMangledName() const {
return getAnonymousContextDescriptorFlags().hasMangledName();
}
/// Retrieve the mangled name of this context, or NULL if it was not
/// recorded in the metadata.
ConstTargetPointer<Runtime, char> getMangledName() const {
if (!hasMangledName())
return ConstTargetPointer<Runtime, char>();
return this->template getTrailingObjects<MangledContextName>()->name;
}
/// Retrieve a pointer to the mangled context name structure.
const MangledContextName *getMangledContextName() const {
if (!hasMangledName())
return nullptr;
return this->template getTrailingObjects<MangledContextName>();
}
private:
template<typename T>
using OverloadToken =
typename TrailingGenericContextObjects::template OverloadToken<T>;
using TrailingGenericContextObjects::numTrailingObjects;
size_t numTrailingObjects(OverloadToken<MangledContextName>) const {
return this->hasMangledNam() ? 1 : 0;
}
public:
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Anonymous;
}
};
using AnonymousContextDescriptor = TargetAnonymousContextDescriptor<InProcess>;
template<template <typename Runtime> class ObjCInteropKind, unsigned PointerSize>
using ExternalAnonymousContextDescriptor = TargetAnonymousContextDescriptor<External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
/// A protocol descriptor.
///
/// Protocol descriptors contain information about the contents of a protocol:
/// it's name, requirements, requirement signature, context, and so on. They
/// are used both to identify a protocol and to reason about its contents.
///
/// Only Swift protocols are defined by a protocol descriptor, whereas
/// Objective-C (including protocols defined in Swift as @objc) use the
/// Objective-C protocol layout.
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(ProtocolDescriptor)
TargetProtocolDescriptor final
: TargetContextDescriptor<Runtime>,
swift::ABI::TrailingObjects<
TargetProtocolDescriptor<Runtime>,
TargetGenericRequirementDescriptor<Runtime>,
TargetProtocolRequirement<Runtime>>
{
private:
using TrailingObjects
= swift::ABI::TrailingObjects<
TargetProtocolDescriptor<Runtime>,
TargetGenericRequirementDescriptor<Runtime>,
TargetProtocolRequirement<Runtime>>;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
public:
size_t numTrailingObjects(
OverloadToken<TargetGenericRequirementDescriptor<Runtime>>) const {
return NumRequirementsInSignature;
}
size_t numTrailingObjects(
OverloadToken<TargetProtocolRequirement<Runtime>>) const {
return NumRequirements;
}
/// The name of the protocol.
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> Name;
/// The number of generic requirements in the requirement signature of the
/// protocol.
uint32_t NumRequirementsInSignature;
/// The number of requirements in the protocol.
/// If any requirements beyond MinimumWitnessTableSizeInWords are present
/// in the witness table template, they will be not be overwritten with
/// defaults.
uint32_t NumRequirements;
/// Associated type names, as a space-separated list in the same order
/// as the requirements.
RelativeDirectPointer<const char, /*Nullable=*/true> AssociatedTypeNames;
ProtocolContextDescriptorFlags getProtocolContextDescriptorFlags() const {
return ProtocolContextDescriptorFlags(this->Flags.getKindSpecificFlags());
}
/// Retrieve the requirements that make up the requirement signature of
/// this protocol.
llvm::ArrayRef<TargetGenericRequirementDescriptor<Runtime>>
getRequirementSignature() const {
return {this->template getTrailingObjects<
TargetGenericRequirementDescriptor<Runtime>>(),
NumRequirementsInSignature};
}
/// Retrieve the requirements of this protocol.
llvm::ArrayRef<TargetProtocolRequirement<Runtime>>
getRequirements() const {
return {this->template getTrailingObjects<
TargetProtocolRequirement<Runtime>>(),
NumRequirements};
}
constexpr inline auto
getNameOffset() const -> typename Runtime::StoredSize {
return offsetof(typename std::remove_reference<decltype(*this)>::type, Name);
}
/// Retrieve the requirement base descriptor address.
ConstTargetPointer<Runtime, TargetProtocolRequirement<Runtime>>
getRequirementBaseDescriptor() const {
return getRequirements().data() - WitnessTableFirstRequirementOffset;
}
#ifndef NDEBUG
[[deprecated("Only meant for use in the debugger")]] void dump() const;
#endif
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Protocol;
}
};
/// The descriptor for an opaque type.
template <typename Runtime>
struct swift_ptrauth_struct_context_descriptor(OpaqueTypeDescriptor)
TargetOpaqueTypeDescriptor final
: TargetContextDescriptor<Runtime>,
TrailingGenericContextObjects<TargetOpaqueTypeDescriptor<Runtime>,
TargetGenericContextDescriptorHeader,
RelativeDirectPointer<const char>,
InvertibleProtocolSet>
{
private:
using TrailingGenericContextObjects =
swift::TrailingGenericContextObjects<TargetOpaqueTypeDescriptor<Runtime>,
TargetGenericContextDescriptorHeader,
RelativeDirectPointer<const char>,
InvertibleProtocolSet>;
using TrailingObjects =
typename TrailingGenericContextObjects::TrailingObjects;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
public:
using TrailingGenericContextObjects::getGenericContext;
using TrailingGenericContextObjects::getGenericContextHeader;
using TrailingGenericContextObjects::getFullGenericContextHeader;
using TrailingGenericContextObjects::getGenericParams;
// The kind-specific flags area is used to store the count of the generic
// arguments for underlying type(s) encoded in the descriptor.
unsigned getNumUnderlyingTypeArguments() const {
return this->Flags.getKindSpecificFlags();
}
using TrailingGenericContextObjects::numTrailingObjects;
size_t numTrailingObjects(OverloadToken<RelativeDirectPointer<const char>>) const {
return getNumUnderlyingTypeArguments();
}
const RelativeDirectPointer<const char> &
getUnderlyingTypeArgumentMangledName(unsigned i) const {
assert(i < getNumUnderlyingTypeArguments());
return (this
->template getTrailingObjects<RelativeDirectPointer<const char>>())[i];
}
llvm::StringRef getUnderlyingTypeArgument(unsigned i) const {
assert(i < getNumUnderlyingTypeArguments());
const char *ptr = getUnderlyingTypeArgumentMangledName(i);
return Demangle::makeSymbolicMangledNameStringRef(ptr);
}
/// Retrieve the set of protocols that are inverted by this type's
/// primary definition.
///
/// This type might still conditionally conform to any of the protocols
/// that are inverted here, but that information is recorded in the
/// conditional inverted protocols of the corresponding `GenericContext`.
const InvertibleProtocolSet &
getInvertedProtocols() const {
assert(this->hasInvertibleProtocols());
return
*this->template getTrailingObjects<InvertibleProtocolSet>();
}
size_t numTrailingObjects(OverloadToken<InvertibleProtocolSet>) const {
return this->hasInvertibleProtocols() ? 1 : 0;
}
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::OpaqueType;
}
};
template <template <typename Runtime> class ObjCInteropKind,
unsigned PointerSize>
using ExternalOpaqueTypeDescriptor = TargetOpaqueTypeDescriptor<
External<ObjCInteropKind<RuntimeTarget<PointerSize>>>>;
using OpaqueTypeDescriptor = TargetOpaqueTypeDescriptor<InProcess>;
/// The instantiation cache for generic metadata. This must be guaranteed
/// to zero-initialized before it is first accessed. Its contents are private
/// to the runtime.
template <typename Runtime>
struct TargetGenericMetadataInstantiationCache {
/// Data that the runtime can use for its own purposes. It is guaranteed
/// to be zero-filled by the compiler. Might be null when building with
/// -disable-preallocated-instantiation-caches.
TargetPointer<Runtime, void>
PrivateData[swift::NumGenericMetadataPrivateDataWords];
};
using GenericMetadataInstantiationCache =
TargetGenericMetadataInstantiationCache<InProcess>;
/// A function that instantiates metadata. This function is required
/// to succeed.
///
/// In general, the metadata returned by this function should have all the
/// basic structure necessary to identify itself: that is, it must have a
/// type descriptor and generic arguments. However, it does not need to be
/// fully functional as type metadata; for example, it does not need to have
/// a meaningful value witness table, v-table entries, or a superclass.
///
/// Operations which may fail (due to e.g. recursive dependencies) but which
/// must be performed in order to prepare the metadata object to be fully
/// functional as type metadata should be delayed until the completion
/// function.
using MetadataInstantiator =
Metadata *(const TargetTypeContextDescriptor<InProcess> *type,
const void *arguments,
const TargetGenericMetadataPattern<InProcess> *pattern);
/// The opaque completion context of a metadata completion function.
