Files
swift-mirror/lib/SIL/Utils/DynamicCasts.cpp
Doug Gregor bc4cf1236b [SIL] Generalize CastingIsolatedConformances to CheckedCastInstOptions
We are going to need to add more flags to the various checked cast
instructions. Generalize the CastingIsolatedConformances bit in all of
these SIL instructions to an "options" struct that's easier to extend.

Precursor to rdar://152335805.
2025-06-04 17:12:28 -07:00

1533 lines
59 KiB
C++

//===--- DynamicCasts.cpp - Utilities for dynamic casts -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/DynamicCasts.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace Lowering;
static unsigned getAnyMetatypeDepth(CanType type) {
unsigned depth = 0;
while (auto metatype = dyn_cast<AnyMetatypeType>(type)) {
type = metatype.getInstanceType();
++depth;
}
return depth;
}
static bool
mayBridgeToObjectiveC(ModuleDecl *M, CanType T) {
// FIXME: Disable when we don't support Objective-C interoperability?
return true;
}
static bool
mustBridgeToSwiftValueBox(ModuleDecl *M, CanType T) {
// If the target type is either an unknown dynamic type, or statically
// known to bridge, the cast may succeed.
if (T->hasArchetype())
return false;
if (T->isAnyExistentialType())
return false;
// getBridgedToObjC() might return a null-type for some types
// whose bridging implementation is allowed to live elsewhere. Exclude this
// case here.
if (auto N = T->getAnyNominal())
if (M->getASTContext().isTypeBridgedInExternalModule(N))
return false;
return !M->getASTContext().getBridgedToObjC(M, T);
}
static bool canClassOrSuperclassesHaveUnknownSubclasses(ClassDecl *CD,
bool isWholeModuleOpts) {
while (CD) {
// Open classes can always have unknown subclasses.
if (CD->getEffectiveAccess() == AccessLevel::Open)
return true;
// Internal and public classes may have unknown subclasses if we are not in
// whole-module-optimization mode.
if (CD->getEffectiveAccess() >= AccessLevel::Internal &&
!isWholeModuleOpts)
return true;
if (!CD->hasSuperclass())
break;
CD = CD->getSuperclassDecl();
}
return false;
}
static CanType unwrapExistential(CanType e) {
assert(e.isExistentialType());
if (auto et = dyn_cast<ExistentialType>(e))
return et.getConstraintType();
return e;
}
/// Try to classify a conversion from non-existential type
/// into an existential type by performing a static check
/// of protocol conformances if it is possible.
static DynamicCastFeasibility
classifyDynamicCastToProtocol(SILFunction *function, CanType source, CanType target,
bool isWholeModuleOpts) {
assert(target.isExistentialType() &&
"target should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
auto *TargetProtocol = cast_or_null<ProtocolDecl>(target.getAnyNominal());
if (!TargetProtocol)
return DynamicCastFeasibility::MaySucceed;
// If the target is a parameterized protocol type, checkConformance
// is insufficient to prove the feasibility of the cast as it does not
// check the additional requirements.
// FIXME: This is a weak predicate that doesn't take into account
// class compositions - since any C & P<T> doesn't work yet anyways.
if (isa<ParameterizedProtocolType>(unwrapExistential(target)))
return DynamicCastFeasibility::MaySucceed;
// If checkConformance() returns a valid conformance, then all conditional
// requirements were satisfied.
if (auto conformance = checkConformance(source, TargetProtocol)) {
if (!matchesActorIsolation(conformance, function))
return DynamicCastFeasibility::MaySucceed;
return DynamicCastFeasibility::WillSucceed;
}
auto *SourceNominalTy = source.getAnyNominal();
if (!SourceNominalTy)
return DynamicCastFeasibility::MaySucceed;
// Protocol types may conform to their own protocols (or other protocols)
// in the future.
if (source->isAnyExistentialType()) {
return DynamicCastFeasibility::MaySucceed;
}
// If it is a class and it can be proven that this class and its
// superclasses cannot have unknown subclasses, then it is safe to proceed.
if (auto *CD = source.getClassOrBoundGenericClass()) {
if (canClassOrSuperclassesHaveUnknownSubclasses(CD, isWholeModuleOpts))
return DynamicCastFeasibility::MaySucceed;
// Derived types may conform to the protocol.
if (!CD->isFinal()) {
// TODO: If it is a private type or internal type and we
// can prove that there are no derived types conforming to a
// protocol, then we can still return WillFail.
return DynamicCastFeasibility::MaySucceed;
}
}
// The WillFail conditions below assume any possible conformance on the
// nominal source type has been ruled out. The prior checkConformance query
// identified any definite conformance. Now check if there is already a known
// conditional conformance on the nominal type with requirements that were
// not proven.
//
// TODO: The TypeChecker can easily prove that some requirements cannot be
// met. Returning WillFail in those cases would be more optimal. To do that,
// the checkConformance interface needs to be reformulated as a query, and
// the implementation, including checkGenericArguments, needs to be taught to
// recognize that types with archetypes may potentially succeed.
if (auto conformance = lookupConformance(source, TargetProtocol)) {
assert(!conformance.getConditionalRequirements().empty());
return DynamicCastFeasibility::MaySucceed;
}
// If the source type is file-private or target protocol is file-private,
// then conformances cannot be changed at run-time, because only this
// file could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (SourceNominalTy->getEffectiveAccess() <= AccessLevel::FilePrivate ||
TargetProtocol->getEffectiveAccess() <= AccessLevel::FilePrivate) {
// This cast is always false. Replace it with a branch to the
// failure block.
return DynamicCastFeasibility::WillFail;
}
// AnyHashable is a special case: although it's a struct, there maybe another
// type conforming to it and to the TargetProtocol at the same time.
if (source->isAnyHashable())
return DynamicCastFeasibility::MaySucceed;
// If we are in a whole-module compilation and
// if the source type is internal or target protocol is internal,
// then conformances cannot be changed at run-time, because only this
// module could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (isWholeModuleOpts &&
(SourceNominalTy->getEffectiveAccess() <= AccessLevel::Internal ||
TargetProtocol->getEffectiveAccess() <= AccessLevel::Internal)) {
return DynamicCastFeasibility::WillFail;
}
return DynamicCastFeasibility::MaySucceed;
}
static DynamicCastFeasibility
classifyDynamicCastFromProtocol(ModuleDecl *M, CanType source, CanType target,
bool isWholeModuleOpts) {
assert(source.isExistentialType() &&
"source should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
// Casts from class existential into a non-class can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
!mayBridgeToObjectiveC(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target) ||
isa<MetatypeType>(target)) &&
"Target should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// TODO: maybe prove that certain conformances are impossible?
