Files
swift-mirror/stdlib/public/runtime/ProtocolConformance.cpp
Doug Gregor b84f8ab080 Rename "suppressible protocols" to "invertible protocols".
We've decided to use the "invertible protocols" terminology throughout
the runtime and compiler, so move over to that terminology
consistently.
2024-03-29 11:31:48 -07:00

1948 lines
74 KiB
C++

//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringExtras.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Bincompat.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Basic/Unreachable.h"
#include "llvm/ADT/DenseMap.h"
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include "Tracing.h"
#include <new>
#include <vector>
#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#define DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION 1u
// Redeclare these functions as weak so we can build against a macOS 12 SDK and
// still test on macOS 11.
LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance(const void *protocolDescriptor,
const void *metadataType,
const void *typeDescriptor);
LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance(const void *protocol,
const char *foreignTypeIdentityStart,
size_t foreignTypeIdentityLength);
LLVM_ATTRIBUTE_WEAK
uint32_t _dyld_swift_optimizations_version(void);
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
// Redeclare these functions as weak as well.
LLVM_ATTRIBUTE_WEAK bool _dyld_has_preoptimized_swift_protocol_conformances(
const struct mach_header *mh);
LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance_on_disk(const void *protocolDescriptor,
const void *metadataType,
const void *typeDescriptor,
uint32_t flags);
LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance_on_disk(
const void *protocol, const char *foreignTypeIdentityStart,
size_t foreignTypeIdentityLength, uint32_t flags);
#endif // DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
#endif // __has_include(<mach-o/dyld_priv.h>)
// Set this to 1 to enable logging of calls to the dyld shared cache conformance
// table
#if 0
#define DYLD_CONFORMANCES_LOG(fmt, ...) \
fprintf(stderr, "PROTOCOL CONFORMANCE: " fmt "\n", __VA_ARGS__)
#define SHARED_CACHE_LOG_ENABLED 1
#else
#define DYLD_CONFORMANCES_LOG(fmt, ...) (void)0
#endif
// Enable dyld shared cache acceleration only when it's available and we have
// ObjC interop.
#if DYLD_FIND_PROTOCOL_CONFORMANCE_DEFINED && SWIFT_OBJC_INTEROP
#define USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES 1
#endif
using namespace swift;
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolDescriptor::dump() const {
printf("TargetProtocolDescriptor.\n"
"Name: \"%s\".\n",
Name.get());
}
void ProtocolDescriptorFlags::dump() const {
printf("ProtocolDescriptorFlags.\n");
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
printf("Needs Witness Table: %s.\n",
(needsWitnessTable() ? "true" : "false"));
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
printf("Special Protocol: %s.\n",
(bool(getSpecialProtocol()) ? "Error" : "None"));
printf("Class Constraint: %s.\n",
(bool(getClassConstraint()) ? "Class" : "Any"));
printf("Dispatch Strategy: %s.\n",
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
}
#endif
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
static const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
template<> void ProtocolConformanceDescriptor::dump() const {
std::optional<SymbolInfo> info;
auto symbolName = [&](const void *addr) -> const char * {
info = SymbolInfo::lookup(addr);
if (info.has_value() && info->getSymbolName()) {
return info->getSymbolName();
}
return "<unknown addr>";
};
switch (auto kind = getTypeKind()) {
case TypeReferenceKind::DirectObjCClassName:
printf("direct Objective-C class name %s", getDirectObjCClassName());
break;
case TypeReferenceKind::IndirectObjCClass:
printf("indirect Objective-C class %s",
class_getName(*getIndirectObjCClass()));
break;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
printf("unique nominal type descriptor %s", symbolName(getTypeDescriptor()));
break;
}
printf(" => ");
printf("witness table pattern (%p) %s\n", getWitnessTablePattern(), symbolName(getWitnessTablePattern()));
}
#endif
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolConformanceDescriptor::verify() const {
auto typeKind = unsigned(getTypeKind());
assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
(unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
"Corrupted type metadata record kind");
}
#endif
#if SWIFT_OBJC_INTEROP
template <>
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
switch (kind) {
case TypeReferenceKind::IndirectObjCClass:
return *getIndirectObjCClass(kind);
case TypeReferenceKind::DirectObjCClassName:
return reinterpret_cast<const ClassMetadata *>(
objc_lookUpClass(getDirectObjCClassName(kind)));
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
return nullptr;
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
#endif
static MetadataState
tryGetCompleteMetadataNonblocking(const Metadata *metadata) {
return swift_checkMetadataState(
MetadataRequest(MetadataState::Complete, /*isNonBlocking*/ true),
metadata)
.State;
}
/// Get the superclass of metadata, which may be incomplete. When the metadata
/// is not sufficiently complete, then we fall back to demangling the superclass
/// in the nominal type descriptor, which is slow but works. Return {NULL,
/// MetadataState::Complete} if the metadata is not a class, or has no
/// superclass.
///
/// If the metadata's current state is known, it may be passed in as
/// knownMetadataState. This saves the cost of retrieving that info separately.
///
/// When instantiateSuperclassMetadata is true, this function will instantiate
/// superclass metadata when necessary. When false, this will return {NULL,
/// MetadataState::Abstract} to indicate that there's an uninstantiated
/// superclass that was not returned.
static MetadataResponse getSuperclassForMaybeIncompleteMetadata(
const Metadata *metadata, std::optional<MetadataState> knownMetadataState,
bool instantiateSuperclassMetadata) {
const ClassMetadata *classMetadata = dyn_cast<ClassMetadata>(metadata);
if (!classMetadata)
return {_swift_class_getSuperclass(metadata), MetadataState::Complete};
#if SWIFT_OBJC_INTEROP
// Artificial subclasses are not valid type metadata and
// tryGetCompleteMetadataNonblocking will crash on them. However, they're
// always fully set up, so we can just skip it and fetch the Subclass field.
if (classMetadata->isTypeMetadata() && classMetadata->isArtificialSubclass())
return {classMetadata->Superclass, MetadataState::Complete};
// Pure ObjC classes are already set up, and the code below will not be
// happy with them.
if (!classMetadata->isTypeMetadata())
return {classMetadata->Superclass, MetadataState::Complete};
#endif
MetadataState metadataState;
if (knownMetadataState)
metadataState = *knownMetadataState;
else
metadataState = tryGetCompleteMetadataNonblocking(classMetadata);
if (metadataState == MetadataState::Complete) {
// The subclass metadata is complete. Fetch and return the superclass.
auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
return {superMetadata, MetadataState::Complete};
} else if (metadataState == MetadataState::NonTransitiveComplete) {
// The subclass metadata is complete, but, unlike above, not transitively.
// Its Superclass field is valid, so just read that field to get to the
// superclass to proceed to the next step.
auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
auto superState = tryGetCompleteMetadataNonblocking(superMetadata);
return {superMetadata, superState};
} else if (instantiateSuperclassMetadata) {
// The subclass metadata is either LayoutComplete or Abstract, so the
// Superclass field is not valid. To get to the superclass, make the
// expensive call to getSuperclassMetadata which demangles the superclass
// name from the nominal type descriptor to get the metadata for the
// superclass.