/// A completion function that needs to report a completion dependency
/// can use this to figure out where it left off and thus avoid redundant
/// work when re-invoked. It will be zero on first entry for a type, and
/// the runtime is free to copy it to a different location between
/// invocations.
struct MetadataCompletionContext {
void *Data[NumWords_MetadataCompletionContext];
};
/// A function which attempts to complete the given metadata.
///
/// This function may fail due to a dependency on the completion of some
/// other metadata object. It can indicate this by returning the metadata
/// on which it depends. In this case, the function will be invoked again
/// when the dependency is resolved. The function must be careful not to
/// indicate a completion dependency on a type that has always been
/// completed; the runtime cannot reliably distinguish this sort of
/// programming failure from a race in which the dependent type was
/// completed immediately after it was observed to be incomplete, and so
/// the function will be repeatedly re-invoked.
///
/// The function will never be called multiple times simultaneously, but
/// it may be called many times as successive dependencies are resolved.
/// If the function ever completes successfully (by returning null), it
/// will not be called again for the same type.
using MetadataCompleter =
SWIFT_CC(swift)
MetadataDependency(const Metadata *type,
MetadataCompletionContext *context,
const TargetGenericMetadataPattern<InProcess> *pattern);
/// An instantiation pattern for type metadata.
template <typename Runtime>
struct TargetGenericMetadataPattern {
/// The function to call to instantiate the template.
TargetCompactFunctionPointer<Runtime, MetadataInstantiator>
InstantiationFunction;
/// The function to call to complete the instantiation. If this is null,
/// the instantiation function must always generate complete metadata.
TargetCompactFunctionPointer<Runtime, MetadataCompleter, /*nullable*/ true>
CompletionFunction;
/// Flags describing the layout of this instantiation pattern.
GenericMetadataPatternFlags PatternFlags;
bool hasExtraDataPattern() const {
return PatternFlags.hasExtraDataPattern();
}
};
using GenericMetadataPattern =
TargetGenericMetadataPattern<InProcess>;
/// Part of a generic metadata instantiation pattern.
template <typename Runtime>
struct TargetGenericMetadataPartialPattern {
/// A reference to the pattern. The pattern must always be at least
/// word-aligned.
TargetRelativeDirectPointer<Runtime, typename Runtime::StoredPointer> Pattern;
/// The offset into the section into which to copy this pattern, in words.
uint16_t OffsetInWords;
/// The size of the pattern, in words.
uint16_t SizeInWords;
};
using GenericMetadataPartialPattern =
TargetGenericMetadataPartialPattern<InProcess>;
/// A base class for conveniently adding trailing fields to a
/// generic metadata pattern.
template <typename Runtime,
typename Self,
typename... ExtraTrailingObjects>
class TargetGenericMetadataPatternTrailingObjects :
protected swift::ABI::TrailingObjects<Self,
TargetGenericMetadataPartialPattern<Runtime>,
ExtraTrailingObjects...> {
using TrailingObjects =
swift::ABI::TrailingObjects<Self,
TargetGenericMetadataPartialPattern<Runtime>,
ExtraTrailingObjects...>;
friend TrailingObjects;
using GenericMetadataPartialPattern =
TargetGenericMetadataPartialPattern<Runtime>;
const Self *asSelf() const {
return static_cast<const Self *>(this);
}
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
public:
/// Return the extra-data pattern.
///
/// For class metadata, the existence of this pattern creates the need
/// for extra data to be allocated in the metadata. The amount of extra
/// data allocated is the sum of the offset and the size of this pattern.
///
/// In value metadata, the size of the extra data section is passed to the
/// allocation function; this is because it is currently not stored elsewhere
/// and because the extra data is principally used for storing values that
/// cannot be patterned anyway.
///
/// In value metadata, this section is relative to the end of the
/// metadata header (e.g. after the last members declared in StructMetadata).
/// In class metadata, this section is relative to the end of the entire
/// class metadata.
///
/// See also: [pre-5.2-extra-data-zeroing]
/// See also: [pre-5.3-extra-data-zeroing]
const GenericMetadataPartialPattern *getExtraDataPattern() const {
assert(asSelf()->hasExtraDataPattern());
return this->template getTrailingObjects<GenericMetadataPartialPattern>();
}
protected:
/// Return the class immediate-members pattern.
const GenericMetadataPartialPattern *class_getImmediateMembersPattern() const{
assert(asSelf()->class_hasImmediateMembersPattern());
return this->template getTrailingObjects<GenericMetadataPartialPattern>()
+ size_t(asSelf()->hasExtraDataPattern());
}
size_t numTrailingObjects(OverloadToken<GenericMetadataPartialPattern>) const{
return size_t(asSelf()->hasExtraDataPattern())
+ size_t(asSelf()->class_hasImmediateMembersPattern());
}
};
/// An instantiation pattern for generic class metadata.
template <typename Runtime>
struct TargetGenericClassMetadataPattern final :
TargetGenericMetadataPattern<Runtime>,
TargetGenericMetadataPatternTrailingObjects<Runtime,
TargetGenericClassMetadataPattern<Runtime>> {
using TrailingObjects =
TargetGenericMetadataPatternTrailingObjects<Runtime,
TargetGenericClassMetadataPattern<Runtime>>;
friend TrailingObjects;
using TargetGenericMetadataPattern<Runtime>::PatternFlags;
/// The heap-destructor function.
TargetCompactFunctionPointer<Runtime, HeapObjectDestroyer> Destroy;
/// The ivar-destructor function.
TargetCompactFunctionPointer<Runtime, ClassIVarDestroyer, /*nullable*/ true>
IVarDestroyer;
/// The class flags.
ClassFlags Flags;
// The following fields are only present in ObjC interop.
/// The offset of the class RO-data within the extra data pattern,
/// in words.
uint16_t ClassRODataOffset;
/// The offset of the metaclass object within the extra data pattern,
/// in words.
uint16_t MetaclassObjectOffset;
/// The offset of the metaclass RO-data within the extra data pattern,
/// in words.
uint16_t MetaclassRODataOffset;
uint16_t Reserved;
bool hasImmediateMembersPattern() const {
return PatternFlags.class_hasImmediateMembersPattern();
}
const GenericMetadataPartialPattern *getImmediateMembersPattern() const{
return this->class_getImmediateMembersPattern();
}
private:
bool class_hasImmediateMembersPattern() const {
return hasImmediateMembersPattern();
}
};
using GenericClassMetadataPattern =
TargetGenericClassMetadataPattern<InProcess>;
/// An instantiation pattern for generic value metadata.
template <typename Runtime>
struct TargetGenericValueMetadataPattern final :
TargetGenericMetadataPattern<Runtime>,
TargetGenericMetadataPatternTrailingObjects<Runtime,
TargetGenericValueMetadataPattern<Runtime>> {
using TrailingObjects =
TargetGenericMetadataPatternTrailingObjects<Runtime,
TargetGenericValueMetadataPattern<Runtime>>;
friend TrailingObjects;
using TargetGenericMetadataPattern<Runtime>::PatternFlags;
/// The value-witness table. Indirectable so that we can re-use tables
/// from other libraries if that seems wise.
TargetRelativeIndirectablePointer<Runtime, const TargetValueWitnessTable<Runtime>>
ValueWitnesses;
const TargetValueWitnessTable<Runtime> *getValueWitnessesPattern() const {
return ValueWitnesses.get();
}
/// Return the metadata kind to use in the instantiation.
MetadataKind getMetadataKind() const {
return PatternFlags.value_getMetadataKind();
}
private:
bool class_hasImmediateMembersPattern() const {
// It's important to not look at the flag because we use those
// bits for other things.
return false;
}
};
using GenericValueMetadataPattern =
TargetGenericValueMetadataPattern<InProcess>;
template <typename Runtime>
struct TargetTypeGenericContextDescriptorHeader {
/// The metadata instantiation cache.
TargetRelativeDirectPointer<Runtime,
TargetGenericMetadataInstantiationCache<Runtime>>
InstantiationCache;
GenericMetadataInstantiationCache *getInstantiationCache() const {
return InstantiationCache.get();
}
/// The default instantiation pattern.
TargetRelativeDirectPointer<Runtime, TargetGenericMetadataPattern<Runtime>>
DefaultInstantiationPattern;
/// The base header. Must always be the final member.
TargetGenericContextDescriptorHeader<Runtime> Base;
operator const TargetGenericContextDescriptorHeader<Runtime> &() const {
return Base;
}
};
using TypeGenericContextDescriptorHeader =
TargetTypeGenericContextDescriptorHeader<InProcess>;
/// Wrapper class for the pointer to a metadata access function that provides
/// operator() overloads to call it with the right calling convention.
class MetadataAccessFunction {
MetadataResponse (*Function)(...);
static_assert(NumDirectGenericTypeMetadataAccessFunctionArgs == 3,
"Need to account for change in number of direct arguments");
public:
explicit MetadataAccessFunction(MetadataResponse (*Function)(...))
