Files
swift-mirror/lib/SILOptimizer/IPO/EagerSpecializer.cpp
John McCall ab3f77baf2 Make SILInstruction no longer a subclass of ValueBase and
introduce a common superclass, SILNode.

This is in preparation for allowing instructions to have multiple
results.  It is also a somewhat more elegant representation for
instructions that have zero results.  Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction.  Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.

A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.

Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
2017-09-25 02:06:26 -04:00

787 lines
31 KiB
C++

//===--- EagerSpecializer.cpp - Performs Eager Specialization -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Eager Specializer
/// -----------------
///
/// This transform specializes functions that are annotated with the
/// @_specialize(<type list>) attribute. A function may be annotated with
/// multiple @_specialize attributes, each with a list of concrete types. For
/// each @_specialize attribute, this transform clones the annotated generic
/// function, creating a new function signature by substituting the concrete
/// types specified in the attribute into the function's generic
/// signature. Dispatch to each specialized function is implemented by inserting
/// call at the beginning of the original generic function guarded by a type
/// check.
///
/// TODO: We have not determined whether to support inexact type checks. It
/// will be a tradeoff between utility of the attribute vs. cost of the check.
#define DEBUG_TYPE "eager-specializer"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Type.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using llvm::dbgs;
// Temporary flag.
llvm::cl::opt<bool> EagerSpecializeFlag(
"enable-eager-specializer", llvm::cl::init(true),
llvm::cl::desc("Run the eager-specializer pass."));
/// Returns true if the given return or throw block can be used as a merge point
/// for new return or error values.
static bool isTrivialReturnBlock(SILBasicBlock *RetBB) {
auto *RetInst = RetBB->getTerminator();
assert(RetInst->isFunctionExiting() &&
"expected a properly terminated return or throw block");
auto RetOperand = RetInst->getOperand(0);
// Allow:
// % = tuple ()
// return % : $()
if (RetOperand->getType().isVoid()) {
auto *TupleI = dyn_cast<TupleInst>(RetBB->begin());
if (!TupleI || !TupleI->getType().isVoid())
return false;
if (&*std::next(RetBB->begin()) != RetInst)
return false;
return RetOperand == TupleI;
}
// Allow:
// bb(% : $T)
// return % : $T
if (&*RetBB->begin() != RetInst)
return false;
if (RetBB->args_size() != 1)
return false;
return (RetOperand == RetBB->getArgument(0));
}
/// Adds a CFG edge from the unterminated NewRetBB to a merged "return" or
/// "throw" block. If the return block is not already a canonical merged return
/// block, then split it. If the return type is not Void, add a BBArg that
/// propagates NewRetVal to the return instruction.
static void addReturnValueImpl(SILBasicBlock *RetBB, SILBasicBlock *NewRetBB,
SILValue NewRetVal) {
auto *F = NewRetBB->getParent();
SILBuilder Builder(*F);
Builder.setCurrentDebugScope(F->getDebugScope());
SILLocation Loc = F->getLocation();
auto *RetInst = RetBB->getTerminator();
assert(RetInst->isFunctionExiting() &&
"expected a properly terminated return or throw block");
assert(RetInst->getOperand(0)->getType() == NewRetVal->getType() &&
"Mismatched return type");
SILBasicBlock *MergedBB = RetBB;
// Split the return block if it is nontrivial.
