Files
swift-mirror/lib/IRGen/GenDecl.cpp
John McCall b90adfa000 Add linking support for field-offset variables.
Not actually using them anywhere yet.

Swift SVN r3479
2012-12-13 10:28:35 +00:00

1180 lines
41 KiB
C++

//===--- GenDecl.cpp - IR Generation for Declarations ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for local and global
// declarations in Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "llvm/Module.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include "CallingConvention.h"
#include "Explosion.h"
#include "FormalType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Linking.h"
#include "LValue.h"
#include "TypeInfo.h"
using namespace swift;
using namespace irgen;
static bool isTrivialGlobalInit(llvm::Function *fn) {
// Must be exactly one basic block.
if (next(fn->begin()) != fn->end()) return false;
// Basic block must have exactly one instruction.
llvm::BasicBlock *entry = &fn->getEntryBlock();
if (next(entry->begin()) != entry->end()) return false;
// That instruction is necessarily a 'ret' instruction.
assert(isa<llvm::ReturnInst>(entry->front()));
return true;
}
/// Emit all the top-level code in the translation unit.
void IRGenModule::emitTranslationUnit(TranslationUnit *tunit,
unsigned StartElem) {
Type emptyTuple = TupleType::getEmpty(Context);
auto unitToUnit = CanType(FunctionType::get(emptyTuple, emptyTuple, Context));
Pattern *params[] = {
TuplePattern::create(Context, SourceLoc(),
ArrayRef<TuplePatternElt>(), SourceLoc())
};
params[0]->setType(TupleType::getEmpty(Context));
llvm::FunctionType *fnType =
getFunctionType(unitToUnit, ExplosionKind::Minimal, 0, ExtraData::None);
llvm::Function *fn;
if (tunit->Kind == TranslationUnit::Main ||
tunit->Kind == TranslationUnit::Repl) {
// Emit a top-level code function...
fn = llvm::Function::Create(fnType, llvm::GlobalValue::InternalLinkage,
"top_level_code", &Module);
// and call it from main().
// FIXME: We should squirrel away argc and argv where relevant; maybe
// other startup initialization?
// FIXME: We should only emit this in non-JIT modes.
llvm::Function *mainFn =
llvm::Function::Create(llvm::FunctionType::get(Int32Ty, false),
llvm::GlobalValue::ExternalLinkage,
"main", &Module);
IRGenFunction mainIGF(*this, CanType(), nullptr, ExplosionKind::Minimal,
/*uncurry*/ 0, mainFn, Prologue::Bare);
mainIGF.Builder.CreateCall(fn);
mainIGF.Builder.CreateRet(mainIGF.Builder.getInt32(0));
} else {
// Otherwise, create a global initializer.
// FIXME: This is completely, utterly, wrong.
fn = llvm::Function::Create(fnType, llvm::GlobalValue::ExternalLinkage,
tunit->Name.str() + ".init", &Module);
}
IRGenFunction(*this, unitToUnit, params, ExplosionKind::Minimal,
/*uncurry*/ 0, fn)
.emitGlobalTopLevel(tunit, StartElem);
if (tunit->Kind == TranslationUnit::Main ||
tunit->Kind == TranslationUnit::Repl) {
// We don't need global init to call main().
}
// Not all translation units need a global initialization function.
else if (isTrivialGlobalInit(fn)) {
fn->eraseFromParent();
} else {
// Build the initializer for the global variable.
llvm::Constant *initAndPriority[] = {
llvm::ConstantInt::get(Int32Ty, 0),
fn
};
llvm::Constant *allInits[] = {
llvm::ConstantStruct::getAnon(LLVMContext, initAndPriority)
};
llvm::Constant *globalInits =
llvm::ConstantArray::get(llvm::ArrayType::get(allInits[0]->getType(), 1),
allInits);
// Add this as a global initializer.
(void) new llvm::GlobalVariable(Module,
globalInits->getType(),
/*is constant*/ true,
llvm::GlobalValue::AppendingLinkage,
globalInits,
"llvm.global_ctors");
}
emitLLVMUsed();
// Objective-C image information.
// Generate module-level named metadata to convey this information to the
// linker and code-gen.
unsigned version = 0; // Version is unused?
const char *section = "__DATA, __objc_imageinfo, regular, no_dead_strip";
// Add the ObjC ABI version to the module flags.
Module.addModuleFlag(llvm::Module::Error, "Objective-C Version", 2);
Module.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
version);
Module.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
llvm::MDString::get(LLVMContext, section));
Module.addModuleFlag(llvm::Module::Override,
"Objective-C Garbage Collection", (uint32_t)0);
// FIXME: Simulator flag.
}
void IRGenFunction::emitGlobalTopLevel(TranslationUnit *TU, unsigned StartElem) {
for (unsigned i = StartElem, e = TU->Decls.size(); i != e; ++i) {
assert(Builder.hasValidIP());
emitGlobalDecl(TU->Decls[i]);
}
// For any Clang modules imported by this translation unit, emit external
// definitions.