: Function(Function)
{}
explicit operator bool() const {
return Function != nullptr;
}
/// For debugging purposes only.
explicit operator void*() const {
return reinterpret_cast<void *>(Function);
}
/// Invoke with an array of arguments of dynamic size.
MetadataResponse operator()(MetadataRequest request,
llvm::ArrayRef<const void *> args) const {
switch (args.size()) {
case 0:
return operator()(request);
case 1:
return operator()(request, args[0]);
case 2:
return operator()(request, args[0], args[1]);
case 3:
return operator()(request, args[0], args[1], args[2]);
default:
return applyMany(request, args.data());
}
}
/// Invoke with exactly 0 arguments.
MetadataResponse operator()(MetadataRequest request) const {
using Fn0 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request);
return reinterpret_cast<Fn0*>(Function)(request);
}
/// Invoke with exactly 1 argument.
MetadataResponse operator()(MetadataRequest request,
const void *arg0) const {
using Fn1 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
const void *arg0);
return reinterpret_cast<Fn1*>(Function)(request, arg0);
}
/// Invoke with exactly 2 arguments.
MetadataResponse operator()(MetadataRequest request,
const void *arg0,
const void *arg1) const {
using Fn2 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
const void *arg0,
const void *arg1);
return reinterpret_cast<Fn2*>(Function)(request, arg0, arg1);
}
/// Invoke with exactly 3 arguments.
MetadataResponse operator()(MetadataRequest request,
const void *arg0,
const void *arg1,
const void *arg2) const {
using Fn3 = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
const void *arg0,
const void *arg1,
const void *arg2);
return reinterpret_cast<Fn3*>(Function)(request, arg0, arg1, arg2);
}
/// Invoke with more than 3 arguments.
template<typename...Args>
MetadataResponse operator()(MetadataRequest request,
const void *arg0,
const void *arg1,
const void *arg2,
Args... argN) const {
const void *args[] = { arg0, arg1, arg2, argN... };
return applyMany(request, args);
}
private:
/// In the more-than-max case, just pass all the arguments as an array.
MetadataResponse applyMany(MetadataRequest request,
const void * const *args) const {
using FnN = SWIFT_CC(swift) MetadataResponse(MetadataRequest request,
const void * const *args);
return reinterpret_cast<FnN*>(Function)(request, args);
}
};
/// The control structure for performing non-trivial initialization of
/// singleton foreign metadata.
template <typename Runtime>
struct TargetForeignMetadataInitialization {
/// The completion function. The pattern will always be null.
TargetCompactFunctionPointer<Runtime, MetadataCompleter, /*nullable*/ true>
CompletionFunction;
};
/// The cache structure for non-trivial initialization of singleton value
/// metadata.
template <typename Runtime>
struct TargetSingletonMetadataCache {
/// The metadata pointer. Clients can do dependency-ordered loads
/// from this, and if they see a non-zero value, it's a Complete
/// metadata.
std::atomic<TargetMetadataPointer<Runtime, TargetMetadata>> Metadata;
/// The private cache data.
std::atomic<TargetPointer<Runtime, void>> Private;
};
using SingletonMetadataCache =
TargetSingletonMetadataCache<InProcess>;
template <typename Runtime>
struct TargetResilientClassMetadataPattern;
/// A function for allocating metadata for a resilient class, calculating
/// the correct metadata size at runtime.
using MetadataRelocator =
Metadata *(const TargetTypeContextDescriptor<InProcess> *type,
const TargetResilientClassMetadataPattern<InProcess> *pattern);
/// An instantiation pattern for non-generic resilient class metadata.
///
/// Used for classes with resilient ancestry, that is, where at least one
/// ancestor is defined in a different resilience domain.
///
/// The hasResilientSuperclass() flag in the class context descriptor is
/// set in this case, and hasSingletonMetadataInitialization() must be
/// set as well.
///
/// The pattern is referenced from the SingletonMetadataInitialization
/// record in the class context descriptor.
template <typename Runtime>
struct TargetResilientClassMetadataPattern {
/// A function that allocates metadata with the correct size at runtime.
///
/// If this is null, the runtime instead calls swift_relocateClassMetadata(),
/// passing in the class descriptor and this pattern.
TargetCompactFunctionPointer<Runtime, MetadataRelocator, /*nullable*/ true>
RelocationFunction;
/// The heap-destructor function.
TargetCompactFunctionPointer<Runtime, HeapObjectDestroyer> Destroy;
/// The ivar-destructor function.
TargetCompactFunctionPointer<Runtime, ClassIVarDestroyer, /*nullable*/ true>
IVarDestroyer;
/// The class flags.
ClassFlags Flags;
// The following fields are only present in ObjC interop.
/// Our ClassROData.
TargetRelativeDirectPointer<Runtime, void> Data;
/// Our metaclass.
TargetRelativeDirectPointer<Runtime, TargetAnyClassMetadata<Runtime>> Metaclass;
};
using ResilientClassMetadataPattern =
TargetResilientClassMetadataPattern<InProcess>;
/// The control structure for performing non-trivial initialization of
/// singleton value metadata, which is required when e.g. a non-generic
/// value type has a resilient component type.
template <typename Runtime>
struct TargetSingletonMetadataInitialization {
/// The initialization cache. Out-of-line because mutable.
TargetRelativeDirectPointer<Runtime,
TargetSingletonMetadataCache<Runtime>>
InitializationCache;
union {
/// The incomplete metadata, for structs, enums and classes without
/// resilient ancestry.
TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>>
IncompleteMetadata;
/// If the class descriptor's hasResilientSuperclass() flag is set,
/// this field instead points at a pattern used to allocate and
/// initialize metadata for this class, since it's size and contents
/// is not known at compile time.
TargetRelativeDirectPointer<Runtime, TargetResilientClassMetadataPattern<Runtime>>
ResilientPattern;
};
/// The completion function. The pattern will always be null, even
/// for a resilient class.
TargetCompactFunctionPointer<Runtime, MetadataCompleter>
CompletionFunction;
bool hasResilientClassPattern(
const TargetTypeContextDescriptor<Runtime> *description) const {
auto *classDescription =
dyn_cast<TargetClassDescriptor<Runtime>>(description);
return (classDescription != nullptr &&
classDescription->hasResilientSuperclass());
}
/// This method can only be called from the runtime itself. It is defined
/// in Metadata.cpp.
TargetMetadata<Runtime> *allocate(
const TargetTypeContextDescriptor<Runtime> *description) const;
};
template <typename Runtime>
struct TargetCanonicalSpecializedMetadatasListCount {
uint32_t count;
};
template <typename Runtime>
struct TargetCanonicalSpecializedMetadatasListEntry {
TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>, /*Nullable*/ false> metadata;
};
template <typename Runtime>
struct TargetCanonicalSpecializedMetadataAccessorsListEntry {
TargetCompactFunctionPointer<Runtime, MetadataResponse(MetadataRequest), /*Nullable*/ false> accessor;
};
template <typename Runtime>
struct TargetCanonicalSpecializedMetadatasCachingOnceToken {
TargetRelativeDirectPointer<Runtime, swift_once_t, /*Nullable*/ false> token;
};
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(TypeContextDescriptor)
TargetTypeContextDescriptor : public TargetContextDescriptor<Runtime> {
public:
/// The name of the type.
TargetRelativeDirectPointer<Runtime, const char, /*nullable*/ false> Name;
/// A pointer to the metadata access function for this type.
///
/// The function type here is a stand-in. You should use getAccessFunction()
/// to wrap the function pointer in an accessor that uses the proper calling
/// convention for a given number of arguments.
TargetCompactFunctionPointer<Runtime, MetadataResponse(...),
/*Nullable*/ true> AccessFunctionPtr;
/// A pointer to the field descriptor for the type, if any.
TargetRelativeDirectPointer<Runtime,
const reflection::TargetFieldDescriptor<Runtime>,
/*nullable*/ true>
Fields;
bool isReflectable() const { return (bool)Fields; }
MetadataAccessFunction getAccessFunction() const {
return MetadataAccessFunction(AccessFunctionPtr.get());
}
TypeContextDescriptorFlags getTypeContextDescriptorFlags() const {
return TypeContextDescriptorFlags(this->Flags.getKindSpecificFlags());
}
/// Return the kind of metadata initialization required by this type.
/// Note that this is only meaningful for non-generic types.
TypeContextDescriptorFlags::MetadataInitializationKind
getMetadataInitialization() const {
return getTypeContextDescriptorFlags().getMetadataInitialization();
}
/// Does this type have non-trivial "singleton" metadata initialization?