MetadataRequest request(MetadataState::Abstract,
/*non-blocking*/ true);
return getSuperclassMetadata(request, classMetadata);
} else {
// The Superclass field is not valid and the caller did not request
// instantiation. Return a NULL superclass and Abstract to indicate that a
// superclass exists but is not yet instantiated.
return {nullptr, MetadataState::Abstract};
}
}
struct MaybeIncompleteSuperclassIterator {
const Metadata *metadata;
std::optional<MetadataState> state;
bool instantiateSuperclassMetadata;
MaybeIncompleteSuperclassIterator(const Metadata *metadata,
bool instantiateSuperclassMetadata)
: metadata(metadata), state(std::nullopt),
instantiateSuperclassMetadata(instantiateSuperclassMetadata) {}
MaybeIncompleteSuperclassIterator &operator++() {
auto response = getSuperclassForMaybeIncompleteMetadata(
metadata, state, instantiateSuperclassMetadata);
metadata = response.Value;
state = response.State;
return *this;
}
const Metadata *operator*() const { return metadata; }
bool operator!=(const MaybeIncompleteSuperclassIterator rhs) const {
return metadata != rhs.metadata;
}
};
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template <>
const Metadata *
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
switch (getTypeKind()) {
case TypeReferenceKind::IndirectObjCClass:
case TypeReferenceKind::DirectObjCClassName:
#if SWIFT_OBJC_INTEROP
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto cls = TypeRef.getObjCClass(getTypeKind()))
return getMetadataForClass(cls);
#endif
return nullptr;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor: {
if (auto anyType = getTypeDescriptor()) {
if (auto type = dyn_cast<TypeContextDescriptor>(anyType)) {
if (!type->isGeneric()) {
if (auto accessFn = type->getAccessFunction())
return accessFn(MetadataState::Abstract).Value;
}
} else if (auto protocol = dyn_cast<ProtocolDescriptor>(anyType)) {
return _getSimpleProtocolTypeMetadata(protocol);
}
}
return nullptr;
}
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
template<>
const WitnessTable *
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
// If needed, check the conditional requirements.
llvm::SmallVector<const void *, 8> conditionalArgs;
llvm::ArrayRef<GenericParamDescriptor> genericParams;
if (auto typeDescriptor = type->getTypeContextDescriptor())
genericParams = typeDescriptor->getGenericParams();
if (hasConditionalRequirements() || !genericParams.empty()) {
SubstGenericParametersFromMetadata substitutions(type);
auto error = _checkGenericRequirements(
genericParams, getConditionalRequirements(), conditionalArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](unsigned ordinal) {
return substitutions.getMetadataOrdinal(ordinal).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (error)
return nullptr;
}
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
return (const WitnessTable *)
swift_getWitnessTableRelative(this, type, conditionalArgs.data());
#else
return swift_getWitnessTable(this, type, conditionalArgs.data());
#endif
}
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
ConformanceSection(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end)
: Begin(begin), End(end) {}
ConformanceSection(const void *ptr, uintptr_t size) {
auto bytes = reinterpret_cast<const char *>(ptr);
Begin = reinterpret_cast<const ProtocolConformanceRecord *>(ptr);
End = reinterpret_cast<const ProtocolConformanceRecord *>(bytes + size);
}
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
const Metadata *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const Metadata *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {
assert(type);
}
friend llvm::hash_code hash_value(const ConformanceCacheKey &key) {
return llvm::hash_combine(key.Type, key.Proto);
}
};
struct ConformanceCacheEntry {
private:
ConformanceCacheKey Key;
const WitnessTable *Witness;
public:
ConformanceCacheEntry(ConformanceCacheKey key, const WitnessTable *witness)
: Key(key), Witness(witness) {}
bool matchesKey(const ConformanceCacheKey &key) const {
return Key.Type == key.Type && Key.Proto == key.Proto;
}
friend llvm::hash_code hash_value(const ConformanceCacheEntry &entry) {
return hash_value(entry.Key);
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
/// Get the cached witness table, or null if we cached failure.
const WitnessTable *getWitnessTable() const {
return Witness;
}
};
} // end anonymous namespace
// Conformance Cache.
struct ConformanceState {
ConcurrentReadableHashMap<ConformanceCacheEntry> Cache;
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
bool scanSectionsBackwards;
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
uintptr_t dyldSharedCacheStart;
uintptr_t dyldSharedCacheEnd;
bool hasOverriddenImage;
bool validateDyldResults;
// Only populated when validateDyldResults is enabled.
ConcurrentReadableArray<ConformanceSection> DyldOptimizedSections;
bool inSharedCache(const void *ptr) {
auto uintPtr = reinterpret_cast<uintptr_t>(ptr);
return dyldSharedCacheStart <= uintPtr && uintPtr < dyldSharedCacheEnd;
}
bool dyldOptimizationsActive() { return dyldSharedCacheStart != 0; }
#else
bool dyldOptimizationsActive() { return false; }
#endif
ConformanceState() {
scanSectionsBackwards =
runtime::bincompat::useLegacyProtocolConformanceReverseIteration();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (__builtin_available(macOS 12.0, iOS 15.0, tvOS 15.0, watchOS 8.0, *)) {
if (runtime::environment::SWIFT_DEBUG_ENABLE_SHARED_CACHE_PROTOCOL_CONFORMANCES()) {
if (&_dyld_swift_optimizations_version) {
if (_dyld_swift_optimizations_version() ==
DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION) {
size_t length;
dyldSharedCacheStart =
(uintptr_t)_dyld_get_shared_cache_range(&length);
dyldSharedCacheEnd =
dyldSharedCacheStart ? dyldSharedCacheStart + length : 0;
validateDyldResults = runtime::environment::
SWIFT_DEBUG_VALIDATE_SHARED_CACHE_PROTOCOL_CONFORMANCES();
DYLD_CONFORMANCES_LOG("Shared cache range is %#lx-%#lx",
dyldSharedCacheStart, dyldSharedCacheEnd);
} else {
DYLD_CONFORMANCES_LOG("Disabling dyld protocol conformance "
"optimizations due to unknown "
"optimizations version %u",
_dyld_swift_optimizations_version());
dyldSharedCacheStart = 0;
dyldSharedCacheEnd = 0;
}
}
}
}
#endif
// This must run last, as it triggers callbacks that require
// ConformanceState to be set up.
initializeProtocolConformanceLookup();
}
void cacheResult(const Metadata *type, const ProtocolDescriptor *proto,
const WitnessTable *witness, size_t sectionsCount) {
Cache.getOrInsert(ConformanceCacheKey(type, proto),
[&](ConformanceCacheEntry *entry, bool created) {
// Create the entry if needed. If it already exists,
// we're done.
if (!created)
return false;
// Check the current sections count against what was
// passed in. If a section count was passed in and they
// don't match, then this is not an authoritative entry
// and it may have been obsoleted, because the new
// sections could contain a conformance in a more
// specific type.
//
// If they DO match, then we can safely add. Another
// thread might be adding new sections at this point,
// but we will not race with them. That other thread
// will add the new sections, then clear the cache. When
// it clears the cache, it will block waiting for this
// code to complete and relinquish Cache's writer lock.