// FIXME: This can be O(N^2), since we can see the same Clang module in
// different modules.
for (auto mod : TU->getImportedModules()) {
auto clangMod = dyn_cast<ClangModule>(mod.second);
if (!clangMod)
continue;
for (auto &def : clangMod->getExternalDefinitions()) {
switch (def.getStage()) {
case ExternalDefinition::NameBound:
llvm_unreachable("external definition not type-checked");
case ExternalDefinition::TypeChecked:
emitExternalDefinition(def.getDecl());
def.setStage(ExternalDefinition::IRGenerated);
break;
case ExternalDefinition::IRGenerated:
// Already generated IR.
break;
}
}
}
}
static bool isLocalLinkageDecl(Decl *D) {
DeclContext *DC = D->getDeclContext();
while (!DC->isModuleContext()) {
if (DC->isLocalContext())
return true;
DC = DC->getParent();
}
// Constructors, subscripts, and properties synthesized in the mapping to
// Clang modules are local.
if (isa<ClangModule>(DC) &&
(isa<ConstructorDecl>(D) || isa<SubscriptDecl>(D) ||
(isa<VarDecl>(D) && cast<VarDecl>(D)->isProperty())))
return true;
return false;
}
static bool isLocalLinkageType(CanType type);
static bool isLocalLinkageGenericClause(const GenericParamList &params) {
// Type parameters are local-linkage if any of their constraining
// types are.
for (auto &param : params) {
for (auto inherited : param.getAsTypeParam()->getInherited())
if (isLocalLinkageType(CanType(inherited.getType())))
return true;
}
return false;
}
static bool isLocalLinkageType(CanType type) {
TypeBase *base = type.getPointer();
switch (base->getKind()) {
case TypeKind::Error:
llvm_unreachable("error type in IRGen");
case TypeKind::UnstructuredUnresolved:
case TypeKind::DeducibleGenericParam:
llvm_unreachable("unresolved type in IRGen");
case TypeKind::TypeVariable:
llvm_unreachable("type variable in IRgen");
case TypeKind::MetaType:
return isLocalLinkageType(CanType(cast<MetaTypeType>(base)
->getInstanceType()));
case TypeKind::Module:
return false;
case TypeKind::Archetype:
return false;
// We don't care about these types being a bit verbose because we
// don't expect them to come up that often in API names.
case TypeKind::BuiltinFloat:
case TypeKind::BuiltinInteger:
case TypeKind::BuiltinRawPointer:
case TypeKind::BuiltinObjectPointer:
case TypeKind::BuiltinObjCPointer:
return false;
#define SUGARED_TYPE(id, parent) \
case TypeKind::id: \
llvm_unreachable("type is not canonical!");
#define TYPE(id, parent)
#include "swift/AST/TypeNodes.def"
case TypeKind::LValue:
return isLocalLinkageType(CanType(cast<LValueType>(base)
->getObjectType()));
case TypeKind::Tuple: {
TupleType *tuple = cast<TupleType>(base);
for (auto &field : tuple->getFields()) {
if (isLocalLinkageType(CanType(field.getType())))
return true;
}
return false;
}
case TypeKind::UnboundGeneric:
return isLocalLinkageDecl(cast<UnboundGenericType>(base)->getDecl());
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericOneOf:
case TypeKind::BoundGenericStruct: {
BoundGenericType *BGT = cast<BoundGenericType>(base);
if (isLocalLinkageDecl(BGT->getDecl()))
return true;
for (Type Arg : BGT->getGenericArgs()) {
if (isLocalLinkageType(CanType(Arg)))
return true;
}
return false;
}
case TypeKind::OneOf:
case TypeKind::Struct:
case TypeKind::Class:
case TypeKind::Protocol:
return isLocalLinkageDecl(cast<NominalType>(base)->getDecl());
case TypeKind::PolymorphicFunction: {
auto fn = cast<PolymorphicFunctionType>(base);
if (isLocalLinkageGenericClause(fn->getGenericParams()))
return true;
// fallthrough
}
case TypeKind::Function: {
AnyFunctionType *fn = cast<AnyFunctionType>(base);
return isLocalLinkageType(CanType(fn->getInput())) ||
isLocalLinkageType(CanType(fn->getResult()));
}
case TypeKind::Array:
return isLocalLinkageType(CanType(cast<ArrayType>(base)->getBaseType()));
case TypeKind::ProtocolComposition:
for (Type t : cast<ProtocolCompositionType>(base)->getProtocols())
if (isLocalLinkageType(CanType(t)))
return true;
return false;
}
llvm_unreachable("bad type kind");
}
bool LinkEntity::isLocalLinkage() const {
switch (getKind()) {
// Destructors always have internal linkage.
case Kind::Destructor:
return true;
// Value witnesses depend on the linkage of their type.
case Kind::ValueWitness:
case Kind::ValueWitnessTable:
case Kind::TypeMetadata:
return isLocalLinkageType(getType());
case Kind::WitnessTableOffset:
case Kind::Function:
case Kind::Getter:
case Kind::Setter:
case Kind::Other:
case Kind::ObjCClass:
case Kind::FieldOffset:
return isLocalLinkageDecl(getDecl());
}
llvm_unreachable("bad link entity kind");
}
LinkInfo LinkInfo::get(IRGenModule &IGM, const LinkEntity &entity) {
LinkInfo result;
llvm::raw_svector_ostream nameStream(result.Name);
entity.mangle(nameStream);
if (entity.isLocalLinkage()) {
// If an entity isn't visible outside this translation unit,
// it has internal linkage.