///
/// The type of the initialization-control structure differs by subclass,
/// so it doesn't appear here.
bool hasSingletonMetadataInitialization() const {
return getTypeContextDescriptorFlags().hasSingletonMetadataInitialization();
}
/// Does this type have "foreign" metadata initialization?
bool hasForeignMetadataInitialization() const {
return getTypeContextDescriptorFlags().hasForeignMetadataInitialization();
}
bool hasCanonicalMetadataPrespecializations() const {
return getTypeContextDescriptorFlags().hasCanonicalMetadataPrespecializations();
}
bool hasLayoutString() const {
return getTypeContextDescriptorFlags().hasLayoutString();
}
/// Given that this type has foreign metadata initialization, return the
/// control structure for it.
const TargetForeignMetadataInitialization<Runtime> &
getForeignMetadataInitialization() const;
const TargetSingletonMetadataInitialization<Runtime> &
getSingletonMetadataInitialization() const;
const TargetTypeGenericContextDescriptorHeader<Runtime> &
getFullGenericContextHeader() const;
const TargetGenericContextDescriptorHeader<Runtime> &
getGenericContextHeader() const {
return getFullGenericContextHeader();
}
llvm::ArrayRef<GenericParamDescriptor> getGenericParams() const;
/// Return the offset of the start of generic arguments in the nominal
/// type's metadata. The returned value is measured in sizeof(StoredPointer).
int32_t getGenericArgumentOffset() const;
constexpr inline auto
getNameOffset() const -> typename Runtime::StoredSize {
return offsetof(typename std::remove_reference<decltype(*this)>::type, Name);
}
/// Return the start of the generic arguments array in the nominal
/// type's metadata. The returned value is measured in sizeof(StoredPointer).
const TargetMetadata<Runtime> * const *getGenericArguments(
const TargetMetadata<Runtime> *metadata) const {
auto offset = getGenericArgumentOffset();
auto words =
reinterpret_cast<const TargetMetadata<Runtime> * const *>(metadata);
return words + offset;
}
const llvm::ArrayRef<TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>, /*Nullable*/ false>>
getCanonicalMetadataPrespecializations() const;
swift_once_t *getCanonicalMetadataPrespecializationCachingOnceToken() const;
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() >= ContextDescriptorKind::Type_First
&& cd->getKind() <= ContextDescriptorKind::Type_Last;
}
};
/// Storage for class metadata bounds. This is the variable returned
/// by getAddrOfClassMetadataBounds in the compiler.
///
/// This storage is initialized before the allocation of any metadata
/// for the class to which it belongs. In classes without resilient
/// superclasses, it is initialized statically with values derived
/// during compilation. In classes with resilient superclasses, it
/// is initialized dynamically, generally during the allocation of
/// the first metadata of this class's type. If metadata for this
/// class is available to you to use, you must have somehow synchronized
/// with the thread which allocated the metadata, and therefore the
/// complete initialization of this variable is also ordered before
/// your access. That is why you can safely access this variable,
/// and moreover access it without further atomic accesses. However,
/// since this variable may be accessed in a way that is not dependency-
/// ordered on the metadata pointer, it is important that you do a full
/// synchronization and not just a dependency-ordered (consume)
/// synchronization when sharing class metadata pointers between
/// threads. (There are other reasons why this is true; for example,
/// field offset variables are also accessed without dependency-ordering.)
///
/// If you are accessing this storage without such a guarantee, you
/// should be aware that it may be lazily initialized, and moreover
/// it may be getting lazily initialized from another thread. To ensure
/// correctness, the fields must be read in the correct order: the
/// immediate-members offset is initialized last with a store-release,
/// so it must be read first with a load-acquire, and if the result
/// is non-zero then the rest of the variable is known to be valid.
/// (No locking is required because racing initializations should always
/// assign the same values to the storage.)
template <typename Runtime>
struct TargetStoredClassMetadataBounds {
using StoredPointerDifference =
typename Runtime::StoredPointerDifference;
/// The offset to the immediate members. This value is in bytes so that
/// clients don't have to sign-extend it.
/// It is not necessary to use atomic-ordered loads when accessing this
/// variable just to read the immediate-members offset when drilling to
/// the immediate members of an already-allocated metadata object.
/// The proper initialization of this variable is always ordered before
/// any allocation of metadata for this class.
std::atomic<StoredPointerDifference> ImmediateMembersOffset;
/// The positive and negative bounds of the class metadata.
TargetMetadataBounds<Runtime> Bounds;
/// Attempt to read the cached immediate-members offset.
///
/// \return true if the read was successful, or false if the cache hasn't
/// been filled yet
bool tryGetImmediateMembersOffset(StoredPointerDifference &output) {
output = ImmediateMembersOffset.load(std::memory_order_relaxed);
return output != 0;
}
/// Attempt to read the full cached bounds.
///
/// \return true if the read was successful, or false if the cache hasn't
/// been filled yet
bool tryGet(TargetClassMetadataBounds<Runtime> &output) {
auto offset = ImmediateMembersOffset.load(std::memory_order_acquire);
if (offset == 0) return false;
output.ImmediateMembersOffset = offset;
output.NegativeSizeInWords = Bounds.NegativeSizeInWords;
output.PositiveSizeInWords = Bounds.PositiveSizeInWords;
return true;
}
void initialize(TargetClassMetadataBounds<Runtime> value) {
assert(value.ImmediateMembersOffset != 0 &&
"attempting to initialize metadata bounds cache to a zero state!");
Bounds.NegativeSizeInWords = value.NegativeSizeInWords;
Bounds.PositiveSizeInWords = value.PositiveSizeInWords;
ImmediateMembersOffset.store(value.ImmediateMembersOffset,
std::memory_order_release);
}
};
using StoredClassMetadataBounds =
TargetStoredClassMetadataBounds<InProcess>;
template <typename Runtime>
struct TargetResilientSuperclass {
/// The superclass of this class. This pointer can be interpreted
/// using the superclass reference kind stored in the type context
/// descriptor flags. It is null if the class has no formal superclass.
///
/// Note that SwiftObject, the implicit superclass of all Swift root
/// classes when building with ObjC compatibility, does not appear here.
TargetRelativeDirectPointer<Runtime, const void, /*nullable*/true> Superclass;
};
/// A structure that stores a reference to an Objective-C class stub.
///
/// This is not the class stub itself; it is part of a class context
/// descriptor.
template <typename Runtime>
struct TargetObjCResilientClassStubInfo {
/// A relative pointer to an Objective-C resilient class stub.
///
/// We do not declare a struct type for class stubs since the Swift runtime
/// does not need to interpret them. The class stub struct is part of
/// the Objective-C ABI, and is laid out as follows:
/// - isa pointer, always 1
/// - an update callback, of type 'Class (*)(Class *, objc_class_stub *)'
///
/// Class stubs are used for two purposes:
///
/// - Objective-C can reference class stubs when calling static methods.
/// - Objective-C and Swift can reference class stubs when emitting
/// categories (in Swift, extensions with @objc members).