return DynamicCastFeasibility::MaySucceed;
}
/// Returns the existential type associated with the Hashable
/// protocol, if it can be found.
static CanType getHashableExistentialType(ModuleDecl *M) {
auto hashable =
M->getASTContext().getProtocol(KnownProtocolKind::Hashable);
if (!hashable) return CanType();
return hashable->getDeclaredInterfaceType()->getCanonicalType();
}
// Distinguish between class-bound types that might be AnyObject vs other
// class-bound types. Only types that are potentially AnyObject might have a
// transparent runtime type wrapper like __SwiftValue. This must look through
// all optional types because dynamic casting sees through them.
static bool isPotentiallyAnyObject(Type type) {
Type unwrappedTy = type->lookThroughAllOptionalTypes();
if (auto archetype = unwrappedTy->getAs<ArchetypeType>()) {
for (auto *proto : archetype->getConformsTo()) {
if (!proto->getInvertibleProtocolKind())
return false;
}
return !archetype->getSuperclass();
}
return unwrappedTy->isAnyObject();
}
// Returns true if casting \p sourceFormalType to \p targetFormalType preserves
// ownership.
//
// Casting preserves ownership when all references from the source value are
// forwarded into the result value (without unbalanced retains or releases).
//
// When both the source and target types of checked-cast preserve ownership,
// then the cast is compatible with guaranteed ownership. A guaranteed
// compatible cast cannot release any references within its operand's value
// and cannot retain any references owned by its result.
//
// A type's ownership might not be preserved by a dynamic cast if it is either
// (A) a potentially bridged value
// or
// (B) potentially wrapped in a transparent type, which is equivalent to
// isPotentiallyAnyObject()
//
// Given:
// let source: sourceType
// let dest = source as! targetType
//
// Ownership conversion happens when
//
// (A) one type is a bridged value and the other is an object:
//
// (A1) Boxing: <trivial> as! Object instantiates references in Object
// Presumably, Object's type must be class-bound, but this is not
// currently checked.
//
// (A2) Unboxing: Object as! <trivial> destroys references in Object
// Object may be any type that can hold an object, including
// non-class-bound archetypes and existentials.
//
// (B) one type is transparently wrapped in __SwiftValue, while the other is
// unwrapped. Given:
//
// class C : Hashable {}
// let a = AnyHashable(C())
//
// (B1) When the substituted source type is AnyHashable and the
// substituted destination type is AnyObject, the cast
// instantiates an owned __SwiftValue:
//
// // instantiates __SwiftValue
// let b = a as! AnyObject
// or
// let b = a as! T where T.self == AnyObject.self
//
// (B2) When the substituted source type is Any or AnyObject, and the
// substituted destination type is not Any or AnyObject, the cast
// releases the owned __SwiftValue:
//
// let c = b as! C // releases __SwiftValue
//
// After unwrapping Optional, the type may fall into one of
// the following categories that are relevant for cast ownership:
//
// Class-bound types (hasReferenceSemantics() && !isPotentiallyAnyObject())
// - includes classes, class-bound existentials other than AnyObject,
// class-bound archetypes with a superclass or protocol constraint,
// objc types, blocks, Builtin.NativeObject, etc.
// - excludes any type that are potentially AnyObject after substitution
// - the value is a single reference
// - the single reference is "known unwrapped". It never transparently wraps the
// underlying dynamically typed value in another type, such as __SwiftValue
// - casting directly forwards the reference
//
// Potentially bridged values:
// - includes struct, enum, non-class archetype, non-class existential,
// and non-objc-metatype
// - these types are potentially trivial after substitution. If so, then they
// convert to a reference when casting to AnyObject or certain classes
//
// Any and AnyObject existentials:
// - although called existentials, their type is a protocol composition
// - these do not include existentials with constraints
// - these are very special types, unlike normal existentials...
// - the immediately erased value may itself be an existential
// (an AnyObject existential can be wrapped within an Any existential!)
// - the underlying dynamically typed value may be transparently wrapped in
// __SwiftValue
//
// These type categories are disjoint, except that a non-class archetype is both
// potentially bridged and potentially Any or AnyObject after substitution.
//
// TODO: In the future, when the runtime stops wrapping nontrivial types inside
// __SwiftValue, cases (B1) and (B2) above will no longer apply. At that time,
// expand ownership preserving cast types to AnyObject. Then remove the
// isPotentiallyAnyObject() check.
bool swift::doesCastPreserveOwnershipForTypes(SILModule &module,
CanType sourceType,
CanType targetType) {
if (!canIRGenUseScalarCheckedCastInstructions(module, sourceType, targetType))
return false;
// (B2) unwrapping
if (isPotentiallyAnyObject(sourceType))
return false;
// (B1) wrapping
if (isPotentiallyAnyObject(targetType)) {
// A class type cannot be wrapped in __SwiftValue, so casting
// from a class to AnyObject preserves ownership.
return
sourceType->mayHaveSuperclass() || sourceType->isClassExistentialType();
}
return true;
}
bool SILDynamicCastInst::isRCIdentityPreserving() const {
// Casts which cast from a trivial type, like a metatype, to something which
// is retainable (or vice versa), like an AnyObject, are not RC identity
// preserving.
// On some platforms such casts dynamically allocate a ref-counted box for the
// metatype. Naturally that is the place where a new rc-identity begins.
// Therefore such a cast is introducing a new rc identical object.
//
// If RCIdentityAnalysis would look through such a cast, ARC optimizations
// would get confused and might eliminate a retain of such an object
// completely.
SILFunction &f = *getFunction();
if (getSourceLoweredType().isTrivial(f)
&& getTargetLoweredType().isTrivial(f)) {
return true;
}
return doesCastPreserveOwnershipForTypes(f.getModule(), getSourceFormalType(),
getTargetFormalType());
}
/// Check if a given type conforms to _BridgedToObjectiveC protocol.
bool swift::isObjectiveCBridgeable(CanType Ty) {
// Retrieve the _BridgedToObjectiveC protocol.
auto bridgedProto =
Ty->getASTContext().getProtocol(KnownProtocolKind::ObjectiveCBridgeable);
if (bridgedProto) {
// Find the conformance of the value type to _BridgedToObjectiveC.