result.Linkage = llvm::GlobalValue::InternalLinkage;
result.Visibility = llvm::GlobalValue::DefaultVisibility;
return result;
} else if (entity.isValueWitness()) {
// The linkage for a value witness is linkonce_odr.
result.Linkage = llvm::GlobalValue::LinkOnceODRLinkage;
result.Visibility = llvm::GlobalValue::HiddenVisibility;
} else {
// Give everything else external linkage.
result.Linkage = llvm::GlobalValue::ExternalLinkage;
result.Visibility = llvm::GlobalValue::DefaultVisibility;
}
return result;
}
static bool isPointerTo(llvm::Type *ptrTy, llvm::Type *objTy) {
return cast<llvm::PointerType>(ptrTy)->getElementType() == objTy;
}
/// Get or create an LLVM function with these linkage rules.
llvm::Function *LinkInfo::createFunction(IRGenModule &IGM,
llvm::FunctionType *fnType,
llvm::CallingConv::ID cc,
ArrayRef<llvm::AttributeWithIndex> attrs) {
llvm::GlobalValue *existing = IGM.Module.getNamedGlobal(getName());
if (existing) {
if (isa<llvm::Function>(existing) &&
isPointerTo(existing->getType(), fnType))
return cast<llvm::Function>(existing);
IGM.error(SourceLoc(),
"program too clever: function collides with existing symbol "
+ getName());
// Note that this will implicitly unique if the .unique name is also taken.
existing->setName(getName() + ".unique");
}
llvm::Function *fn
= llvm::Function::Create(fnType, getLinkage(), getName(), &IGM.Module);
fn->setVisibility(getVisibility());
fn->setCallingConv(cc);
if (!attrs.empty())
fn->setAttributes(llvm::AttributeSet::get(fnType->getContext(), attrs));
return fn;
}
/// Get or create an LLVM global variable with these linkage rules.
llvm::GlobalVariable *LinkInfo::createVariable(IRGenModule &IGM,
llvm::Type *storageType) {
llvm::GlobalValue *existing = IGM.Module.getNamedGlobal(getName());
if (existing) {
if (isa<llvm::GlobalVariable>(existing) &&
isPointerTo(existing->getType(), storageType))
return cast<llvm::GlobalVariable>(existing);
IGM.error(SourceLoc(),
"program too clever: variable collides with existing symbol "
+ getName());
// Note that this will implicitly unique if the .unique name is also taken.
existing->setName(getName() + ".unique");
}
llvm::GlobalVariable *var
= new llvm::GlobalVariable(IGM.Module, storageType, /*constant*/ false,
getLinkage(), /*initializer*/ nullptr,
getName());
var->setVisibility(getVisibility());
return var;
}
/// Emit a global declaration.
void IRGenFunction::emitGlobalDecl(Decl *D) {
switch (D->getKind()) {
case DeclKind::Extension:
IGM.emitExtension(cast<ExtensionDecl>(D));
return;
case DeclKind::Protocol:
return IGM.emitProtocolDecl(cast<ProtocolDecl>(D));
case DeclKind::PatternBinding:
emitPatternBindingDecl(cast<PatternBindingDecl>(D));
return;
case DeclKind::Subscript:
llvm_unreachable("there are no global subscript operations");
case DeclKind::OneOfElement:
llvm_unreachable("there are no global oneof elements");
case DeclKind::Constructor:
llvm_unreachable("there are no global constructor");
case DeclKind::Destructor:
llvm_unreachable("there are no global destructor");
case DeclKind::TypeAlias:
return;
case DeclKind::OneOf:
return IGM.emitOneOfDecl(cast<OneOfDecl>(D));
case DeclKind::Struct:
return IGM.emitStructDecl(cast<StructDecl>(D));
case DeclKind::Class:
return IGM.emitClassDecl(cast<ClassDecl>(D));
// These declarations don't require IR-gen support.
case DeclKind::Import:
return;
// We emit these as part of the PatternBindingDecl.
case DeclKind::Var:
return;
case DeclKind::Func:
return IGM.emitGlobalFunction(cast<FuncDecl>(D));
case DeclKind::TopLevelCode: {
auto Body = cast<TopLevelCodeDecl>(D)->getBody();
if (Body.is<Expr*>())
return emitIgnored(Body.get<Expr*>());
return emitStmt(Body.get<Stmt*>());
}
}
llvm_unreachable("bad decl kind!");
}
void IRGenFunction::emitExternalDefinition(Decl *D) {
switch (D->getKind()) {
case DeclKind::Extension:
case DeclKind::Protocol:
case DeclKind::PatternBinding:
case DeclKind::OneOfElement:
case DeclKind::OneOf:
case DeclKind::Class:
case DeclKind::Struct:
case DeclKind::TopLevelCode:
case DeclKind::TypeAlias:
case DeclKind::Var:
case DeclKind::Import:
case DeclKind::Subscript:
case DeclKind::Destructor:
llvm_unreachable("Not a valid external definition for IRgen");
case DeclKind::Func:
// The only functions available are getters and setters.