TargetRelativeDirectPointer<Runtime, const void> Stub;
};
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(ClassDescriptor)
TargetClassDescriptor final
: public TargetTypeContextDescriptor<Runtime>,
public TrailingGenericContextObjects<TargetClassDescriptor<Runtime>,
TargetTypeGenericContextDescriptorHeader,
/*additional trailing objects:*/
TargetResilientSuperclass<Runtime>,
TargetForeignMetadataInitialization<Runtime>,
TargetSingletonMetadataInitialization<Runtime>,
TargetVTableDescriptorHeader<Runtime>,
TargetMethodDescriptor<Runtime>,
TargetOverrideTableHeader<Runtime>,
TargetMethodOverrideDescriptor<Runtime>,
TargetObjCResilientClassStubInfo<Runtime>,
TargetCanonicalSpecializedMetadatasListCount<Runtime>,
TargetCanonicalSpecializedMetadatasListEntry<Runtime>,
TargetCanonicalSpecializedMetadataAccessorsListEntry<Runtime>,
TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>,
InvertibleProtocolSet> {
private:
using TrailingGenericContextObjects =
swift::TrailingGenericContextObjects<TargetClassDescriptor<Runtime>,
TargetTypeGenericContextDescriptorHeader,
TargetResilientSuperclass<Runtime>,
TargetForeignMetadataInitialization<Runtime>,
TargetSingletonMetadataInitialization<Runtime>,
TargetVTableDescriptorHeader<Runtime>,
TargetMethodDescriptor<Runtime>,
TargetOverrideTableHeader<Runtime>,
TargetMethodOverrideDescriptor<Runtime>,
TargetObjCResilientClassStubInfo<Runtime>,
TargetCanonicalSpecializedMetadatasListCount<Runtime>,
TargetCanonicalSpecializedMetadatasListEntry<Runtime>,
TargetCanonicalSpecializedMetadataAccessorsListEntry<Runtime>,
TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>,
InvertibleProtocolSet>;
using TrailingObjects =
typename TrailingGenericContextObjects::TrailingObjects;
friend TrailingObjects;
public:
using MethodDescriptor = TargetMethodDescriptor<Runtime>;
using VTableDescriptorHeader = TargetVTableDescriptorHeader<Runtime>;
using OverrideTableHeader = TargetOverrideTableHeader<Runtime>;
using MethodOverrideDescriptor = TargetMethodOverrideDescriptor<Runtime>;
using ResilientSuperclass = TargetResilientSuperclass<Runtime>;
using ForeignMetadataInitialization =
TargetForeignMetadataInitialization<Runtime>;
using SingletonMetadataInitialization =
TargetSingletonMetadataInitialization<Runtime>;
using ObjCResilientClassStubInfo =
TargetObjCResilientClassStubInfo<Runtime>;
using Metadata =
TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>, /*Nullable*/ false>;
using MetadataListCount =
TargetCanonicalSpecializedMetadatasListCount<Runtime>;
using MetadataListEntry =
TargetCanonicalSpecializedMetadatasListEntry<Runtime>;
using MetadataAccessor =
TargetCompactFunctionPointer<Runtime, MetadataResponse(MetadataRequest), /*Nullable*/ false>;
using MetadataAccessorListEntry =
TargetCanonicalSpecializedMetadataAccessorsListEntry<Runtime>;
using MetadataCachingOnceToken =
TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>;
using StoredPointer = typename Runtime::StoredPointer;
using StoredPointerDifference = typename Runtime::StoredPointerDifference;
using StoredSize = typename Runtime::StoredSize;
using TrailingGenericContextObjects::getGenericContext;
using TrailingGenericContextObjects::getGenericContextHeader;
using TrailingGenericContextObjects::getFullGenericContextHeader;
using TrailingGenericContextObjects::getGenericParams;
using TargetTypeContextDescriptor<Runtime>::getTypeContextDescriptorFlags;
TypeReferenceKind getResilientSuperclassReferenceKind() const {
return getTypeContextDescriptorFlags()
.class_getResilientSuperclassReferenceKind();
}
/// The type of the superclass, expressed as a mangled type name that can
/// refer to the generic arguments of the subclass type.
TargetRelativeDirectPointer<Runtime, const char> SuperclassType;
union {
/// If this descriptor does not have a resilient superclass, this is the
/// negative size of metadata objects of this class (in words).
uint32_t MetadataNegativeSizeInWords;
/// If this descriptor has a resilient superclass, this is a reference
/// to a cache holding the metadata's extents.
TargetRelativeDirectPointer<Runtime,
TargetStoredClassMetadataBounds<Runtime>>
ResilientMetadataBounds;
};
union {
/// If this descriptor does not have a resilient superclass, this is the
/// positive size of metadata objects of this class (in words).
uint32_t MetadataPositiveSizeInWords;
/// Otherwise, these flags are used to do things like indicating
/// the presence of an Objective-C resilient class stub.
ExtraClassDescriptorFlags ExtraClassFlags;
};
/// The number of additional members added by this class to the class
/// metadata. This data is opaque by default to the runtime, other than
/// as exposed in other members; it's really just
/// NumImmediateMembers * sizeof(void*) bytes of data.
///
/// Whether those bytes are added before or after the address point
/// depends on areImmediateMembersNegative().
uint32_t NumImmediateMembers; // ABI: could be uint16_t?
StoredSize getImmediateMembersSize() const {
return StoredSize(NumImmediateMembers) * sizeof(StoredPointer);
}
/// Are the immediate members of the class metadata allocated at negative
/// offsets instead of positive?
bool areImmediateMembersNegative() const {
return getTypeContextDescriptorFlags().class_areImmediateMembersNegative();
}
/// The number of stored properties in the class, not including its
/// superclasses. If there is a field offset vector, this is its length.
uint32_t NumFields;
private:
/// The offset of the field offset vector for this class's stored
/// properties in its metadata, in words. 0 means there is no field offset
/// vector.
///
/// If this class has a resilient superclass, this offset is relative to
/// the size of the resilient superclass metadata. Otherwise, it is
/// absolute.
uint32_t FieldOffsetVectorOffset;
template<typename T>
using OverloadToken =
typename TrailingGenericContextObjects::template OverloadToken<T>;
using TrailingGenericContextObjects::numTrailingObjects;
size_t numTrailingObjects(OverloadToken<ResilientSuperclass>) const {
return this->hasResilientSuperclass() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<ForeignMetadataInitialization>) const{
return this->hasForeignMetadataInitialization() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<SingletonMetadataInitialization>) const{
return this->hasSingletonMetadataInitialization() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<VTableDescriptorHeader>) const {
return hasVTable() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<MethodDescriptor>) const {
if (!hasVTable())
return 0;
return getVTableDescriptor()->VTableSize;
}
size_t numTrailingObjects(OverloadToken<OverrideTableHeader>) const {
return hasOverrideTable() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<MethodOverrideDescriptor>) const {
if (!hasOverrideTable())
return 0;
return getOverrideTable()->NumEntries;
}
size_t numTrailingObjects(OverloadToken<ObjCResilientClassStubInfo>) const {
return hasObjCResilientClassStub() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<MetadataListCount>) const {
return this->hasCanonicalMetadataPrespecializations() ?
1
: 0;
}
size_t numTrailingObjects(OverloadToken<MetadataListEntry>) const {
return this->hasCanonicalMetadataPrespecializations() ?
this->template getTrailingObjects<MetadataListCount>()->count
: 0;
}
size_t numTrailingObjects(OverloadToken<MetadataAccessorListEntry>) const {
return this->hasCanonicalMetadataPrespecializations() ?
this->template getTrailingObjects<MetadataListCount>()->count
: 0;
}
size_t numTrailingObjects(OverloadToken<MetadataCachingOnceToken>) const {
return this->hasCanonicalMetadataPrespecializations() ? 1 : 0;
}
public:
const TargetRelativeDirectPointer<Runtime, const void, /*nullable*/true> &
getResilientSuperclass() const {
assert(this->hasResilientSuperclass());
return this->template getTrailingObjects<ResilientSuperclass>()->Superclass;
}
const ForeignMetadataInitialization &getForeignMetadataInitialization() const{
assert(this->hasForeignMetadataInitialization());
return *this->template getTrailingObjects<ForeignMetadataInitialization>();
}
const SingletonMetadataInitialization &getSingletonMetadataInitialization() const{
assert(this->hasSingletonMetadataInitialization());
return *this->template getTrailingObjects<SingletonMetadataInitialization>();
}
/// True if metadata records for this type have a field offset vector for
/// its stored properties.
bool hasFieldOffsetVector() const { return FieldOffsetVectorOffset != 0; }
unsigned getFieldOffsetVectorOffset() const {
if (hasResilientSuperclass()) {
auto bounds = getMetadataBounds();
return (bounds.ImmediateMembersOffset / sizeof(StoredPointer)
+ FieldOffsetVectorOffset);
}
return FieldOffsetVectorOffset;
}
bool isActor() const {
return this->getTypeContextDescriptorFlags().class_isActor();
}
bool isDefaultActor() const {
return this->getTypeContextDescriptorFlags().class_isDefaultActor();
}
bool hasVTable() const {
return this->getTypeContextDescriptorFlags().class_hasVTable();
}
bool hasOverrideTable() const {
return this->getTypeContextDescriptorFlags().class_hasOverrideTable();
}
bool hasResilientSuperclass() const {
return this->getTypeContextDescriptorFlags().class_hasResilientSuperclass();
}
const VTableDescriptorHeader *getVTableDescriptor() const {
if (!hasVTable())
return nullptr;
return this->template getTrailingObjects<VTableDescriptorHeader>();
}
llvm::ArrayRef<MethodDescriptor> getMethodDescriptors() const {
if (!hasVTable())
return {};
return {this->template getTrailingObjects<MethodDescriptor>(),
numTrailingObjects(OverloadToken<MethodDescriptor>{})};
}
const OverrideTableHeader *getOverrideTable() const {
if (!hasOverrideTable())
return nullptr;
return this->template getTrailingObjects<OverrideTableHeader>();
}
llvm::ArrayRef<MethodOverrideDescriptor> getMethodOverrideDescriptors() const {
if (!hasOverrideTable())
return {};
return {this->template getTrailingObjects<MethodOverrideDescriptor>(),
numTrailingObjects(OverloadToken<MethodOverrideDescriptor>{})};
}
/// Return the bounds of this class's metadata.
TargetClassMetadataBounds<Runtime> getMetadataBounds() const {
if (!hasResilientSuperclass())
return getNonResilientMetadataBounds();
// This lookup works by ADL and will intentionally fail for
// non-InProcess instantiations.
return getResilientMetadataBounds(this);
}
/// Given that this class is known to not have a resilient superclass
/// return its metadata bounds.