// Check whether the type conforms to _BridgedToObjectiveC.
return (bool) lookupConformance(Ty, bridgedProto);
}
return false;
}
/// Check if a given type conforms to _Error protocol.
bool swift::isError(CanType Ty) {
// Retrieve the Error protocol.
auto errorTypeProto =
Ty->getASTContext().getProtocol(KnownProtocolKind::Error);
if (errorTypeProto) {
// Find the conformance of the value type to Error.
// Check whether the type conforms to Error.
return (bool) lookupConformance(Ty, errorTypeProto);
}
return false;
}
/// Given that a type is not statically known to be an optional type, check
/// whether it might dynamically be able to store an optional.
static bool canDynamicallyStoreOptional(CanType type) {
assert(!type.getOptionalObjectType());
return type->canDynamicallyBeOptionalType(/* includeExistential */ true);
}
/// Given two class types, check whether there's a hierarchy relationship
/// between them.
static DynamicCastFeasibility
classifyClassHierarchyCast(CanType source, CanType target) {
// Upcast: if the target type statically matches a type in the
// source type's hierarchy, this is a static upcast and the cast
// will always succeed.
if (target->isExactSuperclassOf(source))
return DynamicCastFeasibility::WillSucceed;
// Upcast: if the target type might dynamically match a type in the
// source type's hierarchy, this might be an upcast, in which
// case the cast might succeed.
if (target->isBindableToSuperclassOf(source))
return DynamicCastFeasibility::MaySucceed;
// Downcast: if the source type might dynamically match a type in the
// target type's hierarchy, this might be a downcast, in which case
// the cast might succeed. Note that this also covers the case where
// the source type statically matches a type in the target type's
// hierarchy; since it's a downcast, the cast still at best might succeed.
if (source->isBindableToSuperclassOf(target))
return DynamicCastFeasibility::MaySucceed;
// Otherwise, the classes are unrelated and the cast will fail (at least
// on these grounds).
return DynamicCastFeasibility::WillFail;
}
CanType swift::getNSBridgedClassOfCFClass(CanType type) {
if (auto classDecl = type->getClassOrBoundGenericClass()) {
if (classDecl->getForeignClassKind() == ClassDecl::ForeignKind::CFType) {
if (auto bridgedAttr =
classDecl->getAttrs().getAttribute<ObjCBridgedAttr>()) {
auto bridgedClass = bridgedAttr->getObjCClass();
// TODO: this should handle generic classes properly.
if (!bridgedClass->isGenericContext()) {
return bridgedClass->getDeclaredInterfaceType()->getCanonicalType();
}
}
}
}
return CanType();
}
static bool isCFBridgingConversion(CanType sourceFormalType,
CanType targetFormalType) {
if (auto bridgedTarget =
getNSBridgedClassOfCFClass(targetFormalType)) {
return bridgedTarget->isExactSuperclassOf(sourceFormalType);
}
if (auto bridgedSource =
getNSBridgedClassOfCFClass(sourceFormalType)) {
return targetFormalType->isExactSuperclassOf(bridgedSource);
}
return false;
}
/// Try to classify the dynamic-cast relationship between two types.
DynamicCastFeasibility
swift::classifyDynamicCast(SILFunction *function,
CanType source,
CanType target,
bool isSourceTypeExact,
bool isWholeModuleOpts) {
if (source == target) return DynamicCastFeasibility::WillSucceed;
// Return a conservative answer for opaque archetypes for now.
if (source->hasOpaqueArchetype() || target->hasOpaqueArchetype())
return DynamicCastFeasibility::MaySucceed;
auto sourceObject = source.getOptionalObjectType();
auto targetObject = target.getOptionalObjectType();
ModuleDecl *M = function->getModule().getSwiftModule();
// A common level of optionality doesn't affect the feasibility,
// except that we can't fold things to failure because nil inhabits
// both types.
if (sourceObject && targetObject) {
return atWorst(classifyDynamicCast(function, sourceObject, targetObject),
DynamicCastFeasibility::MaySucceed);
// Casting to a more optional type follows the same rule unless we
// know that the source cannot dynamically be an optional value,
// in which case we'll always just cast and inject into an optional.
} else if (targetObject) {
auto result = classifyDynamicCast(function, source, targetObject,
/* isSourceTypeExact */ false,
isWholeModuleOpts);
if (canDynamicallyStoreOptional(source))
result = atWorst(result, DynamicCastFeasibility::MaySucceed);
return result;
// Casting to a less-optional type can always fail.
} else if (sourceObject) {
auto result = atBest(classifyDynamicCast(function, sourceObject, target,
/* isSourceTypeExact */ false,
isWholeModuleOpts),
DynamicCastFeasibility::MaySucceed);
if (target.isExistentialType()) {
result = atWorst(result, classifyDynamicCastToProtocol(function,
source, target, isWholeModuleOpts));
}
return result;
}
assert(!sourceObject && !targetObject);
// Assume that casts to or from existential types or involving
// dependent types can always succeed. This is over-conservative.
if (source->hasArchetype() || source.isExistentialType() ||
target->hasArchetype() || target.isExistentialType()) {
// Check conversions from non-protocol types into protocol types.
if (!source.isExistentialType() &&
target.isExistentialType())
return classifyDynamicCastToProtocol(function, source, target,
isWholeModuleOpts);
// Check conversions from protocol types to non-protocol types.
if (source.isExistentialType() &&
!target.isExistentialType())
return classifyDynamicCastFromProtocol(M, source, target,
isWholeModuleOpts);
return DynamicCastFeasibility::MaySucceed;
}
// Casts from AnyHashable.
if (auto sourceStruct = dyn_cast<StructType>(source)) {
if (sourceStruct->isAnyHashable()) {
if (auto hashable = getHashableExistentialType(M)) {
// Succeeds if Hashable can be cast to the target type.
return classifyDynamicCastFromProtocol(M, hashable, target,
isWholeModuleOpts);
}
}
}
// Casts to AnyHashable.
if (auto targetStruct = dyn_cast<StructType>(target)) {
if (targetStruct->isAnyHashable()) {
// Succeeds if the source type can be dynamically cast to Hashable.
// Hashable is not actually a legal existential type right now, but
// the check doesn't care about that.
if (auto hashable = getHashableExistentialType(M)) {
return classifyDynamicCastToProtocol(function, source, hashable,
isWholeModuleOpts);
}
}
}
// Metatype casts.
if (auto sourceMetatype = dyn_cast<AnyMetatypeType>(source)) {
auto targetMetatype = dyn_cast<AnyMetatypeType>(target);
if (!targetMetatype) return DynamicCastFeasibility::WillFail;
source = sourceMetatype.getInstanceType();
target = targetMetatype.getInstanceType();
if (source == target &&
targetMetatype.isAnyExistentialType() ==
sourceMetatype.isAnyExistentialType())
return DynamicCastFeasibility::WillSucceed;
// If the source and target are the same existential type, but the source is
// P.Protocol and the dest is P.Type, then we need to consider whether the
// protocol is self-conforming.