assert(cast<FuncDecl>(D)->isGetterOrSetter() &&
"Not a synthesized getter/setter");
IGM.emitInstanceMethod(cast<FuncDecl>(D));
break;
case DeclKind::Constructor:
if (D->getDeclContext()->getDeclaredTypeOfContext()
->getClassOrBoundGenericClass()) {
IGM.emitClassConstructor(cast<ConstructorDecl>(D));
} else {
IGM.emitConstructor(cast<ConstructorDecl>(D));
}
break;
}
}
/// Find the address of a (fragile, constant-size) global variable
/// declaration. The address value is always an llvm::GlobalVariable*.
Address IRGenModule::getAddrOfGlobalVariable(VarDecl *var) {
// Check whether we've cached this.
LinkEntity entity = LinkEntity::forNonFunction(var);
llvm::GlobalVariable *&entry = GlobalVars[entity];
if (entry) {
llvm::GlobalVariable *gv = cast<llvm::GlobalVariable>(entry);
return Address(gv, Alignment(gv->getAlignment()));
}
const TypeInfo &type = getFragileTypeInfo(var->getType());
// Okay, we need to rebuild it.
LinkInfo link = LinkInfo::get(*this, entity);
auto addr = link.createVariable(*this, type.StorageType);
Alignment align = type.StorageAlignment;
addr->setAlignment(align.getValue());
entry = addr;
return Address(addr, align);
}
static bool hasIndirectResult(IRGenModule &IGM, CanType type,
ExplosionKind explosionLevel,
unsigned uncurryLevel) {
uncurryLevel++;
while (uncurryLevel--) {
type = CanType(cast<AnyFunctionType>(type)->getResult());
}
ExplosionSchema schema(explosionLevel);
IGM.getSchema(type, schema);
return schema.requiresIndirectResult();
}
/// Fetch the declaration of the given known function.
llvm::Function *IRGenModule::getAddrOfFunction(FunctionRef fn,
ExtraData extraData) {
LinkEntity entity = LinkEntity::forFunction(fn);
// Check whether we've cached this.
llvm::Function *&entry = GlobalFuncs[entity];
if (entry) return cast<llvm::Function>(entry);
llvm::FunctionType *fnType =
getFunctionType(fn.getDecl()->getType()->getCanonicalType(),
fn.getExplosionLevel(), fn.getUncurryLevel(), extraData);
AbstractCC convention = getAbstractCC(fn.getDecl());
bool indirectResult =
hasIndirectResult(*this, fn.getDecl()->getType()->getCanonicalType(),
fn.getExplosionLevel(), fn.getUncurryLevel());
SmallVector<llvm::AttributeWithIndex, 4> attrs;
auto cc = expandAbstractCC(*this, convention, indirectResult, attrs);
LinkInfo link = LinkInfo::get(*this, entity);
entry = link.createFunction(*this, fnType, cc, attrs);
return entry;
}
/// getAddrOfGlobalInjectionFunction - Get the address of the function to
/// perform a particular injection into a oneof type.
llvm::Function *IRGenModule::getAddrOfInjectionFunction(OneOfElementDecl *D) {
// TODO: emit at more optimal explosion kinds when reasonable!
ExplosionKind explosionLevel = ExplosionKind::Minimal;
unsigned uncurryLevel = 0;
LinkEntity entity =
LinkEntity::forFunction(CodeRef::forOneOfElement(D, ExplosionKind::Minimal,
uncurryLevel));
llvm::Function *&entry = GlobalFuncs[entity];
if (entry) return cast<llvm::Function>(entry);
CanType formalType = D->getType()->getCanonicalType();
bool indirectResult =
hasIndirectResult(*this, formalType, explosionLevel, uncurryLevel);
SmallVector<llvm::AttributeWithIndex, 1> attrs;
auto cc = expandAbstractCC(*this, AbstractCC::Freestanding,
indirectResult, attrs);
llvm::FunctionType *fnType =
getFunctionType(formalType, explosionLevel, uncurryLevel, ExtraData::None);
LinkInfo link = LinkInfo::get(*this, entity);
entry = link.createFunction(*this, fnType, cc, attrs);
return entry;
}
/// Fetch the declaration of the given known function.
llvm::Function *IRGenModule::getAddrOfConstructor(ConstructorDecl *cons,
ExplosionKind kind) {
unsigned uncurryLevel = 1;
LinkEntity entity =
LinkEntity::forFunction(CodeRef::forConstructor(cons, kind, uncurryLevel));
// Check whether we've cached this.
llvm::Function *&entry = GlobalFuncs[entity];
if (entry) return cast<llvm::Function>(entry);
CanType formalType = cons->getType()->getCanonicalType();
llvm::FunctionType *fnType =
getFunctionType(formalType, kind, uncurryLevel, ExtraData::None);
bool indirectResult =
hasIndirectResult(*this, formalType, kind, uncurryLevel);
SmallVector<llvm::AttributeWithIndex, 4> attrs;
auto cc = expandAbstractCC(*this, AbstractCC::Method, indirectResult,
attrs);
LinkInfo link = LinkInfo::get(*this, entity);
entry = link.createFunction(*this, fnType, cc, attrs);
return entry;
}
/// Get or create a llvm::GlobalVariable.