// If we cache a stale entry, it will be immediately
// cleared.
if (sectionsCount > 0 &&
SectionsToScan.snapshot().count() != sectionsCount)
return false; // abandon the new entry
::new (entry) ConformanceCacheEntry(
ConformanceCacheKey(type, proto), witness);
return true; // keep the new entry
});
}
#ifndef NDEBUG
void verify() const SWIFT_USED;
#endif
};
#ifndef NDEBUG
void ConformanceState::verify() const {
// Iterate over all of the sections and verify all of the protocol
// descriptors.
auto &Self = const_cast<ConformanceState &>(*this);
for (const auto &Section : Self.SectionsToScan.snapshot()) {
for (const auto &Record : Section) {
Record.get()->verify();
}
}
}
#endif
static Lazy<ConformanceState> Conformances;
const void * const swift::_swift_debug_protocolConformanceStatePointer =
&Conformances;
static void _registerProtocolConformances(ConformanceState &C,
ConformanceSection section) {
C.SectionsToScan.push_back(section);
// Blow away the conformances cache to get rid of any negative entries that
// may now be obsolete.
C.Cache.clear();
}
void swift::addImageProtocolConformanceBlockCallbackUnsafe(
const void *baseAddress,
const void *conformances, uintptr_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
"conformances section not a multiple of ProtocolConformanceRecord");
// Conformance cache should always be sufficiently initialized by this point.
auto &C = Conformances.unsafeGetAlreadyInitialized();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
// If any image in the shared cache is overridden, we need to scan all
// conformance sections in the shared cache. The pre-built table does NOT work
// if the protocol, type, or descriptor are in overridden images. Example:
//
// libX.dylib: struct S {}
// libY.dylib: protocol P {}
// libZ.dylib: extension S: P {}
//
// If libX or libY are overridden, then dyld will not return the S: P
// conformance from libZ. But that conformance still exists and we must still
// return it! Therefore we must scan libZ (and all other dylibs) even though
// it is not overridden.
if (!dyld_shared_cache_some_image_overridden()) {
// Sections in the shared cache are ignored in favor of the shared cache's
// pre-built tables.
if (C.inSharedCache(conformances)) {
DYLD_CONFORMANCES_LOG(
"Skipping conformances section %p in the shared cache", conformances);
if (C.validateDyldResults)
C.DyldOptimizedSections.push_back(
ConformanceSection{conformances, conformancesSize});
return;
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
} else if (&_dyld_has_preoptimized_swift_protocol_conformances &&
_dyld_has_preoptimized_swift_protocol_conformances(
reinterpret_cast<const mach_header *>(baseAddress))) {
// dyld may optimize images outside the shared cache. Skip those too.
DYLD_CONFORMANCES_LOG(
"Skipping conformances section %p optimized by dyld", conformances);
if (C.validateDyldResults)
C.DyldOptimizedSections.push_back(
ConformanceSection{conformances, conformancesSize});
return;
#endif
} else {
DYLD_CONFORMANCES_LOG(
"Adding conformances section %p outside the shared cache",
conformances);
}
}
#endif
// If we have a section, enqueue the conformances for lookup.
_registerProtocolConformances(
C, ConformanceSection{conformances, conformancesSize});
}
void swift::addImageProtocolConformanceBlockCallback(
const void *baseAddress,
const void *conformances, uintptr_t conformancesSize) {
Conformances.get();
addImageProtocolConformanceBlockCallbackUnsafe(baseAddress,
conformances,
conformancesSize);
}
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, ConformanceSection{begin, end});
}
/// Search for a conformance descriptor in the ConformanceCache.
/// First element of the return value is `true` if the result is authoritative
/// i.e. the result is for the type itself and not a superclass. If `false`
/// then we cached a conformance on a superclass, but that may be overridden.
/// A return value of `{ false, nullptr }` indicates nothing was cached.
static std::pair<bool, const WitnessTable *>
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
auto &C = Conformances.get();
auto origType = type;
auto snapshot = C.Cache.snapshot();
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto type = superclassIterator.metadata; ++superclassIterator) {
if (auto *Value = snapshot.find(ConformanceCacheKey(type, protocol))) {
return {type == origType, Value->getWitnessTable()};
}
}
// We did not find a cache entry.
return {false, nullptr};
}
/// Get the appropriate context descriptor for a type. If the descriptor is a
/// foreign type descriptor, also return its identity string.
static std::pair<const ContextDescriptor *, llvm::StringRef>
getContextDescriptor(const Metadata *conformingType) {
const auto *description = conformingType->getTypeContextDescriptor();
if (description) {
if (description->hasForeignMetadataInitialization()) {
auto identity = ParsedTypeIdentity::parse(description).FullIdentity;
return {description, identity};
}
return {description, {}};
}
// Handle single-protocol existential types for self-conformance.
auto *existentialType = dyn_cast<ExistentialTypeMetadata>(conformingType);
if (existentialType == nullptr ||
existentialType->getProtocols().size() != 1 ||
existentialType->getSuperclassConstraint() != nullptr)
return {nullptr, {}};
auto proto = existentialType->getProtocols()[0];
#if SWIFT_OBJC_INTEROP
if (proto.isObjC())
return {nullptr, {}};
#endif
return {proto.getSwiftProtocol(), {}};
}
namespace {
/// Describes a protocol conformance "candidate" that can be checked
/// against a type metadata.
class ConformanceCandidate {
const void *candidate;
bool candidateIsMetadata;
public:
ConformanceCandidate() : candidate(0), candidateIsMetadata(false) { }
ConformanceCandidate(const ProtocolConformanceDescriptor &conformance)
: ConformanceCandidate()
{
if (auto description = conformance.getTypeDescriptor()) {
candidate = description;
candidateIsMetadata = false;
return;
}
if (auto metadata = conformance.getCanonicalTypeMetadata()) {
candidate = metadata;
candidateIsMetadata = true;
return;
}
}
/// Whether the conforming type exactly matches the conformance candidate.
bool matches(const Metadata *conformingType) const {
// Check whether the types match.
if (candidateIsMetadata && conformingType == candidate)
return true;
// Check whether the nominal type descriptors match.
if (!candidateIsMetadata) {
const auto *description = std::get<const ContextDescriptor *>(
getContextDescriptor(conformingType));
auto candidateDescription =
static_cast<const ContextDescriptor *>(candidate);
if (description && equalContexts(description, candidateDescription))
return true;
}
return false;
}
/// Retrieve the type that matches the conformance candidate, which may
/// be a superclass of the given type. Returns null if this type does not
/// match this conformance, along with the final metadata state of the
/// superclass iterator.
