mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
469 lines
17 KiB
C++
469 lines
17 KiB
C++
//===--- NameBinding.cpp - Name Binding -----------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements name binding for Swift.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Subsystems.h"
|
|
#include "NameLookup.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/Component.h"
|
|
#include "swift/AST/Diagnostics.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/system_error.h"
|
|
#include "llvm/Support/Path.h"
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NameBinder
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
typedef TranslationUnit::ImportedModule ImportedModule;
|
|
typedef llvm::PointerUnion<const ImportedModule*, OneOfType*> BoundScope;
|
|
|
|
namespace {
|
|
class NameBinder {
|
|
llvm::error_code findModule(StringRef Module,
|
|
SourceLoc ImportLoc,
|
|
llvm::OwningPtr<llvm::MemoryBuffer> &Buffer);
|
|
|
|
public:
|
|
TranslationUnit *TU;
|
|
ASTContext &Context;
|
|
llvm::StringMap<TranslationUnit*> LoadedModules;
|
|
bool ImportedBuiltinModule;
|
|
|
|
NameBinder(TranslationUnit *TU)
|
|
: TU(TU), Context(TU->Ctx), ImportedBuiltinModule(false) {
|
|
}
|
|
~NameBinder() {
|
|
}
|
|
|
|
template<typename ...ArgTypes>
|
|
InFlightDiagnostic diagnose(ArgTypes... Args) {
|
|
return Context.Diags.diagnose(Args...);
|
|
}
|
|
|
|
void addImport(ImportDecl *ID, SmallVectorImpl<ImportedModule> &Result);
|
|
void addStandardLibraryImport(SmallVectorImpl<ImportedModule> &Result);
|
|
|
|
/// resolveIdentifierType - Perform name binding for a IdentifierType,
|
|
/// resolving it or diagnosing the error as appropriate and return true on
|
|
/// failure. On failure, this leaves IdentifierType alone, otherwise it
|
|
/// fills in the Components.
|
|
bool resolveIdentifierType(IdentifierType *DNT);
|
|
|
|
private:
|
|
/// getModule - Load a module referenced by an import statement,
|
|
/// emitting an error at the specified location and returning null on
|
|
/// failure.
|
|
Module *getModule(std::pair<Identifier,SourceLoc> ModuleID);
|
|
};
|
|
}
|
|
|
|
llvm::error_code NameBinder::findModule(StringRef Module,
|
|
SourceLoc ImportLoc,
|
|
llvm::OwningPtr<llvm::MemoryBuffer> &Buffer) {
|
|
std::string ModuleFilename = Module.str() + std::string(".swift");
|
|
|
|
llvm::SmallString<128> InputFilename;
|
|
|
|
// First, search in the directory corresponding to the import location.
|
|
// FIXME: This screams for a proper FileManager abstraction.
|
|
llvm::SourceMgr &SourceMgr = Context.SourceMgr;
|
|
int CurrentBufferID = SourceMgr.FindBufferContainingLoc(ImportLoc.Value);
|
|
if (CurrentBufferID >= 0) {
|
|
const llvm::MemoryBuffer *ImportingBuffer
|
|
= SourceMgr.getBufferInfo(CurrentBufferID).Buffer;
|
|
StringRef CurrentDirectory
|
|
= llvm::sys::path::parent_path(ImportingBuffer->getBufferIdentifier());
|
|
if (!CurrentDirectory.empty()) {
|
|
InputFilename = CurrentDirectory;
|
|
llvm::sys::path::append(InputFilename, ModuleFilename);
|
|
llvm::error_code Err = llvm::MemoryBuffer::getFile(InputFilename, Buffer);
|
|
if (!Err)
|
|
return Err;
|
|
}
|
|
}
|
|
|
|
// Second, search in the current directory.
|
|
llvm::error_code Err = llvm::MemoryBuffer::getFile(ModuleFilename, Buffer);
|
|
if (!Err)
|
|
return Err;
|
|
|
|
// If we fail, search each import search path.