///
/// If a definition type is given, the result will always be an
/// llvm::GlobalVariable of that type. Otherwise, the result will
/// have type pointerToDefaultType and may involve bitcasts.
static llvm::Constant *getAddrOfLLVMVariable(IRGenModule &IGM,
llvm::DenseMap<LinkEntity, llvm::GlobalVariable*> &globals,
LinkEntity entity,
llvm::Type *definitionType,
llvm::Type *defaultType,
llvm::Type *pointerToDefaultType) {
auto &entry = globals[entity];
if (entry) {
// If we're looking to define something, we may need to replace a
// forward declaration.
if (definitionType) {
assert(entry->getType() == pointerToDefaultType);
// If the type is right, we're done.
if (definitionType == defaultType)
return entry;
// Fall out to the case below, clearing the name so that
// createVariable doesn't detect a collision.
entry->setName("");
// Otherwise, we have a previous declaration or definition which
// we need to ensure has the right type.
} else {
return llvm::ConstantExpr::getBitCast(entry, pointerToDefaultType);
}
}
// If we're not defining the object now
if (!definitionType) definitionType = defaultType;
// Create the variable.
LinkInfo link = LinkInfo::get(IGM, entity);
auto var = link.createVariable(IGM, definitionType);
// If we have an existing entry, destroy it, replacing it with the
// new variable.
if (entry) {
auto castVar = llvm::ConstantExpr::getBitCast(var, pointerToDefaultType);
entry->replaceAllUsesWith(castVar);
entry->eraseFromParent();
}
// Cache and return.
entry = var;
return var;
}
/// Fetch a global reference to the given Objective-C class. The
/// result is always a TypeMetadataPtrTy, but it may not be compatible
/// with IR-generation.
llvm::Constant *IRGenModule::getAddrOfObjCClass(ClassDecl *theClass) {
LinkEntity entity = LinkEntity::forObjCClass(theClass);
auto addr = getAddrOfLLVMVariable(*this, GlobalVars, entity,
TypeMetadataStructTy, TypeMetadataStructTy,
TypeMetadataPtrTy);
return addr;
}
/// Fetch the declaration of the metadata (or metadata template) for a
/// class.
///
/// If the definition type is specified, the result will always be a
/// GlobalVariable of the given type, which may not be at the
/// canonical address point for a type metadata.
///
/// If the definition type is not specified, then:
/// - if the metadata is indirect, then the result will not be adjusted
/// and it will have the type pointer-to-T, where T is the type
/// of a direct metadata;
/// - if the metadata is a pattern, then the result will not be
/// adjusted and it will have TypeMetadataPatternPtrTy;
/// - otherwise it will be adjusted to the canonical address point
/// for a type metadata and it will have type TypeMetadataPtrTy.
llvm::Constant *IRGenModule::getAddrOfTypeMetadata(CanType concreteType,
bool isIndirect,
bool isPattern,
llvm::Type *storageType) {
assert(isPattern || !isa<UnboundGenericType>(concreteType));
llvm::Type *defaultVarTy;
llvm::Type *defaultVarPtrTy;
unsigned adjustmentIndex;
// Patterns use the pattern type and no adjustment.
if (isPattern) {
defaultVarTy = TypeMetadataPatternStructTy;
defaultVarPtrTy = TypeMetadataPatternPtrTy;
adjustmentIndex = 0;
// Class direct metadata use the heap type and require a two-word
// adjustment (due to the heap-metadata header).
} else if (isa<ClassType>(concreteType) ||
isa<BoundGenericClassType>(concreteType)) {
defaultVarTy = FullHeapMetadataStructTy;
defaultVarPtrTy = FullHeapMetadataPtrTy;
adjustmentIndex = 2;
// All other non-pattern direct metadata use the full type and
// require an adjustment.
} else {
defaultVarTy = FullTypeMetadataStructTy;
defaultVarPtrTy = FullTypeMetadataPtrTy;
adjustmentIndex = 1;
}
// When indirect, this is always a pointer variable and has no
// adjustment.
if (isIndirect) {
defaultVarTy = defaultVarPtrTy;
defaultVarPtrTy = defaultVarTy->getPointerTo();
adjustmentIndex = 0;
}
LinkEntity entity =
LinkEntity::forTypeMetadata(concreteType, isIndirect, isPattern);
auto addr = getAddrOfLLVMVariable(*this, GlobalVars, entity,
storageType, defaultVarTy,
defaultVarPtrTy);
// Do an adjustment if necessary.
if (adjustmentIndex && !storageType) {
llvm::Constant *indices[] = {
llvm::ConstantInt::get(Int32Ty, 0),
llvm::ConstantInt::get(Int32Ty, adjustmentIndex)
};
addr = llvm::ConstantExpr::getInBoundsGetElementPtr(addr, indices);
}
return addr;
}
/// Fetch the declaration of the given known function.