std::pair<const Metadata *, std::optional<MetadataState>>
getMatchingType(const Metadata *conformingType,
bool instantiateSuperclassMetadata) const {
MaybeIncompleteSuperclassIterator superclassIterator{
conformingType, instantiateSuperclassMetadata};
for (; auto conformingType = superclassIterator.metadata;
++superclassIterator) {
if (matches(conformingType))
return {conformingType, std::nullopt};
}
return {nullptr, superclassIterator.state};
}
};
}
static void validateDyldResults(
ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol,
const WitnessTable *dyldCachedWitnessTable,
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor,
bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (!C.dyldOptimizationsActive() || !C.validateDyldResults)
return;
llvm::SmallVector<const ProtocolConformanceDescriptor *, 8> conformances;
for (auto &section : C.DyldOptimizedSections.snapshot()) {
for (const auto &record : section) {
auto &descriptor = *record.get();
if (descriptor.getProtocol() != protocol)
continue;
ConformanceCandidate candidate(descriptor);
if (std::get<const Metadata *>(
candidate.getMatchingType(type, instantiateSuperclassMetadata)))
conformances.push_back(&descriptor);
}
}
auto conformancesString = [&]() -> std::string {
std::string result = "";
for (auto *conformance : conformances) {
if (!result.empty())
result += ", ";
result += "0x";
result += llvm::utohexstr(reinterpret_cast<uint64_t>(conformance));
}
return result;
};
if (dyldCachedConformanceDescriptor) {
if (std::find(conformances.begin(), conformances.end(),
dyldCachedConformanceDescriptor) == conformances.end()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld cached conformance "
"descriptor %p not found in conformance records: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, dyldCachedConformanceDescriptor,
conformancesString().c_str());
}
} else {
if (!conformances.empty()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld found no "
"conformance descriptor, but matching descriptors exist: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, conformancesString().c_str());
}
}
#endif
}
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
static _dyld_protocol_conformance_result getDyldSharedCacheConformance(
ConformanceState &C, const ProtocolDescriptor *protocol,
const ClassMetadata *objcClassMetadata,
const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
// Protocols that aren't in the shared cache will never be found in the shared
// cache conformances, skip the call.
if (!C.inSharedCache(protocol)) {
DYLD_CONFORMANCES_LOG(
"Skipping shared cache lookup, protocol %p is not in shared cache.",
protocol);
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
if (!foreignTypeIdentity.empty()) {
// Foreign types are non-unique so those can still be found in the shared
// cache even if the identity string is outside.
DYLD_CONFORMANCES_LOG(
"_dyld_find_foreign_type_protocol_conformance(%p, %.*s, %zu)", protocol,
(int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
foreignTypeIdentity.size());
return _dyld_find_foreign_type_protocol_conformance(
protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size());
} else {
// If both the ObjC class metadata and description are outside the shared
// cache, then we'll never find a shared cache conformance, skip the call.
// We can still find a shared cache conformance if one is inside and one is
// outside.
if (!C.inSharedCache(objcClassMetadata) && !C.inSharedCache(description)) {
DYLD_CONFORMANCES_LOG("Skipping shared cache lookup, class %p and "
"description %p are not in shared cache.",
objcClassMetadata, description);
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
DYLD_CONFORMANCES_LOG("_dyld_find_protocol_conformance(%p, %p, %p)",
protocol, objcClassMetadata, description);
return _dyld_find_protocol_conformance(protocol, objcClassMetadata,
description);
}
}
static _dyld_protocol_conformance_result getDyldOnDiskConformance(
ConformanceState &C, const ProtocolDescriptor *protocol,
const ClassMetadata *objcClassMetadata,
const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
if (&_dyld_find_foreign_type_protocol_conformance_on_disk &&
&_dyld_find_protocol_conformance_on_disk) {
if (!foreignTypeIdentity.empty()) {
DYLD_CONFORMANCES_LOG(
"_dyld_find_foreign_type_protocol_conformance_on_disk(%"
"p, %.*s, %zu, 0)",
protocol, (int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
foreignTypeIdentity.size());
return _dyld_find_foreign_type_protocol_conformance_on_disk(
protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size(), 0);
} else {
DYLD_CONFORMANCES_LOG(
"_dyld_find_protocol_conformance_on_disk(%p, %p, %p, 0)", protocol,
objcClassMetadata, description);
return _dyld_find_protocol_conformance_on_disk(
protocol, objcClassMetadata, description, 0);
}
}
#endif
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
#endif
/// Query dyld for a protocol conformance, if supported. The return
/// value is a tuple consisting of the found witness table (if any), the found
/// conformance descriptor (if any), and a bool that's true if a failure is
/// definitive.
static std::tuple<const WitnessTable *, const ProtocolConformanceDescriptor *,
bool>
findConformanceWithDyld(ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
const ContextDescriptor *description;
llvm::StringRef foreignTypeIdentity;
std::tie(description, foreignTypeIdentity) = getContextDescriptor(type);
// dyld expects the ObjC class, if any, as the second parameter.
auto objcClassMetadata = swift_getObjCClassFromMetadataConditional(type);
#if SHARED_CACHE_LOG_ENABLED
auto typeName = swift_getTypeName(type, true);
DYLD_CONFORMANCES_LOG("Looking up conformance of %.*s (type=%p, "
"objcClassMetadata=%p, description=%p) to %s (%p)",
(int)typeName.length, typeName.data, type,
objcClassMetadata, description, protocol->Name.get(),
protocol);
#endif
_dyld_protocol_conformance_result dyldResult;
if (C.scanSectionsBackwards) {
// Search "on disk" first, then shared cache.
dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
description, foreignTypeIdentity);
if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
dyldResult = getDyldSharedCacheConformance(
C, protocol, objcClassMetadata, description, foreignTypeIdentity);
} else {
// In normal operation, search the shared cache first.
dyldResult = getDyldSharedCacheConformance(
C, protocol, objcClassMetadata, description, foreignTypeIdentity);
if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
description, foreignTypeIdentity);
}
switch (dyldResult.kind) {
case _dyld_protocol_conformance_result_kind_found_descriptor: {
auto *conformanceDescriptor =
reinterpret_cast<const ProtocolConformanceDescriptor *>(
dyldResult.value);
assert(conformanceDescriptor->getProtocol() == protocol);
assert(std::get<const Metadata *>(
ConformanceCandidate{*conformanceDescriptor}.getMatchingType(
type, instantiateSuperclassMetadata)));
if (conformanceDescriptor->getGenericWitnessTable()) {
DYLD_CONFORMANCES_LOG(
"DYLD found generic conformance descriptor %p for %s, continuing",
conformanceDescriptor, protocol->Name.get());
return std::make_tuple(nullptr, conformanceDescriptor, false);
} else {
// When there are no generics, we can retrieve the witness table cheaply,
// so do it up front.
DYLD_CONFORMANCES_LOG("DYLD Found conformance descriptor %p for %s",
conformanceDescriptor, protocol->Name.get());
auto *witnessTable = conformanceDescriptor->getWitnessTable(type);
return std::make_tuple(witnessTable, conformanceDescriptor, false);
}
break;
}
case _dyld_protocol_conformance_result_kind_found_witness_table:
// If we found a witness table then we're done.
DYLD_CONFORMANCES_LOG("DYLD found witness table %p for conformance to %s",
dyldResult.value, protocol->Name.get());
return std::make_tuple(reinterpret_cast<const WitnessTable *>(dyldResult.value), nullptr,
false);
case _dyld_protocol_conformance_result_kind_not_found:
// If nothing is found, then we'll proceed with checking the runtime's
// caches and scanning conformance records.