TargetClassMetadataBounds<Runtime> getNonResilientMetadataBounds() const {
return { getNonResilientImmediateMembersOffset()
* StoredPointerDifference(sizeof(void*)),
MetadataNegativeSizeInWords,
MetadataPositiveSizeInWords };
}
/// Return the offset of the start of generic arguments in the nominal
/// type's metadata. The returned value is measured in words.
int32_t getGenericArgumentOffset() const {
if (!hasResilientSuperclass())
return getNonResilientGenericArgumentOffset();
// This lookup works by ADL and will intentionally fail for
// non-InProcess instantiations.
return getResilientImmediateMembersOffset(this);
}
/// Given that this class is known to not have a resilient superclass,
/// return the offset of its generic arguments in words.
int32_t getNonResilientGenericArgumentOffset() const {
return getNonResilientImmediateMembersOffset();
}
/// Given that this class is known to not have a resilient superclass,
/// return the offset of its immediate members in words.
int32_t getNonResilientImmediateMembersOffset() const {
assert(!hasResilientSuperclass());
return areImmediateMembersNegative()
? -int32_t(MetadataNegativeSizeInWords)
: int32_t(MetadataPositiveSizeInWords - NumImmediateMembers);
}
void *getMethod(unsigned i) const {
assert(hasVTable()
&& i < numTrailingObjects(OverloadToken<MethodDescriptor>{}));
return getMethodDescriptors()[i].Impl.get();
}
/// Whether this context descriptor references an Objective-C resilient
/// class stub. See the above description of TargetObjCResilientClassStubInfo
/// for details.
bool hasObjCResilientClassStub() const {
if (!hasResilientSuperclass())
return false;
return ExtraClassFlags.hasObjCResilientClassStub();
}
const void *getObjCResilientClassStub() const {
if (!hasObjCResilientClassStub())
return nullptr;
return this->template getTrailingObjects<ObjCResilientClassStubInfo>()
->Stub.get();
}
llvm::ArrayRef<Metadata> getCanonicalMetadataPrespecializations() const {
if (!this->hasCanonicalMetadataPrespecializations()) {
return {};
}
auto *listCount = this->template getTrailingObjects<MetadataListCount>();
auto *list = this->template getTrailingObjects<MetadataListEntry>();
return llvm::ArrayRef<Metadata>(
reinterpret_cast<const Metadata *>(list),
listCount->count
);
}
llvm::ArrayRef<MetadataAccessor> getCanonicalMetadataPrespecializationAccessors() const {
if (!this->hasCanonicalMetadataPrespecializations()) {
return {};
}
auto *listCount = this->template getTrailingObjects<MetadataListCount>();
auto *list = this->template getTrailingObjects<MetadataAccessorListEntry>();
return llvm::ArrayRef<MetadataAccessor>(
reinterpret_cast<const MetadataAccessor *>(list),
listCount->count
);
}
swift_once_t *getCanonicalMetadataPrespecializationCachingOnceToken() const {
if (!this->hasCanonicalMetadataPrespecializations()) {
return nullptr;
}
auto box = this->template getTrailingObjects<MetadataCachingOnceToken>();
return box->token.get();
}
/// Retrieve the set of protocols that are inverted by this type's
/// primary definition.
///
/// This type might still conditionally conform to any of the protocols
/// that are inverted here, but that information is recorded in the
/// conditional inverted protocols of the corresponding `GenericContext`.
const InvertibleProtocolSet &
getInvertedProtocols() const {
assert(this->hasInvertibleProtocols());
return
*this->template getTrailingObjects<InvertibleProtocolSet>();
}
size_t numTrailingObjects(OverloadToken<InvertibleProtocolSet>) const {
return this->hasInvertibleProtocols() ? 1 : 0;
}
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Class;
}
};
using ClassDescriptor = TargetClassDescriptor<InProcess>;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(ValueTypeDescriptor)
TargetValueTypeDescriptor : public TargetTypeContextDescriptor<Runtime>{
public:
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Struct ||
cd->getKind() == ContextDescriptorKind::Enum;
}
};
using ValueTypeDescriptor = TargetValueTypeDescriptor<InProcess>;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(StructDescriptor)
TargetStructDescriptor final
: public TargetValueTypeDescriptor<Runtime>,
public TrailingGenericContextObjects<TargetStructDescriptor<Runtime>,
TargetTypeGenericContextDescriptorHeader,
/*additional trailing objects*/
TargetForeignMetadataInitialization<Runtime>,
TargetSingletonMetadataInitialization<Runtime>,
TargetCanonicalSpecializedMetadatasListCount<Runtime>,
TargetCanonicalSpecializedMetadatasListEntry<Runtime>,
TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>,
InvertibleProtocolSet> {
public:
using ForeignMetadataInitialization =
TargetForeignMetadataInitialization<Runtime>;
using SingletonMetadataInitialization =
TargetSingletonMetadataInitialization<Runtime>;
using Metadata =
TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>, /*Nullable*/ false>;
using MetadataListCount =
TargetCanonicalSpecializedMetadatasListCount<Runtime>;
using MetadataListEntry =
TargetCanonicalSpecializedMetadatasListEntry<Runtime>;
using MetadataCachingOnceToken =
TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>;
private:
using TrailingGenericContextObjects =
swift::TrailingGenericContextObjects<TargetStructDescriptor<Runtime>,
TargetTypeGenericContextDescriptorHeader,
ForeignMetadataInitialization,
SingletonMetadataInitialization,
MetadataListCount,
MetadataListEntry,
MetadataCachingOnceToken,
InvertibleProtocolSet>;
using TrailingObjects =
typename TrailingGenericContextObjects::TrailingObjects;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
using TrailingGenericContextObjects::numTrailingObjects;
size_t numTrailingObjects(OverloadToken<ForeignMetadataInitialization>) const{
return this->hasForeignMetadataInitialization() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<SingletonMetadataInitialization>) const{
return this->hasSingletonMetadataInitialization() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<MetadataListCount>) const {
return this->hasCanonicalMetadataPrespecializations() ?
1
: 0;
}
size_t numTrailingObjects(OverloadToken<MetadataListEntry>) const {
return this->hasCanonicalMetadataPrespecializations() ?
this->template getTrailingObjects<MetadataListCount>()->count
: 0;
}
size_t numTrailingObjects(OverloadToken<MetadataCachingOnceToken>) const {
return this->hasCanonicalMetadataPrespecializations() ? 1 : 0;
}
public:
using TrailingGenericContextObjects::getGenericContext;
using TrailingGenericContextObjects::getGenericContextHeader;
using TrailingGenericContextObjects::getFullGenericContextHeader;
using TrailingGenericContextObjects::getGenericParams;
/// The number of stored properties in the struct.
/// If there is a field offset vector, this is its length.
uint32_t NumFields;
/// The offset of the field offset vector for this struct's stored
/// properties in its metadata, if any. 0 means there is no field offset
/// vector.
uint32_t FieldOffsetVectorOffset;
/// True if metadata records for this type have a field offset vector for
/// its stored properties.
bool hasFieldOffsetVector() const { return FieldOffsetVectorOffset != 0; }
const ForeignMetadataInitialization &getForeignMetadataInitialization() const{
assert(this->hasForeignMetadataInitialization());
return *this->template getTrailingObjects<ForeignMetadataInitialization>();
}
const SingletonMetadataInitialization &getSingletonMetadataInitialization() const{
assert(this->hasSingletonMetadataInitialization());
return *this->template getTrailingObjects<SingletonMetadataInitialization>();
}
static constexpr int32_t getGenericArgumentOffset() {
return TargetStructMetadata<Runtime>::getGenericArgumentOffset();
}
llvm::ArrayRef<Metadata> getCanonicalMetadataPrespecializations() const {
if (!this->hasCanonicalMetadataPrespecializations()) {
return {};
}
auto *listCount = this->template getTrailingObjects<MetadataListCount>();
auto *list = this->template getTrailingObjects<MetadataListEntry>();
return llvm::ArrayRef<Metadata>(
reinterpret_cast<const Metadata *>(list),
listCount->count
);
}
swift_once_t *getCanonicalMetadataPrespecializationCachingOnceToken() const {
if (!this->hasCanonicalMetadataPrespecializations()) {
return nullptr;
}
auto box = this->template getTrailingObjects<MetadataCachingOnceToken>();
return box->token.get();
}
/// Retrieve the set of protocols that are inverted by this type's
/// primary definition.