llvm::Function *IRGenModule::getAddrOfDestructor(ClassDecl *cd) {
LinkEntity entity = LinkEntity::forDestructor(cd);
// Check whether we've cached this.
llvm::Function *&entry = GlobalFuncs[entity];
if (entry) return cast<llvm::Function>(entry);
SmallVector<llvm::AttributeWithIndex, 4> attrs;
auto cc = expandAbstractCC(*this, AbstractCC::Method, false, attrs);
LinkInfo link = LinkInfo::get(*this, entity);
entry = link.createFunction(*this, DtorTy, cc, attrs);
return entry;
}
/// Returns the address of a value-witness function.
llvm::Function *IRGenModule::getAddrOfValueWitness(CanType concreteType,
ValueWitness index) {
LinkEntity entity = LinkEntity::forValueWitness(concreteType, index);
llvm::Function *&entry = GlobalFuncs[entity];
if (entry) return entry;
// Find the appropriate function type.
llvm::FunctionType *fnType =
cast<llvm::FunctionType>(
cast<llvm::PointerType>(getValueWitnessTy(index))
->getElementType());
LinkInfo link = LinkInfo::get(*this, entity);
entry = link.createFunction(*this, fnType, RuntimeCC,
ArrayRef<llvm::AttributeWithIndex>());
return entry;
}
/// Returns the address of a value-witness table. If a definition
/// type is provided, the table is created with that type; the return
/// value will be an llvm::GlobalVariable. Otherwise, the result will
/// have type WitnessTablePtrTy.
llvm::Constant *IRGenModule::getAddrOfValueWitnessTable(CanType concreteType,
llvm::Type *definitionType) {
LinkEntity entity = LinkEntity::forValueWitnessTable(concreteType);
return getAddrOfLLVMVariable(*this, GlobalVars, entity, definitionType,
WitnessTableTy, WitnessTablePtrTy);
}
static CanType addOwnerArgument(ASTContext &ctx, DeclContext *DC,
CanType resultType) {
Type argType = DC->getDeclaredTypeInContext();
if (!argType->hasReferenceSemantics()) {
argType = LValueType::get(argType, LValueType::Qual::DefaultForMemberAccess,
ctx);
}
if (auto params = DC->getGenericParamsOfContext())
return PolymorphicFunctionType::get(argType, resultType, params, ctx)
->getCanonicalType();
return CanType(FunctionType::get(CanType(argType), resultType, ctx));
}
static AbstractCC addOwnerArgument(ASTContext &ctx, ValueDecl *value,
CanType &resultType, unsigned &uncurryLevel) {
DeclContext *DC = value->getDeclContext();
switch (DC->getContextKind()) {
case DeclContextKind::TranslationUnit:
case DeclContextKind::BuiltinModule:
case DeclContextKind::ClangModule:
case DeclContextKind::CapturingExpr:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::ConstructorDecl:
case DeclContextKind::DestructorDecl:
return AbstractCC::Freestanding;
case DeclContextKind::ExtensionDecl:
case DeclContextKind::NominalTypeDecl:
resultType = addOwnerArgument(ctx, DC, resultType);
uncurryLevel++;
return AbstractCC::Method;
}
llvm_unreachable("bad decl context");
}
/// Add the 'index' argument to a getter or setter.
static void addIndexArgument(ASTContext &Context, ValueDecl *value,
CanType &formalType, unsigned &uncurryLevel) {
if (SubscriptDecl *sub = dyn_cast<SubscriptDecl>(value)) {
formalType = FunctionType::get(sub->getIndices()->getType(),
formalType, Context)->getCanonicalType();
uncurryLevel++;
}
}
static CanType getObjectType(ValueDecl *decl) {
if (SubscriptDecl *sub = dyn_cast<SubscriptDecl>(decl))
return sub->getElementType()->getCanonicalType();
return decl->getType()->getCanonicalType();
}
/// getTypeOfGetter - Return the formal type of a getter for a
/// variable or subscripted object.
FormalType IRGenModule::getTypeOfGetter(ValueDecl *value) {
// The formal type of a getter function is one of:
// S -> () -> T (for a nontype member)
// A -> S -> () -> T (for a type member)
// where T is the value type of the object and S is the index type
// (this clause is skipped for a non-subscript getter).
unsigned uncurryLevel = 0;
CanType formalType = CanType(FunctionType::get(TupleType::getEmpty(Context),
getObjectType(value), Context));
addIndexArgument(Context, value, formalType, uncurryLevel);
AbstractCC cc = addOwnerArgument(Context, value, formalType, uncurryLevel);
return FormalType(formalType, cc, uncurryLevel);
}
llvm::Function *IRGenModule::getAddrOfGetter(ValueDecl *value,
ExplosionKind explosionLevel) {
return getAddrOfGetter(value, getTypeOfGetter(value), explosionLevel);
}
/// getAddrOfGetter - Get the address of the function which performs a
/// get of a variable or subscripted object.