DYLD_CONFORMANCES_LOG("DYLD did not find conformance to %s",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, false);
break;
case _dyld_protocol_conformance_result_kind_definitive_failure:
// This type is known not to conform to this protocol. Return failure
// without any further checks.
DYLD_CONFORMANCES_LOG("DYLD found definitive failure for %s",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, true);
default:
// Other values may be added. Consider them equivalent to not_found until
// we implement code to handle them.
DYLD_CONFORMANCES_LOG(
"Unknown result kind %lu from _dyld_find_protocol_conformance()",
(unsigned long)dyldResult.kind);
return std::make_tuple(nullptr, nullptr, false);
}
#else
return std::make_tuple(nullptr, nullptr, false);
#endif
}
/// Check if a type conforms to a protocol, possibly instantiating superclasses
/// that have not yet been instantiated. The return value is a pair consisting
/// of the witness table for the conformance (or NULL if no conformance was
/// found), and a boolean indicating whether there are uninstantiated
/// superclasses that were not searched.
static std::pair<const WitnessTable *, bool>
swift_conformsToProtocolMaybeInstantiateSuperclasses(
const Metadata *const type, const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
auto &C = Conformances.get();
const WitnessTable *dyldCachedWitnessTable = nullptr;
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor =
nullptr;
// Track whether we have uninstantiated superclasses. Each time we iterate
// over our superclasses, we check the final state to see if there are more
// superclasses we haven't instantiated by calling noteFinalMetadataState.
// If we ever see Abstract, that means there are more superclasses we can't
// check yet, and we might get a false negative. We have to do this after each
// iteration (really, just the first iteration, but it's hard to keep track of
// which iteration is the first time), because another thread might
// instantiate the superclass while we're in the middle of searching. If we
// only look at the state after the last iteration, we might have hit a false
// negative before that no longer shows up.
bool hasUninstantiatedSuperclass = false;
auto noteFinalMetadataState = [&](std::optional<MetadataState> state) {
hasUninstantiatedSuperclass =
hasUninstantiatedSuperclass || state == MetadataState::Abstract;
};
// Search the shared cache tables for a conformance for this type, and for
// superclasses (if it's a class).
if (C.dyldOptimizationsActive()) {
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto dyldSearchType = superclassIterator.metadata;
++superclassIterator) {
bool definitiveFailure;
std::tie(dyldCachedWitnessTable, dyldCachedConformanceDescriptor,
definitiveFailure) =
findConformanceWithDyld(C, dyldSearchType, protocol,
instantiateSuperclassMetadata);
if (definitiveFailure)
return {nullptr, false};
if (dyldCachedWitnessTable || dyldCachedConformanceDescriptor)
break;
}
noteFinalMetadataState(superclassIterator.state);
validateDyldResults(C, type, protocol, dyldCachedWitnessTable,
dyldCachedConformanceDescriptor,
instantiateSuperclassMetadata);
// Return a cached result if we got a witness table. We can't do this if
// scanSectionsBackwards is set, since a scanned conformance can override a
// cached result in that case.
if (!C.scanSectionsBackwards)
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
// See if we have an authoritative cached conformance. The
// ConcurrentReadableHashMap data structure allows us to search the map
// concurrently without locking.
auto found =
searchInConformanceCache(type, protocol, instantiateSuperclassMetadata);
if (found.first) {
// An authoritative negative result can be overridden by a result from dyld.
if (!found.second) {
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
return {found.second, false};
}
if (dyldCachedConformanceDescriptor) {
ConformanceCandidate candidate(*dyldCachedConformanceDescriptor);
auto *matchingType = std::get<const Metadata *>(
candidate.getMatchingType(type, instantiateSuperclassMetadata));
assert(matchingType);
auto witness = dyldCachedConformanceDescriptor->getWitnessTable(matchingType);
C.cacheResult(type, protocol, witness, /*always cache*/ 0);
DYLD_CONFORMANCES_LOG("Caching generic conformance to %s found by DYLD",
protocol->Name.get());
return {witness, false};
}
// Scan conformance records.
llvm::SmallDenseMap<const Metadata *, const WitnessTable *> foundWitnesses;
auto processSection = [&](const ConformanceSection &section) {
// Eagerly pull records for nondependent witnesses into our cache.
auto processDescriptor = [&](const ProtocolConformanceDescriptor &descriptor) {
// We only care about conformances for this protocol.
if (descriptor.getProtocol() != protocol)
return;
// If there's a matching type, record the positive result and return it.
// The matching type is exact, so they can't go stale, and we should
// always cache them.
ConformanceCandidate candidate(descriptor);
const Metadata *matchingType;
std::optional<MetadataState> finalState;
std::tie(matchingType, finalState) =
candidate.getMatchingType(type, instantiateSuperclassMetadata);
noteFinalMetadataState(finalState);
if (matchingType) {
auto witness = descriptor.getWitnessTable(matchingType);
C.cacheResult(matchingType, protocol, witness, /*always cache*/ 0);
foundWitnesses.insert({matchingType, witness});
}
};
if (C.scanSectionsBackwards) {
for (const auto &record : llvm::reverse(section))
processDescriptor(*record.get());
} else {
for (const auto &record : section)
processDescriptor(*record.get());
}
};
auto traceState =
runtime::trace::protocol_conformance_scan_begin(type, protocol);
auto snapshot = C.SectionsToScan.snapshot();
if (C.scanSectionsBackwards) {
for (auto &section : llvm::reverse(snapshot))
processSection(section);
} else {
for (auto &section : snapshot)
processSection(section);
}
// Find the most specific conformance that was scanned.
const WitnessTable *foundWitness = nullptr;
const Metadata *foundType = nullptr;
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto searchType = superclassIterator.metadata; ++superclassIterator) {
const WitnessTable *witness = foundWitnesses.lookup(searchType);
if (witness) {
if (!foundType) {
foundWitness = witness;
foundType = searchType;
} else {
auto foundName = swift_getTypeName(foundType, true);
auto searchName = swift_getTypeName(searchType, true);
swift::warning(RuntimeErrorFlagNone,
"Warning: '%.*s' conforms to protocol '%s', but it also "
"inherits conformance from '%.*s'. Relying on a "
"particular conformance is undefined behaviour.\n",
(int)foundName.length, foundName.data,
protocol->Name.get(),
(int)searchName.length, searchName.data);
}
}
}
noteFinalMetadataState(superclassIterator.state);
traceState.end(foundWitness);
// If it's for a superclass or if we didn't find anything, then add an
// authoritative entry for this type.
if (foundType != type)
// Do not cache negative results if there were uninstantiated superclasses
// we didn't search. They might have a conformance that will be found later.
if (foundWitness || !hasUninstantiatedSuperclass)
C.cacheResult(type, protocol, foundWitness, snapshot.count());
// A negative result can be overridden by a result from dyld.