// The only cases where a protocol self-conforms are objc protocols, but
// we're going to expect P.Type to hold a class object. And this case
// doesn't matter since for a self-conforming protocol type there can't be
// any type-level methods.
// Thus we consider this kind of cast to always fail. The only exception
// from this rule is when the target is Any.Type, because *.Protocol
// can always be casted to Any.Type.
if (source->isAnyExistentialType() && isa<MetatypeType>(sourceMetatype) &&
isa<ExistentialMetatypeType>(targetMetatype)) {
return target->isAny() ? DynamicCastFeasibility::WillSucceed
: DynamicCastFeasibility::WillFail;
}
if (targetMetatype.isAnyExistentialType() && target->isExistentialType()) {
auto Feasibility =
classifyDynamicCastToProtocol(function, source, target, isWholeModuleOpts);
// Cast from existential metatype to existential metatype may still
// succeed, even if we cannot prove anything statically.
if (Feasibility != DynamicCastFeasibility::WillFail ||
!sourceMetatype.isAnyExistentialType())
return Feasibility;
}
// If isSourceTypeExact is true, we know we are casting the result of a
// MetatypeInst instruction.
if (isSourceTypeExact) {
// If source or target are existentials, then it can be cast
// successfully only into itself.
if ((target.isAnyExistentialType() || source.isAnyExistentialType()) &&
target != source)
return DynamicCastFeasibility::WillFail;
}
// Casts from class existential metatype into a concrete non-class metatype
// can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass())
return DynamicCastFeasibility::WillFail;
// TODO: prove that some conversions to existential metatype will
// obviously succeed/fail.
// TODO: prove that some conversions from class existential metatype
// to a concrete non-class metatype will obviously fail.
// TODO: class metatype to/from AnyObject
// TODO: protocol concrete metatype to/from ObjCProtocol
if (isa<ExistentialMetatypeType>(sourceMetatype) ||
isa<ExistentialMetatypeType>(targetMetatype))
return (getAnyMetatypeDepth(source) == getAnyMetatypeDepth(target)
? DynamicCastFeasibility::MaySucceed
: DynamicCastFeasibility::WillFail);
// If both metatypes are class metatypes, check if classes can be
// cast.
if (source.getClassOrBoundGenericClass() &&
target.getClassOrBoundGenericClass())
return classifyClassHierarchyCast(source, target);
// Different structs cannot be cast to each other.
if (source.getStructOrBoundGenericStruct() &&
target.getStructOrBoundGenericStruct() &&
source != target)
return DynamicCastFeasibility::WillFail;
// Different enums cannot be cast to each other.
if (source.getEnumOrBoundGenericEnum() &&
target.getEnumOrBoundGenericEnum() &&
source != target)
return DynamicCastFeasibility::WillFail;
// If we don't know any better, assume that the cast may succeed.
return DynamicCastFeasibility::MaySucceed;
}
// Function casts.
if (auto sourceFunction = dyn_cast<FunctionType>(source)) {
if (auto targetFunction = dyn_cast<FunctionType>(target)) {
// A function cast can succeed if the function types can be identical,
// or if the target type is throwier than the original.
// An async function cannot be cast to a non-async function and
// vice-versa.
if (sourceFunction->isAsync() != targetFunction->isAsync())
return DynamicCastFeasibility::WillFail;
// A non-throwing source function can be cast to a throwing target type,
// but not vice versa.
if (sourceFunction->isThrowing() && !targetFunction->isThrowing())
return DynamicCastFeasibility::WillFail;
// The cast can't change the representation at runtime.
if (targetFunction->getRepresentation()
!= sourceFunction->getRepresentation())
return DynamicCastFeasibility::WillFail;
if (AnyFunctionType::equalParams(sourceFunction.getParams(),
targetFunction.getParams()) &&
sourceFunction.getResult() == targetFunction.getResult())
return DynamicCastFeasibility::WillSucceed;
// Be conservative about function type relationships we may add in
// the future.
return DynamicCastFeasibility::MaySucceed;
}
}
// Tuple casts.
if (auto sourceTuple = dyn_cast<TupleType>(source)) {
if (auto targetTuple = dyn_cast<TupleType>(target)) {
// # of elements must coincide.
if (sourceTuple->getNumElements() != targetTuple->getNumElements())
return DynamicCastFeasibility::WillFail;
DynamicCastFeasibility result = DynamicCastFeasibility::WillSucceed;
for (unsigned i : range(sourceTuple->getNumElements())) {
const auto &sourceElt = sourceTuple->getElement(i);
const auto &targetElt = targetTuple->getElement(i);
// If both have names and the names mismatch, the cast will fail.
if (sourceElt.hasName() && targetElt.hasName() &&
sourceElt.getName() != targetElt.getName())
return DynamicCastFeasibility::WillFail;
// Combine the result of prior elements with this element type.
result = std::max(result,
classifyDynamicCast(function,
sourceElt.getType()->getCanonicalType(),
targetElt.getType()->getCanonicalType(),
isSourceTypeExact,
isWholeModuleOpts));
// If this element failed, we're done.
if (result == DynamicCastFeasibility::WillFail)
break;
}
return result;
}
}
// Class casts.
auto sourceClass = source.getClassOrBoundGenericClass();
auto targetClass = target.getClassOrBoundGenericClass();
if (sourceClass) {
if (targetClass) {
// Imported Objective-C generics don't check the generic parameters, which
// are lost at runtime.
if (sourceClass->isTypeErasedGenericClass()) {
if (sourceClass == targetClass)
return DynamicCastFeasibility::WillSucceed;
if (targetClass->isTypeErasedGenericClass()) {
// If both classes are ObjC generics, the cast may succeed if the
// classes are related, irrespective of their generic parameters.
if (sourceClass->isSuperclassOf(targetClass))
return DynamicCastFeasibility::MaySucceed;
if (targetClass->isSuperclassOf(sourceClass))
return DynamicCastFeasibility::WillSucceed;
// In case of ObjectiveC classes, the runtime type can differ from its
// declared type. Therefore a cast between (compile-time) unrelated
// classes may succeed at runtime.
return DynamicCastFeasibility::MaySucceed;
}
}
// Try a hierarchy cast. If that isn't failure, we can report it.
auto hierarchyResult = classifyClassHierarchyCast(source, target);
if (hierarchyResult != DynamicCastFeasibility::WillFail)
return hierarchyResult;
// In case of ObjectiveC classes, the runtime type can differ from its
// declared type. Therefore a cast between (compile-time) unrelated
// classes may succeed at runtime.
if (sourceClass->hasClangNode())
return DynamicCastFeasibility::MaySucceed;
// As a backup, consider whether either type is a CF class type
// with an NS bridged equivalent.