llvm::Function *IRGenModule::getAddrOfGetter(ValueDecl *value,
FormalType formal,
ExplosionKind explosionLevel) {
LinkEntity entity =
LinkEntity::forFunction(CodeRef::forGetter(value, explosionLevel, 0));
llvm::Function *&entry = GlobalFuncs[entity];
if (entry) return entry;
llvm::FunctionType *fnType =
getFunctionType(formal.getType(), explosionLevel,
formal.getNaturalUncurryLevel(), ExtraData::None);
SmallVector<llvm::AttributeWithIndex, 4> attrs;
auto convention = expandAbstractCC(*this, formal.getCC(), false, attrs);
LinkInfo link = LinkInfo::get(*this, entity);
entry = link.createFunction(*this, fnType, convention, attrs);
return entry;
}
/// getTypeOfSetter - Return the formal type of a setter for a
/// variable or subscripted object.
FormalType IRGenModule::getTypeOfSetter(ValueDecl *value) {
// The formal type of a setter function is one of:
// S -> T -> () (for a nontype member)
// A -> S -> T -> () (for a type member)
// where T is the value type of the object and S is the index type
// (this clause is skipped for a non-subscript setter).
unsigned uncurryLevel = 0;
CanType argType = getObjectType(value);
CanType formalType = CanType(FunctionType::get(argType,
TupleType::getEmpty(Context),
Context));
addIndexArgument(Context, value, formalType, uncurryLevel);
auto cc = addOwnerArgument(Context, value, formalType, uncurryLevel);
return FormalType(formalType, cc, uncurryLevel);
}
llvm::Function *IRGenModule::getAddrOfSetter(ValueDecl *value,
ExplosionKind explosionLevel) {
return getAddrOfSetter(value, getTypeOfSetter(value), explosionLevel);
}
/// getAddrOfSetter - Get the address of the function which performs a
/// set of a variable or subscripted object.
llvm::Function *IRGenModule::getAddrOfSetter(ValueDecl *value,
FormalType formal,
ExplosionKind explosionLevel) {
LinkEntity entity =
LinkEntity::forFunction(CodeRef::forSetter(value, explosionLevel, 0));
llvm::Function *&entry = GlobalFuncs[entity];
if (entry) return entry;
llvm::FunctionType *fnType =
getFunctionType(formal.getType(), explosionLevel,
formal.getNaturalUncurryLevel(), ExtraData::None);
SmallVector<llvm::AttributeWithIndex, 4> attrs;
auto convention = expandAbstractCC(*this, formal.getCC(), false, attrs);
LinkInfo link = LinkInfo::get(*this, entity);
entry = link.createFunction(*this, fnType, convention, attrs);
return entry;
}
static Address getAddrOfSimpleVariable(IRGenModule &IGM,
llvm::DenseMap<LinkEntity, llvm::GlobalVariable*> &cache,
LinkEntity entity,
llvm::Type *type,
Alignment alignment) {
// Check whether it's already cached.
llvm::GlobalVariable *&entry = cache[entity];
if (entry) {
assert(alignment == Alignment(entry->getAlignment()));
return Address(entry, alignment);
}
// Otherwise, we need to create it.
LinkInfo link = LinkInfo::get(IGM, entity);
auto addr = link.createVariable(IGM, type);
addr->setConstant(true);
addr->setAlignment(alignment.getValue());
entry = addr;
return Address(addr, alignment);
}
/// getAddrOfWitnessTableOffset - Get the address of the global
/// variable which contains an offset within a witness table for the
/// value associated with the given function.
Address IRGenModule::getAddrOfWitnessTableOffset(CodeRef code) {
LinkEntity entity =
LinkEntity::forWitnessTableOffset(code.getDecl(), code.getExplosionLevel(),
code.getUncurryLevel());
return getAddrOfSimpleVariable(*this, GlobalVars, entity,
SizeTy, getPointerAlignment());
}
/// getAddrOfWitnessTableOffset - Get the address of the global
/// variable which contains an offset within a witness table for the
/// value associated with the given member variable..
Address IRGenModule::getAddrOfWitnessTableOffset(VarDecl *field) {
LinkEntity entity =
LinkEntity::forWitnessTableOffset(field, ExplosionKind::Minimal, 0);
return ::getAddrOfSimpleVariable(*this, GlobalVars, entity,
SizeTy, getPointerAlignment());
}
/// getAddrOfFieldOffset - Get the address of the global variable
/// which contains an offset to apply to either an object (if direct)
/// or a metadata object in order to find an offset to apply to an
/// object (if indirect).
///
/// The result is always a GlobalVariable.
Address IRGenModule::getAddrOfFieldOffset(VarDecl *var, bool isIndirect) {
LinkEntity entity = LinkEntity::forFieldOffset(var, isIndirect);
return getAddrOfSimpleVariable(*this, GlobalVars, entity,
SizeTy, getPointerAlignment());
}
/// Emit a type extension.
void IRGenModule::emitExtension(ExtensionDecl *ext) {
for (Decl *member : ext->getMembers()) {
switch (member->getKind()) {
case DeclKind::Import:
case DeclKind::OneOfElement:
case DeclKind::TopLevelCode:
case DeclKind::Protocol:
case DeclKind::Extension:
case DeclKind::Destructor:
llvm_unreachable("decl not allowed in extension!");
// PatternBindingDecls don't really make sense here, but we
// produce one as a side-effect of parsing a var property.