///
/// This type might still conditionally conform to any of the protocols
/// that are inverted here, but that information is recorded in the
/// conditional inverted protocols of the corresponding `GenericContext`.
const InvertibleProtocolSet &
getInvertedProtocols() const {
assert(this->hasInvertibleProtocols());
return
*this->template getTrailingObjects<InvertibleProtocolSet>();
}
size_t numTrailingObjects(OverloadToken<InvertibleProtocolSet>) const {
return this->hasInvertibleProtocols() ? 1 : 0;
}
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Struct;
}
};
using StructDescriptor = TargetStructDescriptor<InProcess>;
template <typename Runtime>
class swift_ptrauth_struct_context_descriptor(EnumDescriptor)
TargetEnumDescriptor final
: public TargetValueTypeDescriptor<Runtime>,
public TrailingGenericContextObjects<TargetEnumDescriptor<Runtime>,
TargetTypeGenericContextDescriptorHeader,
/*additional trailing objects*/
TargetForeignMetadataInitialization<Runtime>,
TargetSingletonMetadataInitialization<Runtime>,
TargetCanonicalSpecializedMetadatasListCount<Runtime>,
TargetCanonicalSpecializedMetadatasListEntry<Runtime>,
TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>,
InvertibleProtocolSet> {
public:
using SingletonMetadataInitialization =
TargetSingletonMetadataInitialization<Runtime>;
using ForeignMetadataInitialization =
TargetForeignMetadataInitialization<Runtime>;
using Metadata =
TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>, /*Nullable*/ false>;
using MetadataListCount =
TargetCanonicalSpecializedMetadatasListCount<Runtime>;
using MetadataListEntry =
TargetCanonicalSpecializedMetadatasListEntry<Runtime>;
using MetadataCachingOnceToken =
TargetCanonicalSpecializedMetadatasCachingOnceToken<Runtime>;
private:
using TrailingGenericContextObjects =
swift::TrailingGenericContextObjects<TargetEnumDescriptor<Runtime>,
TargetTypeGenericContextDescriptorHeader,
ForeignMetadataInitialization,
SingletonMetadataInitialization,
MetadataListCount,
MetadataListEntry,
MetadataCachingOnceToken,
InvertibleProtocolSet>;
using TrailingObjects =
typename TrailingGenericContextObjects::TrailingObjects;
friend TrailingObjects;
template<typename T>
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
using TrailingGenericContextObjects::numTrailingObjects;
size_t numTrailingObjects(OverloadToken<ForeignMetadataInitialization>) const{
return this->hasForeignMetadataInitialization() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<SingletonMetadataInitialization>) const{
return this->hasSingletonMetadataInitialization() ? 1 : 0;
}
size_t numTrailingObjects(OverloadToken<MetadataListCount>) const {
return this->hasCanonicalMetadataPrespecializations() ?
1
: 0;
}
size_t numTrailingObjects(OverloadToken<MetadataListEntry>) const {
return this->hasCanonicalMetadataPrespecializations() ?
this->template getTrailingObjects<MetadataListCount>()->count
: 0;
}
size_t numTrailingObjects(OverloadToken<MetadataCachingOnceToken>) const {
return this->hasCanonicalMetadataPrespecializations() ? 1 : 0;
}
public:
using TrailingGenericContextObjects::getGenericContext;
using TrailingGenericContextObjects::getGenericContextHeader;
using TrailingGenericContextObjects::getFullGenericContextHeader;
using TrailingGenericContextObjects::getGenericParams;
/// The number of non-empty cases in the enum are in the low 24 bits;
/// the offset of the payload size in the metadata record in words,
/// if any, is stored in the high 8 bits.
uint32_t NumPayloadCasesAndPayloadSizeOffset;
/// The number of empty cases in the enum.
uint32_t NumEmptyCases;
uint32_t getNumPayloadCases() const {
return NumPayloadCasesAndPayloadSizeOffset & 0x00FFFFFFU;
}
uint32_t getNumEmptyCases() const {
return NumEmptyCases;
}
uint32_t getNumCases() const {
return getNumPayloadCases() + NumEmptyCases;
}
size_t getPayloadSizeOffset() const {
return ((NumPayloadCasesAndPayloadSizeOffset & 0xFF000000U) >> 24);
}
bool hasPayloadSizeOffset() const {
return getPayloadSizeOffset() != 0;
}
static constexpr int32_t getGenericArgumentOffset() {
return TargetEnumMetadata<Runtime>::getGenericArgumentOffset();
}
const ForeignMetadataInitialization &getForeignMetadataInitialization() const{
assert(this->hasForeignMetadataInitialization());
return *this->template getTrailingObjects<ForeignMetadataInitialization>();
}
const SingletonMetadataInitialization &getSingletonMetadataInitialization() const{
assert(this->hasSingletonMetadataInitialization());
return *this->template getTrailingObjects<SingletonMetadataInitialization>();
}
llvm::ArrayRef<Metadata> getCanonicalMetadataPrespecializations() const {
if (!this->hasCanonicalMetadataPrespecializations()) {
return {};
}
auto *listCount = this->template getTrailingObjects<MetadataListCount>();
auto *list = this->template getTrailingObjects<MetadataListEntry>();
return llvm::ArrayRef<Metadata>(
reinterpret_cast<const Metadata *>(list),
listCount->count
);
}
swift_once_t *getCanonicalMetadataPrespecializationCachingOnceToken() const {
if (!this->hasCanonicalMetadataPrespecializations()) {
return nullptr;
}
auto box = this->template getTrailingObjects<MetadataCachingOnceToken>();
return box->token.get();
}
/// Retrieve the set of protocols that are inverted by this type's
/// primary definition.
///
/// This type might still conditionally conform to any of the protocols
/// that are inverted here, but that information is recorded in the
/// conditional inverted protocols of the corresponding `GenericContext`.
const InvertibleProtocolSet &
getInvertedProtocols() const {
assert(this->hasInvertibleProtocols());
return
*this->template getTrailingObjects<InvertibleProtocolSet>();
}
size_t numTrailingObjects(OverloadToken<InvertibleProtocolSet>) const {
return this->hasInvertibleProtocols() ? 1 : 0;
}
static bool classof(const TargetContextDescriptor<Runtime> *cd) {
return cd->getKind() == ContextDescriptorKind::Enum;
}
#ifndef NDEBUG
[[deprecated("Only meant for use in the debugger")]] void dump() const;
#endif
};
using EnumDescriptor = TargetEnumDescriptor<InProcess>;
template<typename Runtime>
inline const TargetGenericContext<Runtime> *
TargetContextDescriptor<Runtime>::getGenericContext() const {
if (!isGeneric())
return nullptr;
switch (getKind()) {
case ContextDescriptorKind::Module:
// Never generic.
return nullptr;
case ContextDescriptorKind::Extension:
return llvm::cast<TargetExtensionContextDescriptor<Runtime>>(this)
->getGenericContext();
case ContextDescriptorKind::Anonymous:
return llvm::cast<TargetAnonymousContextDescriptor<Runtime>>(this)
->getGenericContext();
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getGenericContext();
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getGenericContext();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getGenericContext();
case ContextDescriptorKind::OpaqueType:
return llvm::cast<TargetOpaqueTypeDescriptor<Runtime>>(this)
->getGenericContext();
default:
// We don't know about this kind of descriptor.
return nullptr;
}
}
template<typename Runtime>
inline const InvertibleProtocolSet *
TargetContextDescriptor<Runtime>::getInvertedProtocols() const {
if (!this->hasInvertibleProtocols())
return nullptr;
switch (getKind()) {
case ContextDescriptorKind::Class:
return &llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getInvertedProtocols();
case ContextDescriptorKind::Enum:
return &llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getInvertedProtocols();
case ContextDescriptorKind::Struct:
return &llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getInvertedProtocols();
case ContextDescriptorKind::OpaqueType:
return &llvm::cast<TargetOpaqueTypeDescriptor<Runtime>>(this)
->getInvertedProtocols();
default:
// We don't know about this kind of descriptor.