CanType bridgedSource = getNSBridgedClassOfCFClass(source);
CanType bridgedTarget = getNSBridgedClassOfCFClass(target);
// If neither type qualifies, we're done.
if (!bridgedSource && !bridgedTarget)
return DynamicCastFeasibility::WillFail;
// Otherwise, map over to the bridged types and try to answer the
// question there.
if (bridgedSource) source = bridgedSource;
if (bridgedTarget) target = bridgedTarget;
return classifyDynamicCast(function, source, target, false, isWholeModuleOpts);
}
// Casts from a class into a non-class can never succeed if the target must
// be bridged to a SwiftValueBox. You would need an AnyObject source for
// that.
if (!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
mustBridgeToSwiftValueBox(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target) ||
isa<MetatypeType>(target)) &&
"Target should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// In the Objective-C runtime, class metatypes are also class instances.
// The cast may succeed if the target type can be inhabited by a class
// metatype.
// TODO: Narrow this to the sourceClass being exactly NSObject.
if (M->getASTContext().LangOpts.EnableObjCInterop) {
if (auto targetMeta = dyn_cast<MetatypeType>(target)) {
if (isa<ArchetypeType>(targetMeta.getInstanceType())
|| targetMeta.getInstanceType()->mayHaveSuperclass())
return DynamicCastFeasibility::MaySucceed;
} else if (isa<ExistentialMetatypeType>(target)) {
return DynamicCastFeasibility::MaySucceed;
}
}
}
// If the source is not existential, an archetype, or (under the ObjC runtime)
// a class, and the destination is a metatype, there is no way the cast can
// succeed.
if (target->is<AnyMetatypeType>()) return DynamicCastFeasibility::WillFail;
// FIXME: Be more careful with bridging conversions from
// NSArray, NSDictionary and NSSet as they may fail?
// We know that a cast from Int -> class foobar will fail.
if (targetClass &&
!source.isAnyExistentialType() &&
!source.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(source) &&
mustBridgeToSwiftValueBox(M, source)) {
assert((source.getEnumOrBoundGenericEnum() ||
source.getStructOrBoundGenericStruct() ||
isa<TupleType>(source) ||
isa<SILFunctionType>(source) ||
isa<FunctionType>(source) ||
isa<MetatypeType>(source)) &&
"Source should be an enum, struct, tuple, metatype or function type");
return DynamicCastFeasibility::WillFail;
}
// Check if there might be a bridging conversion.
if (source->isBridgeableObjectType() && mayBridgeToObjectiveC(M, target)) {
// Try to get the ObjC type which is bridged to target type.
assert(!target.isAnyExistentialType());
// ObjC-to-Swift casts may fail. And in most cases it is impossible to
// statically predict the outcome. So, let's be conservative here.
return DynamicCastFeasibility::MaySucceed;
}
if (target->isBridgeableObjectType() && mayBridgeToObjectiveC(M, source)) {
// Try to get the ObjC type which is bridged to source type.
assert(!source.isAnyExistentialType());
if (Type ObjCTy = M->getASTContext().getBridgedToObjC(M, source)) {
// If the bridged ObjC type is known, check if
// this type can be cast into target type.
return classifyDynamicCast(function,
ObjCTy->getCanonicalType(),
target,
/* isSourceTypeExact */ false, isWholeModuleOpts);
}
return DynamicCastFeasibility::MaySucceed;
}
// Check if it is a cast between bridged error types.
if (isError(source) && isError(target)) {
// TODO: Cast to NSError succeeds always.
return DynamicCastFeasibility::MaySucceed;
}
// Check for a viable collection cast.
if (auto sourceStruct = dyn_cast<BoundGenericStructType>(source)) {
if (auto targetStruct = dyn_cast<BoundGenericStructType>(target)) {
// Both types have to be the same kind of collection.
if (sourceStruct->getDecl() == targetStruct->getDecl()) {
auto sourceArgs = sourceStruct.getGenericArgs();
auto targetArgs = targetStruct.getGenericArgs();
// Note that we can never say that a collection cast is impossible:
// a cast can always succeed on an empty collection.
// Arrays and sets.
if (sourceStruct->isArray() || sourceStruct->isSet()) {
auto valueFeasibility =
classifyDynamicCast(function, sourceArgs[0], targetArgs[0]);
return atWorst(valueFeasibility,
DynamicCastFeasibility::MaySucceed);
// Dictionaries.