if (!foundWitness) {
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
return {foundWitness, hasUninstantiatedSuperclass};
}
static const WitnessTable *
swift_conformsToProtocolCommonImpl(const Metadata *const type,
const ProtocolDescriptor *protocol) {
const WitnessTable *table;
bool hasUninstantiatedSuperclass;
// First, try without instantiating any new superclasses. This avoids
// an infinite loop for cases like `class Sub: Super<Sub>`. In cases like
// that, the conformance must exist on the subclass (or at least somewhere
// in the chain before we get to an uninstantiated superclass) so this search
// will succeed without trying to instantiate Super while it's already being
// instantiated.=
std::tie(table, hasUninstantiatedSuperclass) =
swift_conformsToProtocolMaybeInstantiateSuperclasses(
type, protocol, false /*instantiateSuperclassMetadata*/);
// If no conformance was found, and there is an uninstantiated superclass that
// was not searched, then try the search again and instantiate all
// superclasses.
if (!table && hasUninstantiatedSuperclass)
std::tie(table, hasUninstantiatedSuperclass) =
swift_conformsToProtocolMaybeInstantiateSuperclasses(
type, protocol, true /*instantiateSuperclassMetadata*/);
return table;
}
static const WitnessTable *
swift_conformsToProtocol2Impl(const Metadata *const type,
const ProtocolDescriptor *protocol) {
protocol = swift_auth_data_non_address(
protocol, SpecialPointerAuthDiscriminators::ProtocolDescriptor);
return swift_conformsToProtocolCommonImpl(type, protocol);
}
static const WitnessTable *
swift_conformsToProtocolImpl(const Metadata *const type,
const void *protocol) {
// This call takes `protocol` without a ptrauth signature. We declare
// it as `void *` to avoid the implicit ptrauth we get from the
// ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_conformsToProtocolCommon.
return swift_conformsToProtocolCommonImpl(
type, static_cast<const ProtocolDescriptor *>(protocol));
}
const ContextDescriptor *
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
auto traceState = runtime::trace::protocol_conformance_scan_begin(node);
auto &C = Conformances.get();
for (auto &section : C.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto ntd = record->getTypeDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node))
return traceState.end(ntd);
}
}
}
return nullptr;
}
template <typename HandleObjc>
bool isSwiftClassMetadataSubclass(const ClassMetadata *subclass,
const ClassMetadata *superclass,
HandleObjc handleObjc) {
assert(subclass);
assert(superclass);
std::optional<MetadataState> subclassState = std::nullopt;
while (true) {
auto response = getSuperclassForMaybeIncompleteMetadata(
subclass, subclassState, true /*instantiateSuperclassMetadata*/);
if (response.Value == superclass)
return true;
if (!response.Value)
return false;
subclass = dyn_cast<ClassMetadata>(response.Value);
if (!subclass || subclass->isPureObjC())
return handleObjc(response.Value, superclass);
}
}
// Whether the provided `subclass` is metadata for a subclass* of the superclass
// whose metadata is specified.
//
// The function is robust against incomplete metadata for both subclass and
// superclass. In the worst case, each intervening class between subclass and
// superclass is demangled. Besides that slow path, there are a number of fast
// paths:
// - both classes are ObjC: swift_dynamicCastMetatype
// - Complete subclass metadata: loop over Superclass fields
// - NonTransitiveComplete: read the Superclass field once
//
// * A non-strict subclass; that is, given a class X, isSubclass(X.self, X.self)
// is true.
static bool isSubclass(const Metadata *subclass, const Metadata *superclass) {
assert(subclass);
assert(superclass);
assert(subclass->isAnyClass());
assert(superclass->isAnyClass());
if (subclass == superclass)
return true;
if (!isa<ClassMetadata>(subclass)) {
if (!isa<ClassMetadata>(superclass)) {
// Only ClassMetadata can be incomplete; when the class metadata is not
// ClassMetadata, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(subclass, superclass);
} else {
// subclass is ObjC, but superclass is not; since it is not possible for
// any ObjC class to be a subclass of any Swift class, this subclass is
// not a subclass of this superclass.
return false;
}
}
const ClassMetadata *swiftSubclass = cast<ClassMetadata>(subclass);
#if SWIFT_OBJC_INTEROP
if (auto *objcSuperclass = dyn_cast<ObjCClassWrapperMetadata>(superclass)) {
// Walk up swiftSubclass's ancestors until we get to an ObjC class, then
// kick over to swift_dynamicCastMetatype.
return isSwiftClassMetadataSubclass(
swiftSubclass, objcSuperclass->Class,
[](const Metadata *intermediate, const Metadata *superclass) {
// Intermediate is an ObjC class, and superclass is an ObjC class;
// as above, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(intermediate, superclass);
});
return false;
}
#endif
if (isa<ForeignClassMetadata>(superclass)) {
// superclass is foreign, but subclass is not (if it were, the above
// !isa<ClassMetadata> condition would have been entered). Since it is not
// possible for any Swift class to be a subclass of any foreign superclass,
// this subclass is not a subclass of this superclass.
return false;
}
auto swiftSuperclass = cast<ClassMetadata>(superclass);
return isSwiftClassMetadataSubclass(swiftSubclass, swiftSuperclass,
[](const Metadata *, const Metadata *) {
// Because (1) no ObjC classes inherit
// from Swift classes and (2)
// `superclass` is not ObjC, if some
// ancestor of `subclass` is ObjC, then
// `subclass` cannot descend from
// `superclass` (otherwise at some point
// some ObjC class would have to inherit
// from a Swift class).
return false;
});
}
static bool isSubclassOrExistential(const Metadata *subclass,
const Metadata *superclass) {
// If the type which is constrained to a base class is an existential
// type, and if that existential type includes a superclass constraint,
// just require that the superclass by which the existential is
// constrained is a subclass of the base class.
if (auto *existential = dyn_cast<ExistentialTypeMetadata>(subclass)) {
if (auto *superclassConstraint = existential->getSuperclassConstraint())
subclass = superclassConstraint;
}
return isSubclass(subclass, superclass);
}
static std::optional<TypeLookupError>
satisfiesLayoutConstraint(const GenericRequirementDescriptor &req,
const Metadata *subjectType) {
switch (req.getLayout()) {
case GenericRequirementLayoutKind::Class:
if (!subjectType->satisfiesClassConstraint()) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not satisfy class constraint",
(int)req.getParam().size(), req.getParam().data());
}
return std::nullopt;
}
// Unknown layout.
return TYPE_LOOKUP_ERROR_FMT("unknown layout kind %u",
static_cast<uint32_t>(req.getLayout()));
}
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
bool swift::_swift_class_isSubclass(const Metadata *subclass,
const Metadata *superclass) {
return isSubclass(subclass, superclass);
}
static std::optional<TypeLookupError>
checkGenericRequirement(
const GenericRequirementDescriptor &req,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable,
llvm::SmallVectorImpl<InvertibleProtocolSet> &suppressed) {
assert(!req.getFlags().isPackRequirement());
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind())
return TypeLookupError("unknown kind");
// Resolve the subject generic parameter.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getParam(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
const Metadata *subjectType = result.getType().getMetadata();
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
&witnessTable)) {
const char *protoName =
req.getProtocol() ? req.getProtocol().getName() : "<null>";
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not conform to protocol %s",
(int)req.getParam().size(), req.getParam().data(), protoName);
}
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTable);
extraArguments.push_back(witnessTable);
}
return std::nullopt;
}
case GenericRequirementKind::SameType: {
// Demangle the second type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto otherType = result.getType().getMetadata();
// Check that the types are equivalent.