return nullptr;
}
}
template <typename Runtime>
int32_t TargetTypeContextDescriptor<Runtime>::getGenericArgumentOffset() const {
switch (this->getKind()) {
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getGenericArgumentOffset();
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getGenericArgumentOffset();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getGenericArgumentOffset();
default:
swift_unreachable("Not a type context descriptor.");
}
}
template <typename Runtime>
const TargetTypeGenericContextDescriptorHeader<Runtime> &
TargetTypeContextDescriptor<Runtime>::getFullGenericContextHeader() const {
switch (this->getKind()) {
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getFullGenericContextHeader();
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getFullGenericContextHeader();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getFullGenericContextHeader();
default:
swift_unreachable("Not a type context descriptor.");
}
}
template <typename Runtime>
llvm::ArrayRef<GenericParamDescriptor>
TargetTypeContextDescriptor<Runtime>::getGenericParams() const {
switch (this->getKind()) {
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)->getGenericParams();
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)->getGenericParams();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)->getGenericParams();
case ContextDescriptorKind::OpaqueType:
return llvm::cast<TargetOpaqueTypeDescriptor<Runtime>>(this)->getGenericParams();
default:
swift_unreachable("Not a type context descriptor.");
}
}
template <typename Runtime>
const TargetForeignMetadataInitialization<Runtime> &
TargetTypeContextDescriptor<Runtime>::getForeignMetadataInitialization() const {
switch (this->getKind()) {
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getForeignMetadataInitialization();
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getForeignMetadataInitialization();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getForeignMetadataInitialization();
default:
swift_unreachable("Not a type context descriptor.");
}
}
template<typename Runtime>
inline const TargetSingletonMetadataInitialization<Runtime> &
TargetTypeContextDescriptor<Runtime>::getSingletonMetadataInitialization() const {
switch (this->getKind()) {
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getSingletonMetadataInitialization();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getSingletonMetadataInitialization();
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getSingletonMetadataInitialization();
default:
swift_unreachable("Not a enum, struct or class type descriptor.");
}
}
template<typename Runtime>
inline const llvm::ArrayRef<TargetRelativeDirectPointer<Runtime, TargetMetadata<Runtime>, /*Nullable*/ false>>
TargetTypeContextDescriptor<Runtime>::getCanonicalMetadataPrespecializations() const {
switch (this->getKind()) {
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getCanonicalMetadataPrespecializations();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getCanonicalMetadataPrespecializations();
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getCanonicalMetadataPrespecializations();
default:
swift_unreachable("Not a type context descriptor.");
}
}
template <typename Runtime>
inline swift_once_t *TargetTypeContextDescriptor<
Runtime>::getCanonicalMetadataPrespecializationCachingOnceToken() const {
switch (this->getKind()) {
case ContextDescriptorKind::Enum:
return llvm::cast<TargetEnumDescriptor<Runtime>>(this)
->getCanonicalMetadataPrespecializationCachingOnceToken();
case ContextDescriptorKind::Struct:
return llvm::cast<TargetStructDescriptor<Runtime>>(this)
->getCanonicalMetadataPrespecializationCachingOnceToken();
case ContextDescriptorKind::Class:
return llvm::cast<TargetClassDescriptor<Runtime>>(this)
->getCanonicalMetadataPrespecializationCachingOnceToken();
default:
swift_unreachable("Not a type context descriptor.");
}
}
/// An entry in the chain of dynamic replacement functions.
struct DynamicReplacementChainEntry {
void *implementationFunction;
DynamicReplacementChainEntry *next;
};
/// A record describing the root of dynamic replacements for a function.
struct DynamicReplacementKey {
RelativeDirectPointer<DynamicReplacementChainEntry, false> root;
uint32_t flags;
uint16_t getExtraDiscriminator() const {
return flags & 0x0000FFFF;
}
bool isAsync() const {
return ((flags >> 16 ) & 0x1);
}
};
/// A record describing a dynamic function replacement.
class DynamicReplacementDescriptor {
RelativeIndirectablePointer<
const DynamicReplacementKey, false, int32_t,
TargetSignedPointer<InProcess,
DynamicReplacementKey *
__ptrauth_swift_dynamic_replacement_key>>
replacedFunctionKey;
union {
TargetCompactFunctionPointer<InProcess, void, false> replacementFunction;
TargetRelativeDirectPointer<InProcess, void, false> replacementAsyncFunction;
};
RelativeDirectPointer<DynamicReplacementChainEntry, false> chainEntry;
uint32_t flags;
enum : uint32_t { EnableChainingMask = 0x1 };
void *getReplacementFunction() const {
if (replacedFunctionKey->isAsync()) {
return replacementAsyncFunction.get();
} else {
return replacementFunction.get();
}
}
public:
/// Enable this replacement by changing the function's replacement chain's
/// root entry.
/// This replacement must be done while holding a global lock that guards this
/// function's chain. Currently this is done by holding the
/// \p DynamicReplacementLock.
void enableReplacement() const;
/// Disable this replacement by changing the function's replacement chain's
/// root entry.
/// This replacement must be done while holding a global lock that guards this
/// function's chain. Currently this is done by holding the
/// \p DynamicReplacementLock.
void disableReplacement() const;
uint32_t getFlags() const { return flags; }
bool shouldChain() const { return (flags & EnableChainingMask); }
};
/// A collection of dynamic replacement records.
class DynamicReplacementScope
: private swift::ABI::TrailingObjects<DynamicReplacementScope,
DynamicReplacementDescriptor> {
uint32_t flags;
uint32_t numReplacements;
using TrailingObjects =
swift::ABI::TrailingObjects<DynamicReplacementScope,
DynamicReplacementDescriptor>;
friend TrailingObjects;
llvm::ArrayRef<DynamicReplacementDescriptor>
getReplacementDescriptors() const {
return {this->template getTrailingObjects<DynamicReplacementDescriptor>(),
numReplacements};
}
public:
void enable() const {
for (auto &descriptor : getReplacementDescriptors()) {
descriptor.enableReplacement();
}
}
void disable() const {
for (auto &descriptor : getReplacementDescriptors()) {
descriptor.disableReplacement();
}
}
uint32_t getFlags() { return flags; }
};
/// An "accessible" function that can be looked up based on a string key,
/// and then called through a fully-abstracted entry point whose arguments
/// can be constructed in code.
template <typename Runtime>
struct TargetAccessibleFunctionRecord {
public:
/// The name of the function, which is a unique string assigned to the
/// function so it can be looked up later.
RelativeDirectPointer<const char, /*nullable*/ false> Name;
/// The generic environment associated with this accessor function.
RelativeDirectPointer<GenericEnvironmentDescriptor, /*nullable*/ true>
GenericEnvironment;
/// The Swift function type, encoded as a mangled name.
RelativeDirectPointer<const char, /*nullable*/ false> FunctionType;
/// The fully-abstracted function to call.
///
/// Could be a sync or async function pointer depending on flags.
RelativeDirectPointer<void *, /*nullable*/ false> Function;
/// Flags providing more information about the function.
AccessibleFunctionFlags Flags;
};
using AccessibleFunctionRecord = TargetAccessibleFunctionRecord<InProcess>;
enum class PackLifetime : uint8_t {
OnStack = 0,
OnHeap = 1
};
/// A pointer to a metadata or witness table pack. If the LSB is set,
/// the pack is allocated on the heap; otherwise, it is allocated on
/// the stack.
template<typename Runtime, template <typename> class Pointee>
class TargetPackPointer {
typename Runtime::StoredSize Ptr;
using PointerType = typename Runtime::template Pointer<const Pointee<Runtime>>;
public:
explicit TargetPackPointer() : Ptr(0) {}
explicit TargetPackPointer(typename Runtime::StoredSize rawPtr) : Ptr(rawPtr) {}
explicit TargetPackPointer(const void *rawPtr)
: Ptr(reinterpret_cast<typename Runtime::StoredSize>(rawPtr)) {}
explicit TargetPackPointer(PointerType const *ptr, PackLifetime lifetime)
: Ptr(reinterpret_cast<typename Runtime::StoredSize>(ptr) |
(lifetime == PackLifetime::OnHeap ? 1 : 0)) {}
explicit operator bool() const {
return Ptr != 0;
}
// Strips off the LSB.
const PointerType *getElements() const {
return reinterpret_cast<const PointerType *>(Ptr & ~1);
}
// Strips off the LSB.
PointerType *getElements() {
return reinterpret_cast<PointerType *>(Ptr & ~1);
}
// Leaves the LSB.
const PointerType *getPointer() const {
return reinterpret_cast<const PointerType *>(Ptr);
}
PackLifetime getLifetime() const {
return (bool)(Ptr & 1) ? PackLifetime::OnHeap : PackLifetime::OnStack;
}
// Get the number of elements in the pack, only valid for on-heap packs.
size_t getNumElements() const {
if (getLifetime() == PackLifetime::OnHeap)
return *(reinterpret_cast<const size_t *>(Ptr & ~1) - 1);
fatalError(0, "Cannot get length of on-stack pack");
}
};
/// A pointer to a metadata pack.
template<typename Runtime>
using TargetMetadataPackPointer = TargetPackPointer<Runtime, TargetMetadata>;
using MetadataPackPointer = TargetMetadataPackPointer<InProcess>;
/// A pointer to a witness table pack.
template<typename Runtime>
using TargetWitnessTablePackPointer = TargetPackPointer<Runtime, TargetWitnessTable>;
using WitnessTablePackPointer = TargetWitnessTablePackPointer<InProcess>;
} // end namespace swift
#pragma clang diagnostic pop
#endif // SWIFT_ABI_METADATA_H