|
|
for (auto Path : Context.ImportSearchPaths) {
|
|
InputFilename = Path;
|
|
llvm::sys::path::append(InputFilename, ModuleFilename);
|
|
Err = llvm::MemoryBuffer::getFile(InputFilename, Buffer);
|
|
if (!Err)
|
|
return Err;
|
|
}
|
|
|
|
return Err;
|
|
}
|
|
|
|
Module *NameBinder::getModule(std::pair<Identifier, SourceLoc> ModuleID) {
|
|
// TODO: We currently just recursively parse referenced modules. This works
|
|
// fine for now since they are each a single file. Ultimately we'll want a
|
|
// compiled form of AST's like clang's that support lazy deserialization.
|
|
|
|
// FIXME: We shouldn't really allow arbitrary modules to import Builtin.
|
|
if (ModuleID.first.str() == "Builtin") {
|
|
ImportedBuiltinModule = true;
|
|
return TU->Ctx.TheBuiltinModule;
|
|
}
|
|
|
|
TranslationUnit *ImportedTU = LoadedModules.lookup(ModuleID.first.str());
|
|
if (ImportedTU) return ImportedTU;
|
|
|
|
// Open the input file.
|
|
llvm::OwningPtr<llvm::MemoryBuffer> InputFile;
|
|
if (llvm::error_code Err = findModule(ModuleID.first.str(), ModuleID.second,
|
|
InputFile)) {
|
|
diagnose(ModuleID.second, diag::sema_opening_import,
|
|
ModuleID.first.str(), Err.message());
|
|
return 0;
|
|
}
|
|
|
|
unsigned BufferID =
|
|
Context.SourceMgr.AddNewSourceBuffer(InputFile.take(),
|
|
ModuleID.second.Value);
|
|
|
|
// For now, treat all separate modules as unique components.
|
|
Component *Comp = new (Context.Allocate<Component>(1)) Component();
|
|
|
|
// Parse the translation unit, but don't do name binding or type checking.
|
|
// This can produce new errors etc if the input is erroneous.
|
|
ImportedTU = parseTranslationUnit(BufferID, Comp, Context,
|
|
/*IsMainModule*/false);
|
|
if (ImportedTU == 0)
|
|
return 0;
|
|
LoadedModules[ModuleID.first.str()] = ImportedTU;
|
|
|
|
// We have to do name binding on it to ensure that types are fully resolved.
|
|
// This should eventually be eliminated by having actual fully resolved binary
|
|
// dumps of the code instead of reparsing though.
|
|
// FIXME: We also need to deal with circular imports!
|
|
performNameBinding(ImportedTU);
|
|
performTypeChecking(ImportedTU);
|
|
|
|
return ImportedTU;
|
|
}
|
|
|
|
|
|
void NameBinder::addImport(ImportDecl *ID,
|
|
SmallVectorImpl<ImportedModule> &Result) {
|
|
ArrayRef<ImportDecl::AccessPathElement> Path = ID->getAccessPath();
|
|
Module *M = getModule(Path[0]);
|
|
if (M == 0) return;
|
|
|
|
// FIXME: Validate the access path against the module. Reject things like
|
|
// import swift.aslkdfja
|
|
if (Path.size() > 2) {
|
|
diagnose(Path[2].second, diag::invalid_declaration_imported);
|
|
return;
|
|
}
|
|
|
|
Result.push_back(std::make_pair(Path.slice(1), M));
|
|
}
|
|
|
|
void NameBinder::
|
|
addStandardLibraryImport(SmallVectorImpl<ImportedModule> &Result) {
|
|
// FIXME: The current model is that if a module doesn't explicitly import
|
|
// Builtin or swift, we implicitly import swift. This isn't really ideal.
|
|
if (ImportedBuiltinModule)
|
|
return;
|
|
if (LoadedModules.lookup("swift"))
|
|
return;
|
|
if (TU->Name.str() == "swift")
|
|
return;
|
|
|
|
Identifier SwiftID = Context.getIdentifier("swift");
|
|
Module *M = getModule(std::make_pair(SwiftID, TU->Body->getStartLoc()));
|
|
if (M == 0) return;
|
|
Result.push_back(std::make_pair(Module::AccessPathTy(), M));
|
|
}
|
|
|
|
/// resolveIdentifierType - Perform name binding for a IdentifierType,
|
|
/// resolving it or diagnosing the error as appropriate and return true on
|
|
/// failure. On failure, this leaves IdentifierType alone, otherwise it fills
|
|
/// in the Components.