} else if (sourceStruct->isDictionary()) {
auto keyFeasibility =
classifyDynamicCast(function, sourceArgs[0], targetArgs[0]);
auto valueFeasibility =
classifyDynamicCast(function, sourceArgs[1], targetArgs[1]);
return atWorst(atBest(keyFeasibility, valueFeasibility),
DynamicCastFeasibility::MaySucceed);
}
}
}
}
return DynamicCastFeasibility::WillFail;
}
bool swift::matchesActorIsolation(ProtocolConformanceRef conformance, SILFunction *inFunction) {
return !conformance.forEachIsolatedConformance([&](ProtocolConformanceRef isolatedConf) -> bool {
if (!isolatedConf.isConcrete())
return false;
ActorIsolation isolation = isolatedConf.getConcrete()->getIsolation();
if (isolation.isNonisolated())
return false;
if (isolation.isGlobalActor()) {
if (auto functionIsolation = inFunction->getActorIsolation()) {
if (isolation == functionIsolation.value())
return false;
}
}
return true;
});
}
static unsigned getOptionalDepth(CanType type) {
unsigned depth = 0;
while (CanType objectType = type.getOptionalObjectType()) {
++depth;
type = objectType;
}
return depth;
}
namespace {
struct Source {
SILValue Value;
CanType FormalType;
bool isAddress() const { return Value->getType().isAddress(); }
SILType getSILType() const { return Value->getType(); }
Source() = default;
Source(SILValue value, CanType formalType)
: Value(value), FormalType(formalType) {}
};
struct Target {
SILValue Address;
SILType LoweredType;
CanType FormalType;
bool isAddress() const { return (bool) Address; }
Source asAddressSource() const {
assert(isAddress());
return { Address, FormalType };
}
Source asScalarSource(SILValue value) const {
assert(!isAddress());
assert(!value->getType().isAddress());
return { value, FormalType };
}
SILType getSILType() const {
if (isAddress())
return Address->getType();
else
return LoweredType;
}
Target() = default;
Target(SILValue address, CanType formalType)
: Address(address), LoweredType(address->getType()),
FormalType(formalType) {
assert(LoweredType.isAddress());
}
Target(SILType loweredType, CanType formalType)
: Address(), LoweredType(loweredType), FormalType(formalType) {
assert(!loweredType.isAddress());
}
};
class CastEmitter {
SILBuilder &B;
SILModule &M;
ASTContext &Ctx;
SILLocation Loc;
public:
CastEmitter(SILBuilder &B, SILLocation loc)
: B(B), M(B.getModule()), Ctx(M.getASTContext()), Loc(loc) {}
Source emitTopLevel(Source source, Target target) {
unsigned sourceOptDepth = getOptionalDepth(source.FormalType);
unsigned targetOptDepth = getOptionalDepth(target.FormalType);
assert(sourceOptDepth <= targetOptDepth);
return emitAndInjectIntoOptionals(source, target,
targetOptDepth - sourceOptDepth);
}
private:
const TypeLowering &getTypeLowering(SILType type) {
return B.getFunction().getTypeLowering(type);
}
SILValue getOwnedScalar(Source source, const TypeLowering &srcTL) {
assert(!source.isAddress());
auto value = source.Value;
if (value->getOwnershipKind() == OwnershipKind::Guaranteed)
value = B.emitCopyValueOperation(Loc, value);
return value;
}
Source emitSameType(Source source, Target target) {
assert(source.FormalType == target.FormalType ||
source.getSILType() == target.getSILType());
auto &srcTL = getTypeLowering(source.Value->getType());
// The destination always wants a +1 value, so make the source
// +1 if it's a scalar.
if (!source.isAddress()) {
source.Value = getOwnedScalar(source, srcTL);
}
// If we've got a scalar and want a scalar, the source is
// exactly right.
if (!target.isAddress() && !source.isAddress())
return source;
// If the destination wants a non-address value, load
if (!target.isAddress()) {
SILValue value = srcTL.emitLoadOfCopy(B, Loc, source.Value, IsTake);
return target.asScalarSource(value);
}
if (source.isAddress()) {
srcTL.emitCopyInto(B, Loc, source.Value, target.Address,
IsTake, IsInitialization);
} else {
srcTL.emitStoreOfCopy(B, Loc, source.Value, target.Address,
IsInitialization);
}
return target.asAddressSource();
}
Source emit(Source source, Target target) {
if (source.FormalType == target.FormalType ||
source.getSILType() == target.getSILType())
return emitSameType(source, target);
// Handle subtype conversions involving optionals.
if (auto sourceObjectType = source.FormalType.getOptionalObjectType()) {
return emitOptionalToOptional(source, sourceObjectType, target);
}
assert(!target.FormalType.getOptionalObjectType());
// The only other things we return WillSucceed for currently is
// an upcast or CF/NS toll-free-bridging conversion.
// FIXME: Upcasts between existential metatypes are not handled yet.
// We should generate for it:
// %openedSrcMetatype = open_existential srcMetatype
// init_existential dstMetatype, %openedSrcMetatype
auto &srcTL = getTypeLowering(source.Value->getType());
SILValue value;
if (source.isAddress()) {
value = srcTL.emitLoadOfCopy(B, Loc, source.Value, IsTake);
} else {
// May have any valid ownership.
value = source.Value;
}
auto targetFormalTy = target.FormalType;
auto targetLoweredTy =
SILType::getPrimitiveObjectType(target.LoweredType.getASTType());
if (isCFBridgingConversion(source.FormalType,
targetFormalTy)) {
value = B.createUncheckedRefCast(Loc, value, targetLoweredTy);
} else {
value = B.createUpcast(Loc, value, targetLoweredTy);
}
// If the target is an address, then scalar must be Owned. Otherwise, it
// may be Guaranteed.
assert(value->getType() == target.LoweredType.getObjectType());
if (!target.isAddress())
return target.asScalarSource(value);
auto &targetTL = getTypeLowering(target.LoweredType);
targetTL.emitStoreOfCopy(B, Loc, value, target.Address, IsInitialization);
return target.asAddressSource();
}
Source emitAndInjectIntoOptionals(Source source, Target target,
unsigned depth) {
if (depth == 0)
return emit(source, target);
// Recurse.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
Source objectSource =
emitAndInjectIntoOptionals(source, objectTarget, depth - 1);
return emitSome(objectSource, target, state);
}
Source emitOptionalToOptional(Source source,
CanType sourceObjectType,
Target target) {
// Switch on the incoming value.
SILBasicBlock *contBB = B.splitBlockForFallthrough();
SILBasicBlock *noneBB = B.splitBlockForFallthrough();
SILBasicBlock *someBB = B.splitBlockForFallthrough();
// Emit the switch.
std::pair<EnumElementDecl*, SILBasicBlock*> cases[] = {
{ Ctx.getOptionalSomeDecl(), someBB },
{ Ctx.getOptionalNoneDecl(), noneBB },
};
if (source.isAddress()) {
B.createSwitchEnumAddr(Loc, source.Value, /*default*/ nullptr, cases);
} else {
auto *switchEnum =
B.createSwitchEnum(Loc, source.Value, /*default*/ nullptr, cases);
switchEnum->createOptionalSomeResult();
}
// Create the Some block, which recurses.
B.setInsertionPoint(someBB);
{
auto sourceSomeDecl = Ctx.getOptionalSomeDecl();
SILType loweredSourceObjectType =
source.Value->getType().getEnumElementType(
sourceSomeDecl, M, B.getTypeExpansionContext());
// Form the target for the optional object.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
// Form the source value.
AllocStackInst *sourceTemp = nullptr;
Source objectSource;
if (source.isAddress()) {
// TODO: add an instruction for non-destructively getting a
// specific element's data.