if (subjectType != otherType) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not match %.*s", (int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data());
}
return std::nullopt;
}
case GenericRequirementKind::Layout: {
return satisfiesLayoutConstraint(req, subjectType);
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto baseType = result.getType().getMetadata();
if (!isSubclassOrExistential(subjectType, baseType))
return TYPE_LOOKUP_ERROR_FMT(
"%.*s is not subclass of %.*s", (int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data());
return std::nullopt;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
return std::nullopt;
}
case GenericRequirementKind::SameShape: {
return TYPE_LOOKUP_ERROR_FMT("can't have same-shape requirement where "
"subject type is not a pack");
}
case GenericRequirementKind::InvertedProtocols: {
uint16_t index = req.getInvertedProtocolsGenericParamIndex();
if (index == 0xFFFF)
return TYPE_LOOKUP_ERROR_FMT("unable to suppress protocols");
// Expand the suppression set so we can record these protocols.
if (index >= suppressed.size()) {
suppressed.resize(index + 1, InvertibleProtocolSet());
}
// Record these suppressed protocols for this generic parameter.
suppressed[index] |= req.getInvertedProtocols();
return std::nullopt;
}
}
// Unknown generic requirement kind.
return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
(unsigned)req.getKind());
}
static std::optional<TypeLookupError>
checkGenericPackRequirement(
const GenericRequirementDescriptor &req,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable,
llvm::SmallVectorImpl<InvertibleProtocolSet> &suppressed) {
assert(req.getFlags().isPackRequirement());
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind())
return TypeLookupError("unknown kind");
// Resolve the subject generic parameter.
auto result = swift::getTypePackByMangledName(
req.getParam(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer subjectType = result.getType();
assert(subjectType.getLifetime() == PackLifetime::OnHeap);
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
llvm::SmallVector<const WitnessTable *, 4> witnessTables;
// Look up the conformance of each pack element to the protocol.
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, elt, req.getProtocol(),
&witnessTable)) {
const char *protoName =
req.getProtocol() ? req.getProtocol().getName() : "<null>";
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not conform to protocol %s at pack index %zu",
(int)req.getParam().size(), req.getParam().data(), protoName, i);
}
if (req.getProtocol().needsWitnessTable())
witnessTables.push_back(witnessTable);
}
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTables.size() == subjectType.getNumElements());
auto *pack = swift_allocateWitnessTablePack(witnessTables.data(),
witnessTables.size());
extraArguments.push_back(pack);
}
return std::nullopt;
}
case GenericRequirementKind::SameType: {
// Resolve the constraint generic parameter.
auto result = swift::getTypePackByMangledName(
req.getMangledTypeName(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer constraintType = result.getType();
assert(constraintType.getLifetime() == PackLifetime::OnHeap);
if (subjectType.getNumElements() != constraintType.getNumElements()) {
return TYPE_LOOKUP_ERROR_FMT(
"mismatched pack lengths in same-type pack requirement %.*s: %zu vs %zu",
(int)req.getParam().size(), req.getParam().data(),
subjectType.getNumElements(), constraintType.getNumElements());
}
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
auto *subjectElt = subjectType.getElements()[i];
auto *constraintElt = constraintType.getElements()[i];
if (subjectElt != constraintElt) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not match %.*s at pack index %zu",
(int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data(), i);
}
}
return std::nullopt;
}
case GenericRequirementKind::Layout: {
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
if (auto result = satisfiesLayoutConstraint(req, elt))
return result;
}
return std::nullopt;
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto baseType = result.getType().getMetadata();
// Check that each pack element inherits from the base class.
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
if (!isSubclassOrExistential(elt, baseType))
return TYPE_LOOKUP_ERROR_FMT(
"%.*s is not subclass of %.*s at pack index %zu",
(int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data(), i);
}
return std::nullopt;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
return std::nullopt;
}
case GenericRequirementKind::SameShape: {
auto result = swift::getTypePackByMangledName(
req.getMangledTypeName(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer otherType = result.getType();
assert(otherType.getLifetime() == PackLifetime::OnHeap);
if (subjectType.getNumElements() != otherType.getNumElements()) {
return TYPE_LOOKUP_ERROR_FMT("same-shape requirement unsatisfied; "
"%zu != %zu",
subjectType.getNumElements(),
otherType.getNumElements() );
}
return std::nullopt;
}
case GenericRequirementKind::InvertedProtocols: {
uint16_t index = req.getInvertedProtocolsGenericParamIndex();
if (index == 0xFFFF)
return TYPE_LOOKUP_ERROR_FMT("unable to suppress protocols");
// Expand the suppression set so we can record these protocols.
if (index >= suppressed.size()) {
suppressed.resize(index + 1, InvertibleProtocolSet());
}
// Record these suppressed protocols for this generic parameter.
suppressed[index] |= req.getInvertedProtocols();
return std::nullopt;
}
}
// Unknown generic requirement kind.
return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
(unsigned)req.getKind());
}
static std::optional<TypeLookupError>
checkInvertibleRequirements(const Metadata *type,
InvertibleProtocolSet ignored);
static std::optional<TypeLookupError>
checkInvertibleRequirementsStructural(const Metadata *type,
InvertibleProtocolSet ignored) {
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::ForeignClass:
case MetadataKind::ForeignReferenceType:
case MetadataKind::ObjCClassWrapper:
// All handled via context descriptor in the caller.
return std::nullopt;
case MetadataKind::HeapLocalVariable:
case MetadataKind::Opaque:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
case MetadataKind::Task:
case MetadataKind::Job:
// Not part of the user-visible type system; assumed to handle all
// invertible requirements.
return std::nullopt;
case MetadataKind::Tuple: {
// Check every element type in the tuple.
auto tupleMetadata = cast<TupleTypeMetadata>(type);
for (unsigned i = 0, n = tupleMetadata->NumElements; i != n; ++i) {
if (auto error =
checkInvertibleRequirements(&*tupleMetadata->getElement(i).Type,
ignored))
return error;
}
return std::nullopt;
}
case MetadataKind::Function: {
auto functionMetadata = cast<FunctionTypeMetadata>(type);
// Determine the set of protocols that are suppressed by the function
// type.