|
|
bool NameBinder::resolveIdentifierType(IdentifierType *DNT) {
|
|
const MutableArrayRef<IdentifierType::Component> &Components =DNT->Components;
|
|
|
|
// If name lookup for the base of the type didn't get resolved in the
|
|
// parsing phase, do a global lookup for it.
|
|
if (Components[0].Value.isNull()) {
|
|
Identifier Name = Components[0].Id;
|
|
SourceLoc Loc = Components[0].Loc;
|
|
|
|
// Perform an unqualified lookup.
|
|
SmallVector<ValueDecl*, 4> Decls;
|
|
TU->lookupGlobalValue(Name, NLKind::UnqualifiedLookup, Decls);
|
|
|
|
// If we find multiple results, we have an ambiguity error.
|
|
// FIXME: This should be reevaluated and probably turned into a new NLKind.
|
|
// Certain matches (e.g. of a function) should just be filtered out/ignored.
|
|
if (Decls.size() > 1) {
|
|
diagnose(Loc, diag::abiguous_type_base, Name)
|
|
<< SourceRange(Loc, Components.back().Loc);
|
|
for (ValueDecl *D : Decls)
|
|
diagnose(D->getLocStart(), diag::found_candidate);
|
|
return true;
|
|
}
|
|
|
|
if (!Decls.empty()) {
|
|
Components[0].Value = Decls[0];
|
|
} else {
|
|
// If that fails, this may be the name of a module, try looking that up.
|
|
for (const ImportedModule &ImpEntry : TU->getImportedModules())
|
|
if (ImpEntry.second->Name == Name) {
|
|
Components[0].Value = ImpEntry.second;
|
|
break;
|
|
}
|
|
|
|
// If we still don't have anything, we fail.
|
|
if (Components[0].Value.isNull()) {
|
|
diagnose(Loc, Components.size() == 1 ?
|
|
diag::use_undeclared_type : diag::unknown_name_in_type, Name)
|
|
<< SourceRange(Loc, Components.back().Loc);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(!Components[0].Value.isNull() && "Failed to get a base");
|
|
|
|
// Now that we have a base, iteratively resolve subsequent member entries.
|
|
auto LastOne = Components[0];
|
|
for (auto &C : Components.slice(1, Components.size()-1)) {
|
|
// TODO: Only support digging into modules so far.
|
|
if (auto M = LastOne.Value.dyn_cast<Module*>()) {
|
|
#if 0
|
|
// FIXME: Why is this lookupType instead of lookupValue? How are they
|
|
// different?
|
|
#endif
|
|
C.Value = M->lookupType(Module::AccessPathTy(), C.Id,
|
|
NLKind::QualifiedLookup);
|
|
} else {
|
|
diagnose(C.Loc, diag::unknown_dotted_type_base, LastOne.Id)
|
|
<< SourceRange(Components[0].Loc, Components.back().Loc);
|
|
return true;
|
|
}
|
|
|
|
if (C.Value.isNull()) {
|
|
diagnose(C.Loc, diag::invalid_member_type, C.Id, LastOne.Id)
|
|
<< SourceRange(Components[0].Loc, Components.back().Loc);
|
|
return true;
|
|
}
|
|
|
|
LastOne = C;
|
|
}
|
|
|
|
// Finally, sanity check that the last value is a type.
|
|
if (ValueDecl *Last = Components.back().Value.dyn_cast<ValueDecl*>())
|
|
if (auto TAD = dyn_cast<TypeAliasDecl>(Last)) {
|
|
Components[Components.size()-1].Value = TAD->getAliasType();
|
|
return false;
|
|
}
|
|
|
|
diagnose(Components.back().Loc,
|
|
Components.size() == 1 ? diag::named_definition_isnt_type :
|
|
diag::dotted_reference_not_type, Components.back().Id)
|
|
<< SourceRange(Components[0].Loc, Components.back().Loc);
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// performNameBinding
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// BindNameToIVar - We have an unresolved reference to an identifier in some
|
|
/// FuncDecl. Check to see if this is a reference to an instance variable,
|
|
/// and return an AST for the reference if so. If not, return null with no
|
|
/// error emitted.