SILValue sourceAddr = source.Value;
sourceAddr = B.createUncheckedTakeEnumDataAddr(Loc, sourceAddr,
sourceSomeDecl, loweredSourceObjectType);
objectSource = Source(sourceAddr, sourceObjectType);
} else {
objectSource = Source(someBB->getArgument(0), sourceObjectType);
}
Source resultObject = emit(objectSource, objectTarget);
// Deallocate the source temporary if we needed one.
if (sourceTemp) {
B.createDeallocStack(Loc, sourceTemp);
}
Source result = emitSome(resultObject, target, state);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
auto &resultTL = getTypeLowering(result.Value->getType());
SILValue resultVal = getOwnedScalar(source, resultTL);
B.createBranch(Loc, contBB, {resultVal});
}
}
// Create the None block.
B.setInsertionPoint(noneBB);
{
Source result = emitNone(target);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Continuation block.
B.setInsertionPoint(contBB);
if (target.isAddress()) {
return target.asAddressSource();
} else {
SILValue result =
contBB->createPhiArgument(target.LoweredType, OwnershipKind::Owned);
return target.asScalarSource(result);
}
}
struct EmitSomeState {
EnumElementDecl *SomeDecl;
};
Target prepareForEmitSome(Target target, EmitSomeState &state) {
auto objectType = target.FormalType.getOptionalObjectType();
assert(objectType && "emitting Some into non-optional type");
auto someDecl = Ctx.getOptionalSomeDecl();
state.SomeDecl = someDecl;
SILType loweredObjectType = target.LoweredType.getEnumElementType(
someDecl, M, B.getTypeExpansionContext());
if (target.isAddress()) {
SILValue objectAddr =
B.createInitEnumDataAddr(Loc, target.Address, someDecl,
loweredObjectType);
return { objectAddr, objectType };
} else {
return { loweredObjectType, objectType };
}
}
// May return an Owned or Guaranteed result. If source is has ownership
// None, then the result may still be Guaranteed for nontrivial types.
Source emitSome(Source source, Target target, EmitSomeState &state) {
// If our target is an address, prepareForEmitSome should have set this
// up so that we emitted directly into
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, state.SomeDecl);
return target.asAddressSource();
} else {
auto someEnum =
B.createEnum(Loc, source.Value, state.SomeDecl, target.LoweredType);
return target.asScalarSource(someEnum);
}
}
Source emitNone(Target target) {
auto noneDecl = Ctx.getOptionalNoneDecl();
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, noneDecl);
return target.asAddressSource();
} else {
SILValue res = B.createEnum(Loc, nullptr, noneDecl, target.LoweredType);
return target.asScalarSource(res);
}
}
};
} // end anonymous namespace
SILValue
swift::emitSuccessfulScalarUnconditionalCast(SILBuilder &B, SILLocation loc,
SILDynamicCastInst dynamicCast) {
return emitSuccessfulScalarUnconditionalCast(
B, B.getModule().getSwiftModule(), loc, dynamicCast.getSource(),
dynamicCast.getTargetLoweredType(), dynamicCast.getSourceFormalType(),
dynamicCast.getTargetFormalType(), dynamicCast.getInstruction());
}
/// Emit an unconditional scalar cast that's known to succeed.
SILValue
swift::emitSuccessfulScalarUnconditionalCast(SILBuilder &B, ModuleDecl *M,
SILLocation loc, SILValue value,
SILType targetLoweredType,
CanType sourceFormalType,
CanType targetFormalType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(&B.getFunction(), sourceFormalType, targetFormalType)
== DynamicCastFeasibility::WillSucceed);
// Casts to/from existential types cannot be further improved.
if (sourceFormalType.isAnyExistentialType() ||
targetFormalType.isAnyExistentialType()) {
if (existingCast)
// Indicate that the existing cast cannot be further improved.
return SILValue();
llvm_unreachable("Casts to/from existentials are not supported yet");
}
// Fast path changes that don't change the type.
if (sourceFormalType == targetFormalType)
return value;
Source source(value, sourceFormalType);
Target target(targetLoweredType, targetFormalType);
Source result = CastEmitter(B, loc).emitTopLevel(source, target);
assert(!result.isAddress());
assert(result.Value->getType() == targetLoweredType);
return result.Value;
}
bool swift::emitSuccessfulIndirectUnconditionalCast(
SILBuilder &B, SILLocation loc, SILDynamicCastInst dynamicCast) {
return emitSuccessfulIndirectUnconditionalCast(
B, B.getModule().getSwiftModule(), loc, dynamicCast.getSource(),
dynamicCast.getSourceFormalType(), dynamicCast.getDest(),
dynamicCast.getTargetFormalType(), dynamicCast.getInstruction());
}
bool swift::emitSuccessfulIndirectUnconditionalCast(
SILBuilder &B, ModuleDecl *M, SILLocation loc, SILValue src,
CanType sourceFormalType, SILValue dest, CanType targetFormalType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(&B.getFunction(), sourceFormalType, targetFormalType)
== DynamicCastFeasibility::WillSucceed);
assert(src->getType().isAddress());
assert(dest->getType().isAddress());
// Casts between the same types can be always handled here.
// Casts from non-existentials into existentials and
// vice-versa cannot be improved yet.
// Casts between a value type and a class cannot be optimized.
// Therefore generate a simple unconditional_checked_cast_aadr.
if (src->getType() != dest->getType())
if (src->getType().isAnyExistentialType() !=
dest->getType().isAnyExistentialType() ||
!(src->getType().getClassOrBoundGenericClass() &&
dest->getType().getClassOrBoundGenericClass())) {
// If there is an existing cast with the same arguments,
// indicate we cannot improve it.
if (existingCast) {
auto *UCCAI = dyn_cast<UnconditionalCheckedCastAddrInst>(existingCast);
if (UCCAI && UCCAI->getSrc() == src && UCCAI->getDest() == dest
&& UCCAI->getSourceFormalType() == sourceFormalType
&& UCCAI->getTargetFormalType() == targetFormalType) {
// Indicate that the existing cast cannot be further improved.
return false;
}
}
B.createUnconditionalCheckedCastAddr(loc,
CheckedCastInstOptions(),
src, sourceFormalType,
dest, targetFormalType);
return true;
}
Source source(src, sourceFormalType);
Target target(dest, targetFormalType);
Source result = CastEmitter(B, loc).emitTopLevel(source, target);
assert(result.isAddress());
assert(result.Value == dest);
(void) result;
return true;
}
/// Can the given cast be performed by the scalar checked-cast
/// instructions at the current SIL stage?