// Just ignore it.
case DeclKind::PatternBinding:
continue;
case DeclKind::Subscript:
// Getter/setter will be handled separately.
continue;
case DeclKind::TypeAlias:
continue;
case DeclKind::OneOf:
emitOneOfDecl(cast<OneOfDecl>(member));
continue;
case DeclKind::Struct:
emitStructDecl(cast<StructDecl>(member));
continue;
case DeclKind::Class:
emitClassDecl(cast<ClassDecl>(member));
continue;
case DeclKind::Var:
if (cast<VarDecl>(member)->isProperty())
// Getter/setter will be handled separately.
continue;
llvm_unreachable("decl not allowed in extension!");
case DeclKind::Func: {
FuncDecl *func = cast<FuncDecl>(member);
if (func->isStatic()) {
// Eventually this won't always be the right thing.
emitStaticMethod(func);
} else {
emitInstanceMethod(func);
}
continue;
}
case DeclKind::Constructor: {
emitConstructor(cast<ConstructorDecl>(member));
continue;
}
}
llvm_unreachable("bad extension member kind");
}
}
void IRGenFunction::emitLocal(Decl *D) {
switch (D->getKind()) {
case DeclKind::Import:
case DeclKind::Subscript:
case DeclKind::TopLevelCode:
case DeclKind::Protocol:
case DeclKind::Extension:
case DeclKind::OneOfElement:
case DeclKind::Constructor:
case DeclKind::Destructor:
llvm_unreachable("declaration cannot appear in local scope");
case DeclKind::OneOf:
return IGM.emitOneOfDecl(cast<OneOfDecl>(D));
case DeclKind::Struct:
return IGM.emitStructDecl(cast<StructDecl>(D));
case DeclKind::Class:
return IGM.emitClassDecl(cast<ClassDecl>(D));
case DeclKind::TypeAlias:
// no IR generation support required.
return;
case DeclKind::Var:
// We handle these in pattern-binding.
return;
case DeclKind::Func:
emitLocalFunction(cast<FuncDecl>(D));
return;
case DeclKind::PatternBinding:
emitPatternBindingDecl(cast<PatternBindingDecl>(D));
return;
}
llvm_unreachable("bad declaration kind!");
}
OwnedAddress IRGenFunction::getLocalVar(VarDecl *D) {
auto I = Locals.find(D);
assert(I != Locals.end() && "no entry in local map!");
return I->second.Var.Addr;
}
void IRGenFunction::setLocalVar(VarDecl *D, OwnedAddress addr) {
assert(!Locals.count(D));
LocalEntry entry;
entry.Var.Addr = addr;
Locals.insert(std::make_pair(D, entry));
}
llvm::Value *IRGenFunction::getLocalFuncData(FuncDecl *D) {
auto I = Locals.find(D);
assert(I != Locals.end() && "no entry in local map!");
return I->second.Func.Data;
}
IRGenFunction *IRGenFunction::getLocalFuncDefiner(FuncDecl *D) {
auto I = Locals.find(D);
assert(I != Locals.end() && "no entry in local map!");
return I->second.Func.Definer;
}
/// Set all the information required in order to emit references to
/// the given function.
///
/// \param data - the data pointer to use for the function
/// \param definer - the IGF for the function which originally defined
/// the local function
void IRGenFunction::setLocalFuncData(FuncDecl *D, llvm::Value *data,
IRGenFunction *definer) {
assert(!Locals.count(D));
LocalEntry entry;
entry.Func.Data = data;
entry.Func.Definer = definer;
Locals.insert(std::make_pair(D, entry));
}
/// Create an allocation on the stack.
Address IRGenFunction::createAlloca(llvm::Type *type,
Alignment alignment,
const llvm::Twine &name) {
llvm::AllocaInst *alloca = new llvm::AllocaInst(type, name, AllocaIP);
alloca->setAlignment(alignment.getValue());
return Address(alloca, alignment);
}
/// Get or create a global string constant.
///
/// \returns an i8* with a null terminator; note that embedded nulls
/// are okay
llvm::Constant *IRGenModule::getAddrOfGlobalString(llvm::StringRef data) {
// Check whether this string already exists.
auto &entry = GlobalStrings[data];
if (entry) return entry;
// If not, create it. This implicitly adds a trailing null.
auto init = llvm::ConstantDataArray::getString(LLVMContext, data);
auto global = new llvm::GlobalVariable(Module, init->getType(), true,
llvm::GlobalValue::PrivateLinkage,
init);
global->setUnnamedAddr(true);
// Drill down to make an i8*.
auto zero = llvm::ConstantInt::get(SizeTy, 0);
llvm::Constant *indices[] = { zero, zero };
auto address = llvm::ConstantExpr::getInBoundsGetElementPtr(global, indices);
// Cache and return.
entry = address;
return address;
}