|
|
static Expr *BindNameToIVar(UnresolvedDeclRefExpr *UDRE, FuncDecl *CurFD,
|
|
NameBinder &Binder) {
|
|
Type ExtendedType = CurFD->getExtensionType();
|
|
if (ExtendedType.isNull()) return 0;
|
|
|
|
// For a static method, we perform name lookup in the corresponding metatype.
|
|
TypeAliasDecl *StaticAlias = 0;
|
|
if (CurFD->isStatic()) {
|
|
if (ProtocolType *Proto = ExtendedType->getAs<ProtocolType>())
|
|
StaticAlias = Proto->TheDecl;
|
|
else if (OneOfType *OneOf = ExtendedType->getAs<OneOfType>())
|
|
StaticAlias = OneOf->getDecl();
|
|
else
|
|
return 0;
|
|
|
|
ExtendedType = MetaTypeType::get(StaticAlias);
|
|
}
|
|
|
|
// Do a full "dot syntax" name lookup with the implicit 'this' base.
|
|
MemberLookup Lookup(ExtendedType, UDRE->getName(), *Binder.TU);
|
|
|
|
// On failure, this isn't an member reference.
|
|
if (!Lookup.isSuccess()) return 0;
|
|
|
|
// On success, this is a member reference. Build either a reference to the
|
|
// implicit 'this' VarDecl (for instance methods) or to the metaclass
|
|
// instance (for static methods).
|
|
Expr *BaseExpr;
|
|
if (StaticAlias) {
|
|
BaseExpr = new (Binder.Context) DeclRefExpr(StaticAlias, SourceLoc(),
|
|
StaticAlias->getTypeOfReference());
|
|
} else {
|
|
VarDecl *ThisDecl = CurFD->getImplicitThisDecl();
|
|
assert(ThisDecl && "Couldn't find decl for 'this'");
|
|
BaseExpr = new (Binder.Context) DeclRefExpr(ThisDecl, SourceLoc(),
|
|
ThisDecl->getTypeOfReference());
|
|
}
|
|
|
|
return Lookup.createResultAST(BaseExpr, SourceLoc(), UDRE->getLoc(),
|
|
Binder.Context);
|
|
}
|
|
|
|
/// BindName - Bind an UnresolvedDeclRefExpr by performing name lookup and
|
|
/// returning the resultant expression. If this reference is inside of a
|
|
/// FuncDecl (i.e. in a function body, not at global scope) then CurFD is the
|
|
/// innermost function, otherwise null.
|
|
static Expr *BindName(UnresolvedDeclRefExpr *UDRE, FuncDecl *CurFD,
|
|
NameBinder &Binder) {
|
|
|
|
// If we are inside of a method, check to see if there are any ivars in scope,
|
|
// and if so, whether this is a reference to one of them.
|
|
if (CurFD)
|
|
if (Expr *E = BindNameToIVar(UDRE, CurFD, Binder))
|
|
return E;
|
|
|
|
// Process UnresolvedDeclRefExpr by doing an unqualified lookup.
|
|
Identifier Name = UDRE->getName();
|
|
SourceLoc Loc = UDRE->getLoc();
|
|
SmallVector<ValueDecl*, 4> Decls;
|
|
// Perform standard value name lookup.
|
|
Binder.TU->lookupGlobalValue(Name, NLKind::UnqualifiedLookup, Decls);
|
|
|
|
// If that fails, this may be the name of a module, try looking that up.