InvertibleProtocolSet suppressed;
if (functionMetadata->hasExtendedFlags()) {
suppressed = functionMetadata->getExtendedFlags()
.getInvertedProtocols();
}
// Map the existing "noescape" bit as a suppressed protocol, when
// appropriate.
switch (functionMetadata->getConvention()) {
case FunctionMetadataConvention::Swift:
// Swift function types can be non-escaping, so honor the bit.
if (!functionMetadata->isEscaping())
suppressed.insert(InvertibleProtocolKind::Escapable);
break;
case FunctionMetadataConvention::Block:
// Objective-C block types don't encode non-escaping-ness in metadata,
// so we assume that they are always escaping.
break;
case FunctionMetadataConvention::Thin:
case FunctionMetadataConvention::CFunctionPointer:
// Thin and C function pointers have no captures, so whether they
// escape is irrelevant.
break;
}
auto missing = suppressed - ignored;
if (!missing.empty()) {
return TYPE_LOOKUP_ERROR_FMT(
"function type missing invertible protocols %x", missing.rawBits());
}
return std::nullopt;
}
case MetadataKind::ExtendedExistential: {
auto existential = cast<ExtendedExistentialTypeMetadata>(type);
auto &shape = *existential->Shape;
llvm::ArrayRef<GenericRequirementDescriptor> reqs(
shape.getReqSigRequirements(), shape.getNumReqSigRequirements());
// Look for any suppressed protocol requirements. If the existential
// has suppressed a protocol that is not ignored, then the existential
// does not meet the specified requirements.
for (const auto& req : reqs) {
if (req.getKind() != GenericRequirementKind::InvertedProtocols)
continue;
auto suppressed = req.getInvertedProtocols();
auto missing = suppressed - ignored;
if (!missing.empty()) {
return TYPE_LOOKUP_ERROR_FMT(
"existential type missing invertible protocols %x",
missing.rawBits());
}
}
return std::nullopt;
}
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
// Metatypes themselves can't have invertible protocols.
return std::nullopt;
case MetadataKind::Existential:
// The existential representation has no room for specifying any
// suppressed requirements, so it always succeeds.
return std::nullopt;
case MetadataKind::LastEnumerated:
break;
}
// Just accept any unknown types.
return std::nullopt;
}
/// Check that the given `type` meets all invertible protocol requirements
/// that haven't been explicitly suppressed by `ignored`.
std::optional<TypeLookupError>
checkInvertibleRequirements(const Metadata *type,
InvertibleProtocolSet ignored) {
auto contextDescriptor = type->getTypeContextDescriptor();
if (!contextDescriptor)
return checkInvertibleRequirementsStructural(type, ignored);
// If no conformances are suppressed, then it conforms to everything.
if (!contextDescriptor->hasInvertibleProtocols()) {
return std::nullopt;
}
// If this type has suppressed conformances, but we can't find them...
// bail out.
auto InvertedProtocols = contextDescriptor->getInvertedProtocols();
if (!InvertedProtocols) {
return TYPE_LOOKUP_ERROR_FMT("unable to find suppressed protocols");
}
// Determine the set of invertible conformances that the type has
// suppressed but aren't being ignored. These are missing conformances
// based on the primary definition of the type.
InvertibleProtocolSet missingConformances = *InvertedProtocols - ignored;
if (missingConformances.empty())
return std::nullopt;
// If the context descriptor is not generic, there are no conditional
// conformances: fail.
if (!contextDescriptor->isGeneric()) {
return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
missingConformances.rawBits());
}
auto genericContext = contextDescriptor->getGenericContext();
if (!genericContext ||
!genericContext->hasConditionalInvertedProtocols()) {
return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
missingConformances.rawBits());
}
// If there are missing conformances that do not have corresponding
// conditional conformances, then the nominal type does not satisfy these
// suppressed conformances. We're done.
auto conditionalSuppressed =
genericContext->getConditionalInvertedProtocols();
auto alwaysMissingConformances = missingConformances - conditionalSuppressed;
if (!alwaysMissingConformances.empty()) {
return TYPE_LOOKUP_ERROR_FMT("type missing invertible conformances %x",
alwaysMissingConformances.rawBits());
}
// Now we need to check the conditional conformances for each of the
// missing conformances.
for (auto invertibleKind : missingConformances) {
// Get the conditional requirements.
// Note: This will end up being quadratic in the number of invertible
// protocols. That number is small (currently 2) and cannot be more than 16,
// but if it's a problem we can switch to a different strategy.
auto condReqs =
genericContext->getConditionalInvertibleProtocolRequirementsFor(
invertibleKind);
// Check the conditional requirements.
llvm::ArrayRef<GenericRequirementDescriptor> requirements(
reinterpret_cast<const GenericRequirementDescriptor *>(condReqs.data()),
condReqs.size());
SubstGenericParametersFromMetadata substFn(type);
llvm::SmallVector<const void *, 1> extraArguments;
auto error = _checkGenericRequirements(
genericContext->getGenericParams(),
requirements, extraArguments,
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
[&substFn](unsigned ordinal) {
return substFn.getMetadataOrdinal(ordinal).Ptr;
},
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
});
if (error)
return error;
}
return std::nullopt;
}
std::optional<TypeLookupError> swift::_checkGenericRequirements(
llvm::ArrayRef<GenericParamDescriptor> genericParams,
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstGenericParameterOrdinalFn substGenericParamOrdinal,
SubstDependentWitnessTableFn substWitnessTable) {
// The suppressed conformances for each generic parameter.
llvm::SmallVector<InvertibleProtocolSet, 4> allSuppressed;
for (const auto &req : requirements) {
if (req.getFlags().isPackRequirement()) {
auto error = checkGenericPackRequirement(req, extraArguments,
substGenericParam,
substWitnessTable,
allSuppressed);
if (error)
return error;
} else {
auto error = checkGenericRequirement(req, extraArguments,
substGenericParam,
substWitnessTable,
allSuppressed);
if (error)
return error;
}
}
// Now, check all of the generic arguments for invertible protocols.
unsigned numGenericParams = genericParams.size();
for (unsigned index = 0; index != numGenericParams; ++index) {
// Non-key arguments don't need to be checked, because they are
// aliased to another type.
if (!genericParams[index].hasKeyArgument())
continue;
InvertibleProtocolSet suppressed;
if (index < allSuppressed.size())
suppressed = allSuppressed[index];
MetadataOrPack metadataOrPack(substGenericParamOrdinal(index));
switch (genericParams[index].getKind()) {
case GenericParamKind::Type: {
if (!metadataOrPack || metadataOrPack.isMetadataPack()) {
return TYPE_LOOKUP_ERROR_FMT(
"unexpected pack for generic parameter %u", index);
}
auto metadata = metadataOrPack.getMetadata();
if (auto error = checkInvertibleRequirements(metadata, suppressed))
return error;
break;
}
case GenericParamKind::TypePack: {
// NULL can be used to indicate an empty pack.
if (!metadataOrPack)
break;
if (metadataOrPack.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT(
"unexpected metadata for generic pack parameter %u", index);
}
auto pack = metadataOrPack.getMetadataPack();
if (pack.getElements() != 0) {
llvm::ArrayRef<const Metadata *> elements(
pack.getElements(), pack.getNumElements());
for (auto element : elements) {
if (auto error = checkInvertibleRequirements(element, suppressed))
return error;
}
}
break;
}
default:
return TYPE_LOOKUP_ERROR_FMT("unknown generic parameter kind %u",
index);
}
}
// Success!
return std::nullopt;
}
const Metadata *swift::findConformingSuperclass(
const Metadata *type,
const ProtocolConformanceDescriptor *conformance) {
// Figure out which type we're looking for.
ConformanceCandidate candidate(*conformance);
const Metadata *conformingType = std::get<const Metadata *>(
candidate.getMatchingType(type, true /*instantiateSuperclassMetadata*/));
assert(conformingType);
return conformingType;
}
#define OVERRIDE_PROTOCOLCONFORMANCE COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH