mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
oneof/struct/protocol within a static method. The lookup is performed on the metatype (as one would get when using qualified syntax Type.member). Add tests to verify that this provides proper overloading behavior. As a drive-by, actually set the type of the implicit 'this' variable during name binding for a non-static method. Swift SVN r1394
526 lines
17 KiB
C++
526 lines
17 KiB
C++
//===--- Expr.cpp - Swift Language Expression ASTs ------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/ASTVisitor.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Expr methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Only allow allocation of Stmts using the allocator in ASTContext.
|
|
void *Expr::operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
|
|
// Helper functions to verify statically whether the getSourceRange()
|
|
// function has been overridden.
|
|
typedef const char (&TwoChars)[2];
|
|
|
|
template<typename Class>
|
|
inline char checkSourceRangeType(SourceRange (Class::*)() const);
|
|
|
|
inline TwoChars checkSourceRangeType(SourceRange (Expr::*)() const);
|
|
|
|
SourceRange Expr::getSourceRange() const {
|
|
switch (Kind) {
|
|
#define EXPR(ID, PARENT) \
|
|
case ExprKind::ID: \
|
|
static_assert(sizeof(checkSourceRangeType(&ID##Expr::getSourceRange)) == 1, \
|
|
#ID "Expr is missing getSourceRange()"); \
|
|
return cast<ID##Expr>(this)->getSourceRange();
|
|
#include "swift/AST/ExprNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("expression type not handled!");
|
|
}
|
|
|
|
/// getLoc - Return the caret location of the expression.
|
|
SourceLoc Expr::getLoc() const {
|
|
switch (Kind) {
|
|
#define EXPR(ID, PARENT) \
|
|
case ExprKind::ID: \
|
|
if (&Expr::getLoc != &ID##Expr::getLoc) \
|
|
return cast<ID##Expr>(this)->getLoc(); \
|
|
break;
|
|
#include "swift/AST/ExprNodes.def"
|
|
}
|
|
|
|
return getStartLoc();
|
|
}
|
|
|
|
Expr *Expr::getSemanticsProvidingExpr() {
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(this))
|
|
return PE->getSubExpr()->getSemanticsProvidingExpr();
|
|
|
|
return this;
|
|
}
|
|
|
|
Expr *Expr::getValueProvidingExpr() {
|
|
// For now, this is totally equivalent to the above.
|
|
// TODO:
|
|
// - tuple literal projection, which may become interestingly idiomatic
|
|
return getSemanticsProvidingExpr();
|
|
}
|
|
|
|
bool Expr::isImplicit() const {
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(this))
|
|
return !DRE->getLoc().isValid();
|
|
|
|
if (const ImplicitConversionExpr *ICE
|
|
= dyn_cast<ImplicitConversionExpr>(this))
|
|
return ICE->getSubExpr()->isImplicit();
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Support methods for Exprs.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
APInt IntegerLiteralExpr::getValue() const {
|
|
assert(!getType().isNull() && "Semantic analysis has not completed");
|
|
unsigned BitWidth = getType()->castTo<BuiltinIntegerType>()->getBitWidth();
|
|
|
|
llvm::APInt Value(BitWidth, 0);
|
|
bool Error = getText().getAsInteger(0, Value);
|
|
assert(!Error && "Invalid IntegerLiteral formed"); (void)Error;
|
|
assert(Value.getActiveBits() <= BitWidth && "Value too large for size");
|
|
if (Value.getBitWidth() != BitWidth)
|
|
Value = Value.zextOrTrunc(BitWidth);
|
|
return Value;
|
|
}
|
|
|
|
llvm::APFloat FloatLiteralExpr::getValue() const {
|
|
assert(!getType().isNull() && "Semantic analysis has not completed");
|
|
|
|
APFloat Val(getType()->castTo<BuiltinFloatType>()->getAPFloatSemantics());
|
|
APFloat::opStatus Res =
|
|
Val.convertFromString(getText(), llvm::APFloat::rmNearestTiesToEven);
|
|
assert(Res != APFloat::opInvalidOp && "Sema didn't reject invalid number");
|
|
(void)Res;
|
|
return Val;
|
|
}
|
|
|
|
Type OverloadSetRefExpr::getBaseType() const {
|
|
if (isa<OverloadedDeclRefExpr>(this))
|
|
return Type();
|
|
if (const OverloadedMemberRefExpr *DRE
|
|
= dyn_cast<OverloadedMemberRefExpr>(this)) {
|
|
Type BaseTy = DRE->getBase()->getType();
|
|
|
|
// Metatype types aren't considered to be base types.
|
|
// FIXME:: If metatypes stop being singletons, we'll have to change this
|
|
// and update all callers.
|
|
if (BaseTy->is<MetaTypeType>())
|
|
return Type();
|
|
|
|
return BaseTy;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled overloaded set reference expression");
|
|
}
|
|
|
|
Expr *OverloadSetRefExpr::createFilteredWithCopy(ArrayRef<ValueDecl *> Decls) {
|
|
if (OverloadedDeclRefExpr *DRE = dyn_cast<OverloadedDeclRefExpr>(this))
|
|
return OverloadedDeclRefExpr::createWithCopy(Decls, DRE->getLoc());
|
|
if (OverloadedMemberRefExpr *DRE = dyn_cast<OverloadedMemberRefExpr>(this))
|
|
return OverloadedMemberRefExpr::createWithCopy(DRE->getBase(),
|
|
DRE->getDotLoc(), Decls,
|
|
DRE->getMemberLoc());
|
|
|
|
llvm_unreachable("Unhandled overloaded set reference expression");
|
|
}
|
|
|
|
/// createWithCopy - Create and return a new OverloadedDeclRefExpr or a new
|
|
/// DeclRefExpr (if the list of decls has a single entry) from the specified
|
|
/// (non-empty) list of decls. If we end up creating an overload set, this
|
|
/// method handles copying the list of decls into ASTContext memory.
|
|
Expr *OverloadedDeclRefExpr::createWithCopy(ArrayRef<ValueDecl*> Decls,
|
|
SourceLoc Loc) {
|
|
assert(!Decls.empty() &&
|
|
"Cannot create a decl ref with an empty list of decls");
|
|
ASTContext &C = Decls[0]->getASTContext();
|
|
if (Decls.size() == 1)
|
|
return new (C) DeclRefExpr(Decls[0], Loc, Decls[0]->getTypeOfReference());
|
|
|
|
// Otherwise, copy the overload set into ASTContext memory and return the
|
|
// overload set.
|
|
return new (C) OverloadedDeclRefExpr(C.AllocateCopy(Decls), Loc,
|
|
UnstructuredDependentType::get(C));
|
|
}
|
|
|
|
Expr *OverloadedMemberRefExpr::createWithCopy(Expr *Base, SourceLoc DotLoc,
|
|
ArrayRef<ValueDecl*> Decls,
|
|
SourceLoc MemberLoc) {
|
|
assert(!Decls.empty() &&
|
|
"Cannot create an overloaded member ref with no decls");
|
|
ASTContext &C = Decls[0]->getASTContext();
|
|
|
|
if (Decls.size() == 1) {
|
|
Expr *Fn = new (C) DeclRefExpr(Decls[0], MemberLoc,
|
|
Decls[0]->getTypeOfReference());
|
|
// FIXME: If metatype types ever get a runtime representation, we'll need
|
|
// to evaluate the object.
|
|
if (Decls[0]->isInstanceMember() &&
|
|
!Base->getType()->is<MetaTypeType>()) {
|
|
return new (C) DotSyntaxCallExpr(Fn, DotLoc, Base);
|
|
}
|
|
|
|
return new (C) DotSyntaxBaseIgnoredExpr(Base, DotLoc, Fn);
|
|
}
|
|
|
|
// Otherwise, copy the overload set into the ASTContext's memory.
|
|
return new (C) OverloadedMemberRefExpr(Base, DotLoc, C.AllocateCopy(Decls),
|
|
MemberLoc,
|
|
UnstructuredDependentType::get(C));
|
|
}
|
|
|
|
SequenceExpr *SequenceExpr::create(ASTContext &ctx, ArrayRef<Expr*> elements) {
|
|
void *Buffer = ctx.Allocate(sizeof(SequenceExpr) +
|
|
elements.size() * sizeof(Expr*),
|
|
Expr::Alignment);
|
|
return ::new(Buffer) SequenceExpr(elements);
|
|
}
|
|
|
|
SourceRange TupleExpr::getSourceRange() const {
|
|
SourceLoc Start = LParenLoc;
|
|
if (!Start.isValid()) {
|
|
unsigned i = 0;
|
|
while (!getElement(i)) {
|
|
++i;
|
|
assert(i != getNumElements() && "Implicit tuple must have subexpression");
|
|
}
|
|
Start = getElement(i)->getStartLoc();
|
|
}
|
|
|
|
SourceLoc End = RParenLoc;
|
|
if (!End.isValid()) {
|
|
unsigned i = getNumElements() - 1;
|
|
while (!getElement(i)) {
|
|
--i;
|
|
assert(i != 0 && "Implicit tuple must have subexpression");
|
|
}
|
|
End = getElement(i)->getEndLoc();
|
|
}
|
|
|
|
return SourceRange(Start, End);
|
|
}
|
|
|
|
FuncExpr *FuncExpr::create(ASTContext &C, SourceLoc funcLoc,
|
|
ArrayRef<Pattern*> params, Type fnType,
|
|
BraceStmt *body, DeclContext *parent) {
|
|
unsigned nParams = params.size();
|
|
void *buf = C.Allocate(sizeof(FuncExpr) + nParams * sizeof(Pattern*),
|
|
Expr::Alignment);
|
|
FuncExpr *fn = ::new(buf) FuncExpr(funcLoc, nParams, fnType, body, parent);
|
|
for (unsigned i = 0; i != nParams; ++i)
|
|
fn->getParamsBuffer()[i] = params[i];
|
|
return fn;
|
|
}
|
|
|
|
SourceRange FuncExpr::getSourceRange() const {
|
|
return SourceRange(FuncLoc, Body->getEndLoc());
|
|
}
|
|
|
|
/// Returns the result type of the function defined by the body. For
|
|
/// an uncurried function, this is just the normal result type; for a
|
|
/// curried function, however, this is the result type of the
|
|
/// uncurried part.
|
|
///
|
|
/// Examples:
|
|
/// func(x : int) -> ((y : int) -> (int -> int))
|
|
/// The body result type is '((y : int) -> (int -> int))'.
|
|
/// func(x : int) -> (y : int) -> (int -> int)
|
|
/// The body result type is '(int -> int)'.
|
|
Type FuncExpr::getBodyResultType() const {
|
|
unsigned n = getParamPatterns().size();
|
|
Type ty = getType();
|
|
do {
|
|
ty = cast<FunctionType>(ty)->getResult();
|
|
} while (--n);
|
|
return ty;
|
|
}
|
|
|
|
static ValueDecl *getCalledValue(Expr *E) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return DRE->getDecl();
|
|
|
|
Expr *E2 = E->getValueProvidingExpr();
|
|
if (E != E2) return getCalledValue(E2);
|
|
return nullptr;
|
|
}
|
|
|
|
ValueDecl *ApplyExpr::getCalledValue() const {
|
|
return ::getCalledValue(Fn);
|
|
}
|
|
|
|
void ExplicitClosureExpr::GenerateVarDecls(unsigned NumDecls,
|
|
std::vector<VarDecl*> &Decls,
|
|
ASTContext &Context) {
|
|
while (NumDecls >= Decls.size()) {
|
|
unsigned NextIdx = Decls.size();
|
|
llvm::SmallVector<char, 4> StrBuf;
|
|
StringRef VarName = ("$" + Twine(NextIdx)).toStringRef(StrBuf);
|
|
Identifier ident = Context.getIdentifier(VarName);
|
|
SourceLoc VarLoc; // FIXME: Location?
|
|
VarDecl *var = new (Context) VarDecl(VarLoc, ident, Type(), this,
|
|
/*IsModuleScope*/false);
|
|
Decls.push_back(var);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Printing for Expr and all subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// PrintExpr - Visitor implementation of Expr::print.
|
|
class PrintExpr : public ExprVisitor<PrintExpr> {
|
|
public:
|
|
raw_ostream &OS;
|
|
unsigned Indent;
|
|
|
|
PrintExpr(raw_ostream &os, unsigned indent) : OS(os), Indent(indent) {
|
|
}
|
|
|
|
void printRec(Expr *E) {
|
|
Indent += 2;
|
|
if (E)
|
|
visit(E);
|
|
else
|
|
OS.indent(Indent) << "(**NULL EXPRESSION**)";
|
|
Indent -= 2;
|
|
}
|
|
|
|
/// FIXME: This should use ExprWalker to print children.
|
|
|
|
void printRec(Decl *D) { D->print(OS, Indent+2); }
|
|
void printRec(Stmt *S) { S->print(OS, Indent+2); }
|
|
|
|
raw_ostream &printCommon(Expr *E, const char *C) {
|
|
return OS.indent(Indent) << '(' << C << " type='" << E->getType() << '\'';
|
|
}
|
|
|
|
void visitErrorExpr(ErrorExpr *E) {
|
|
printCommon(E, "error_expr") << ')';
|
|
}
|
|
|
|
void visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
|
|
printCommon(E, "integer_literal_expr") << " value=";
|
|
if (E->getType().isNull() || E->getType()->isDependentType())
|
|
OS << E->getText();
|
|
else
|
|
OS << E->getValue();
|
|
OS << ')';
|
|
}
|
|
void visitFloatLiteralExpr(FloatLiteralExpr *E) {
|
|
printCommon(E, "float_literal_expr") << " value=" << E->getText() << ')';
|
|
}
|
|
void visitStringLiteralExpr(StringLiteralExpr *E) {
|
|
printCommon(E, "string_literal_expr") << " value=" << E->getValue() << ')';
|
|
}
|
|
void visitDeclRefExpr(DeclRefExpr *E) {
|
|
printCommon(E, "declref_expr")
|
|
<< " decl=" << E->getDecl()->getName() << ')';
|
|
}
|
|
void visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *E) {
|
|
printCommon(E, "overloadeddeclref_expr")
|
|
<< " #decls=" << E->getDecls().size();
|
|
for (Decl *D : E->getDecls()) {
|
|
OS << '\n';
|
|
printRec(D);
|
|
}
|
|
OS << ')';
|
|
}
|
|
void visitOverloadedMemberRefExpr(OverloadedMemberRefExpr *E) {
|
|
printCommon(E, "overloadedmemberref_expr")
|
|
<< "#decls=" << E->getDecls().size() << "\n"
|
|
<< "base = ";
|
|
printRec(E->getBase());
|
|
for (Decl *D : E->getDecls()) {
|
|
OS << '\n';
|
|
printRec(D);
|
|
}
|
|
OS << ')';
|
|
}
|
|
void visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
|
|
printCommon(E, "unresolved_decl_ref_expr")
|
|
<< " name=" << E->getName() << ')';
|
|
}
|
|
void visitUnresolvedMemberExpr(UnresolvedMemberExpr *E) {
|
|
printCommon(E, "unresolved_member_expr")
|
|
<< " name='" << E->getName() << "')";
|
|
}
|
|
void visitParenExpr(ParenExpr *E) {
|
|
printCommon(E, "paren_expr") << '\n';
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
void visitTupleExpr(TupleExpr *E) {
|
|
printCommon(E, "tuple_expr");
|
|
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i) {
|
|
OS << '\n';
|
|
if (E->getElement(i))
|
|
printRec(E->getElement(i));
|
|
else
|
|
OS.indent(Indent+2) << "<<tuple element default value>>";
|
|
}
|
|
OS << ')';
|
|
}
|
|
void visitUnresolvedDotExpr(UnresolvedDotExpr *E) {
|
|
printCommon(E, "unresolved_dot_expr")
|
|
<< " field '" << E->getName().str() << "'";
|
|
if (E->getBase()) {
|
|
OS << '\n';
|
|
printRec(E->getBase());
|
|
}
|
|
OS << ')';
|
|
}
|
|
void visitModuleExpr(ModuleExpr *E) {
|
|
printCommon(E, "module_expr") << ')';
|
|
}
|
|
void visitSyntacticTupleElementExpr(TupleElementExpr *E) {
|
|
printCommon(E, "syntactic_tuple_element_expr")
|
|
<< " field #" << E->getFieldNumber() << '\n';
|
|
printRec(E->getBase());
|
|
OS << ')';
|
|
}
|
|
void visitImplicitThisTupleElementExpr(TupleElementExpr *E) {
|
|
printCommon(E, "implicit_this_tuple_element_expr")
|
|
<< " field #" << E->getFieldNumber() << '\n';
|
|
printRec(E->getBase());
|
|
OS << ')';
|
|
}
|
|
|
|
|
|
void visitTupleShuffleExpr(TupleShuffleExpr *E) {
|
|
printCommon(E, "tuple_shuffle_expr") << " elements=[";
|
|
for (unsigned i = 0, e = E->getElementMapping().size(); i != e; ++i) {
|
|
if (i) OS << ", ";
|
|
OS << E->getElementMapping()[i];
|
|
}
|
|
OS << "]\n";
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
void visitLookThroughOneofExpr(LookThroughOneofExpr *E) {
|
|
printCommon(E, "look_through_oneof_expr") << '\n';
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
void visitParameterRenameExpr(ParameterRenameExpr *E) {
|
|
printCommon(E, "parameter_rename_expr") << '\n';
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
void visitLoadExpr(LoadExpr *E) {
|
|
printCommon(E, "load_expr") << '\n';
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
void visitMaterializeExpr(MaterializeExpr *E) {
|
|
printCommon(E, "materialize_expr") << '\n';
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
void visitRequalifyExpr(RequalifyExpr *E) {
|
|
printCommon(E, "requalify_expr") << '\n';
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
|
|
void visitAddressOfExpr(AddressOfExpr *E) {
|
|
printCommon(E, "address_of_expr") << '\n';
|
|
printRec(E->getSubExpr());
|
|
OS << ')';
|
|
}
|
|
void visitSequenceExpr(SequenceExpr *E) {
|
|
printCommon(E, "sequence_expr") << '\n';
|
|
for (unsigned i = 0, e = E->getNumElements(); i != e; ++i) {
|
|
OS << '\n';
|
|
printRec(E->getElement(i));
|
|
}
|
|
OS << ')';
|
|
}
|
|
void visitFuncExpr(FuncExpr *E) {
|
|
printCommon(E, "func_expr") << '\n';
|
|
printRec(E->getBody());
|
|
OS << ')';
|
|
}
|
|
void visitExplicitClosureExpr(ExplicitClosureExpr *E) {
|
|
printCommon(E, "explicit_closure_expr") << '\n';
|
|
printRec(E->getBody());
|
|
OS << ')';
|
|
}
|
|
void visitImplicitClosureExpr(ImplicitClosureExpr *E) {
|
|
printCommon(E, "implicit_closure_expr") << '\n';
|
|
printRec(E->getBody());
|
|
OS << ')';
|
|
}
|
|
|
|
void printApplyExpr(ApplyExpr *E, const char *NodeName) {
|
|
printCommon(E, NodeName) << '\n';
|
|
printRec(E->getFn());
|
|
OS << '\n';
|
|
printRec(E->getArg());
|
|
OS << ')';
|
|
}
|
|
|
|
void visitCallExpr(CallExpr *E) {
|
|
printApplyExpr(E, "call_expr");
|
|
}
|
|
void visitUnaryExpr(UnaryExpr *E) {
|
|
printApplyExpr(E, "unary_expr");
|
|
}
|
|
void visitBinaryExpr(BinaryExpr *E) {
|
|
printApplyExpr(E, "binary_expr");
|
|
}
|
|
void visitConstructorCallExpr(ConstructorCallExpr *E) {
|
|
printApplyExpr(E, "constructor_call_expr");
|
|
}
|
|
void visitDotSyntaxCallExpr(DotSyntaxCallExpr *E) {
|
|
printApplyExpr(E, "dot_syntax_call_expr");
|
|
}
|
|
void visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E) {
|
|
printCommon(E, "dot_syntax_base_ignored") << '\n';
|
|
printRec(E->getLHS());
|
|
OS << '\n';
|
|
printRec(E->getRHS());
|
|
OS << ')';
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
void Expr::dump() const {
|
|
print(llvm::errs());
|
|
llvm::errs() << '\n';
|
|
}
|
|
|
|
void Expr::print(raw_ostream &OS, unsigned Indent) const {
|
|
PrintExpr(OS, Indent).visit(const_cast<Expr*>(this));
|
|
}
|