|
|
if (Decls.empty()) {
|
|
for (const ImportedModule &ImpEntry : Binder.TU->getImportedModules())
|
|
if (ImpEntry.second->Name == Name) {
|
|
ModuleType *MT = ModuleType::get(ImpEntry.second);
|
|
return new (Binder.Context) ModuleExpr(Loc, MT);
|
|
}
|
|
}
|
|
|
|
if (Decls.empty()) {
|
|
Binder.diagnose(Loc, diag::use_unresolved_identifier, Name);
|
|
return new (Binder.Context) ErrorExpr(Loc);
|
|
}
|
|
|
|
return OverloadedDeclRefExpr::createWithCopy(Decls, Loc);
|
|
}
|
|
|
|
|
|
/// performNameBinding - Once parsing is complete, this walks the AST to
|
|
/// resolve names and do other top-level validation.
|
|
///
|
|
/// At this parsing has been performed, but we still have UnresolvedDeclRefExpr
|
|
/// nodes for unresolved value names, and we may have unresolved type names as
|
|
/// well. This handles import directives and forward references.
|
|
void swift::performNameBinding(TranslationUnit *TU) {
|
|
NameBinder Binder(TU);
|
|
|
|
SmallVector<ImportedModule, 8> ImportedModules;
|
|
|
|
// Do a prepass over the declarations to find and load the imported modules.
|
|
for (auto Elt : TU->Body->getElements())
|
|
if (Decl *D = Elt.dyn_cast<Decl*>()) {
|
|
if (ImportDecl *ID = dyn_cast<ImportDecl>(D))
|
|
Binder.addImport(ID, ImportedModules);
|
|
}
|
|
|
|
Binder.addStandardLibraryImport(ImportedModules);
|
|
|
|
TU->setImportedModules(TU->Ctx.AllocateCopy(ImportedModules));
|
|
|
|
// Loop over all the unresolved dotted types in the translation unit,
|
|
// resolving them if possible.
|
|
for (IdentifierType *DNT : TU->getUnresolvedIdentifierTypes()) {
|
|
if (Binder.resolveIdentifierType(DNT)) {
|
|
TypeBase *Error = TU->Ctx.TheErrorType.getPointer();
|
|
|
|
// This IdentifierType resolved to the error type.
|
|
for (auto &C : DNT->Components)
|
|
C.Value = Error;
|
|
}
|
|
}
|
|
|
|
struct NameBindingWalker : public ASTWalker {
|
|
NameBinder &Binder;
|
|
NameBindingWalker(NameBinder &binder) : Binder(binder) {}
|
|
|
|
/// CurFuncDecls - This is the stack of FuncDecls that we're nested in.
|
|
SmallVector<FuncDecl*, 4> CurFuncDecls;
|
|
|
|
virtual bool walkToDeclPre(Decl *D) {
|
|
if (FuncDecl *FD = dyn_cast<FuncDecl>(D)) {
|
|
CurFuncDecls.push_back(FD);
|
|
|
|
// If this is an instance method with a body, set the type of it's
|
|
// implicit 'this' variable.
|
|
if (FD->getBody())
|
|
if (Type ThisTy = FD->computeThisType()) {
|
|
// References to the 'this' declaration will add back the lvalue
|
|
// type as appropriate.
|
|
if (LValueType *LValue = ThisTy->getAs<LValueType>())
|
|
ThisTy = LValue->getObjectType();
|
|
|
|
FD->getImplicitThisDecl()->setType(ThisTy);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
virtual bool walkToDeclPost(Decl *D) {
|
|
if (isa<FuncDecl>(D)) {
|
|
assert(CurFuncDecls.back() == D && "Decl misbalance");
|
|
CurFuncDecls.pop_back();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Expr *walkToExprPost(Expr *E) {
|
|
if (UnresolvedDeclRefExpr *UDRE = dyn_cast<UnresolvedDeclRefExpr>(E)) {
|
|
return BindName(UDRE, CurFuncDecls.empty() ? 0 : CurFuncDecls.back(),
|
|
Binder);
|
|
}
|
|
return E;
|
|
}
|
|
};
|
|
NameBindingWalker walker(Binder);
|
|
|
|
// Now that we know the top-level value names, go through and resolve any
|
|
// UnresolvedDeclRefExprs that exist.
|
|
TU->Body = cast<BraceStmt>(TU->Body->walk(walker));
|
|
|
|
TU->ASTStage = TranslationUnit::NameBound;
|
|
verify(TU);
|
|
}
|
|
|