///
/// Always returns true for !useLoweredAddresses. Scalar casts are always
/// valid for owned values. If the operand is +1, the case will always destroy
/// or forward it. The result is always either +1 or trivial. The cast never
/// hides a copy. doesCastPreserveOwnershipForTypes determines whether the
/// scalar cast is also compatible with guaranteed values.
bool swift::canSILUseScalarCheckedCastInstructions(SILModule &M,
CanType sourceFormalType,
CanType targetFormalType) {
if (!M.useLoweredAddresses())
return true;
return canIRGenUseScalarCheckedCastInstructions(M, sourceFormalType,
targetFormalType);
}
/// Can the given cast be performed by the scalar checked-cast
/// instructions?
bool swift::canIRGenUseScalarCheckedCastInstructions(SILModule &M,
CanType sourceFormalType,
CanType targetFormalType) {
// If the cast involves any kind of generalized existential we
// need to use the indirect-cast path to handle checking the extra
// constraints there as the scalar path does not (yet) know how to do it.
if (sourceFormalType->hasParameterizedExistential() ||
targetFormalType->hasParameterizedExistential()) {
return false;
}
// Look through one level of optionality on the source.
auto objectType = sourceFormalType;
if (auto type = objectType.getOptionalObjectType())
objectType = type;
// Casting to NSError needs to go through the indirect-cast case,
// since it may conform to Error and require Error-to-NSError
// bridging, unless we can statically see that the source type inherits
// NSError.
// A class-constrained archetype may be bound to NSError, unless it has a
// non-NSError superclass constraint. Casts to archetypes thus must always be
// indirect.
if (auto archetype = targetFormalType->getAs<ArchetypeType>()) {
// Only ever permit this if the source type is a reference type.
if (!objectType.isAnyClassReferenceType())
return false;
auto super = archetype->getSuperclass();
if (super.isNull())
return false;
// A base class constraint that isn't NSError rules out the archetype being
// bound to NSError.
if (M.getASTContext().LangOpts.EnableObjCInterop) {
if (auto nserror = M.Types.getNSErrorType())
return !super->isEqual(nserror);
}
// If NSError wasn't loaded, any base class constraint must not be NSError.
return true;
}
if (M.getASTContext().LangOpts.EnableObjCInterop
&& targetFormalType == M.Types.getNSErrorType()) {
// If we statically know the source is an NSError subclass, then the cast
// can go through the scalar path (and it's trivially true so can be
// killed).
return targetFormalType->isExactSuperclassOf(objectType);
}
// Three supported cases:
// - metatype to metatype
// - metatype to object
// - object to object
if ((objectType.isAnyClassReferenceType() || isa<AnyMetatypeType>(objectType))
&& targetFormalType.isAnyClassReferenceType())
return true;
if (isa<AnyMetatypeType>(objectType) && isa<AnyMetatypeType>(targetFormalType))
return true;
// Otherwise, we need to use the general indirect-cast functions.
return false;
}
/// Carry out the operations required for an indirect conditional cast
/// using a scalar cast operation.
void swift::emitIndirectConditionalCastWithScalar(
SILBuilder &B, ModuleDecl *M, SILLocation loc,
CheckedCastInstOptions options,
CastConsumptionKind consumption,
SILValue srcAddr, CanType sourceFormalType,
SILValue destAddr, CanType targetFormalType,
SILBasicBlock *indirectSuccBB, SILBasicBlock *indirectFailBB,
ProfileCounter TrueCount, ProfileCounter FalseCount) {
assert(canSILUseScalarCheckedCastInstructions(B.getModule(),
sourceFormalType,
targetFormalType));
// Create our successor and fail blocks.
SILBasicBlock *scalarFailBB = B.splitBlockForFallthrough();
SILBasicBlock *scalarSuccBB = B.splitBlockForFallthrough();
// Always take; this works under an assumption that retaining the result is
// equivalent to retaining the source. That means that these casts would not
// be appropriate for bridging-like conversions.
//
// Our plan is:
//
// 1. If the original cast was a take_always cast, then we take from our
// memory location in the caller, store the value into dest in the success
// block, and perform a destroy of our default argument in the failure block.
//
// 2. If the original cast was copy_on_success, then with ownership we borrow,
// copy in the success path and store back into the source slot after copying.
//
// 3. If the original cast was take_on_success, then on success we place the
// casted value into dest and on failure, store the original value back into
// src.
SILType targetLoweredType = destAddr->getType().getObjectType();
// Inline constructor
auto srcValue = ([&]() -> SILValue {
if (consumption == CastConsumptionKind::CopyOnSuccess)
return B.emitLoadBorrowOperation(loc, srcAddr);
return B.emitLoadValueOperation(loc, srcAddr, LoadOwnershipQualifier::Take);
})();
auto *ccb = B.createCheckedCastBranch(
loc, /*exact*/ false, options, srcValue, sourceFormalType,
targetLoweredType, targetFormalType, scalarSuccBB, scalarFailBB,
TrueCount, FalseCount);
// Emit the success block.
B.setInsertionPoint(scalarSuccBB); {
SILValue succValue = scalarSuccBB->createPhiArgument(
targetLoweredType, ccb->getForwardingOwnershipKind());
switch (consumption) {
// On success, we take with both take_always and take_on_success.
case CastConsumptionKind::TakeAlways:
case CastConsumptionKind::TakeOnSuccess:
break;
case CastConsumptionKind::CopyOnSuccess: {
succValue = B.emitCopyValueOperation(loc, succValue);
B.emitEndBorrowOperation(loc, srcValue);
break;
}
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("should never see a borrow_always here");
}
// And then store the succValue into dest.
B.emitStoreValueOperation(loc, succValue, destAddr,
StoreOwnershipQualifier::Init);
B.createBranch(loc, indirectSuccBB);
}
// Emit the failure block.
B.setInsertionPoint(scalarFailBB);
{
SILValue failValue = srcValue;
// If we have ownership, we need to create something for the default
// argument. Otherwise, we just use the input argument to the
// checked_cast_br.
if (B.hasOwnership()) {
failValue = scalarFailBB->createPhiArgument(srcValue->getType(),
srcValue->getOwnershipKind());
}
switch (consumption) {
case CastConsumptionKind::TakeAlways:
// We need to destroy the fail value if we have take_always.
B.emitDestroyValueOperation(loc, failValue);
break;
case CastConsumptionKind::TakeOnSuccess:
// If we have take_on_success, since we failed, just store the value back
// into the src location that we originally took from.
B.emitStoreValueOperation(loc, failValue, srcAddr,
StoreOwnershipQualifier::Init);
break;
case CastConsumptionKind::CopyOnSuccess:
B.emitEndBorrowOperation(loc, srcValue);
break;
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("borrow_on_success should never appear here");
}
B.createBranch(loc, indirectFailBB);
}
}