if (!isTrivialReturnBlock(RetBB)) {
if (NewRetVal->getType().isVoid()) {
// Canonicalize Void return type into something that isTrivialReturnBlock
// expects.
auto *TupleI = dyn_cast<TupleInst>(RetInst->getOperand(0));
if (TupleI && TupleI->hasOneUse()) {
TupleI->moveBefore(RetInst);
} else {
Builder.setInsertionPoint(RetInst);
TupleI = Builder.createTuple(RetInst->getLoc(), {});
RetInst->setOperand(0, TupleI);
}
MergedBB = RetBB->split(TupleI->getIterator());
Builder.setInsertionPoint(RetBB);
Builder.createBranch(Loc, MergedBB);
} else {
// Forward the existing return argument to a new BBArg.
MergedBB = RetBB->split(RetInst->getIterator());
SILValue OldRetVal = RetInst->getOperand(0);
RetInst->setOperand(
0, MergedBB->createPHIArgument(OldRetVal->getType(),
ValueOwnershipKind::Owned));
Builder.setInsertionPoint(RetBB);
Builder.createBranch(Loc, MergedBB, {OldRetVal});
}
}
// Create a CFG edge from NewRetBB to MergedBB.
Builder.setInsertionPoint(NewRetBB);
SmallVector<SILValue, 1> BBArgs;
if (!NewRetVal->getType().isVoid())
BBArgs.push_back(NewRetVal);
Builder.createBranch(Loc, MergedBB, BBArgs);
}
/// Adds a CFG edge from the unterminated NewRetBB to a merged "return" block.
static void addReturnValue(SILBasicBlock *NewRetBB, SILBasicBlock *OldRetBB,
SILValue NewRetVal) {
auto *RetBB = OldRetBB;
addReturnValueImpl(RetBB, NewRetBB, NewRetVal);
}
/// Adds a CFG edge from the unterminated NewThrowBB to a merged "throw" block.
static void addThrowValue(SILBasicBlock *NewThrowBB, SILValue NewErrorVal) {
auto *ThrowBB = &*NewThrowBB->getParent()->findThrowBB();
addReturnValueImpl(ThrowBB, NewThrowBB, NewErrorVal);
}
/// Emits a call to a throwing function as defined by FuncRef, and passes the
/// specified Args. Uses the provided Builder to insert a try_apply at the given
/// SILLocation and generates control flow to handle the rethrow.
///
/// TODO: Move this to Utils.
static SILValue
emitApplyWithRethrow(SILBuilder &Builder,
SILLocation Loc,
SILValue FuncRef,
CanSILFunctionType CanSILFuncTy,
SubstitutionList Subs,
ArrayRef<SILValue> CallArgs,
void (*EmitCleanup)(SILBuilder&, SILLocation)) {
auto &F = Builder.getFunction();
SILFunctionConventions fnConv(CanSILFuncTy, Builder.getModule());
SILBasicBlock *ErrorBB = F.createBasicBlock();
SILBasicBlock *NormalBB = F.createBasicBlock();
Builder.createTryApply(Loc, FuncRef, Subs, CallArgs, NormalBB, ErrorBB);
{
// Emit the rethrow logic.
Builder.emitBlock(ErrorBB);
SILValue Error = ErrorBB->createPHIArgument(fnConv.getSILErrorType(),
ValueOwnershipKind::Owned);
Builder.createBuiltin(Loc,
Builder.getASTContext().getIdentifier("willThrow"),
Builder.getModule().Types.getEmptyTupleType(),
SubstitutionList(),
{Error});
EmitCleanup(Builder, Loc);
addThrowValue(ErrorBB, Error);
}
// Advance Builder to the fall-thru path and return a SILArgument holding the
// result value.
Builder.clearInsertionPoint();
Builder.emitBlock(NormalBB);
return Builder.getInsertionBB()->createPHIArgument(fnConv.getSILResultType(),
ValueOwnershipKind::Owned);
}
/// Emits code to invoke the specified specialized CalleeFunc using the
/// provided SILBuilder.
///
/// TODO: Move this to Utils.
static SILValue
emitInvocation(SILBuilder &Builder,
const ReabstractionInfo &ReInfo,
SILLocation Loc,
SILFunction *CalleeFunc,
ArrayRef<SILValue> CallArgs,
void (*EmitCleanup)(SILBuilder&, SILLocation)) {
auto *FuncRefInst = Builder.createFunctionRef(Loc, CalleeFunc);
auto CanSILFuncTy = CalleeFunc->getLoweredFunctionType();
auto CalleeSubstFnTy = CanSILFuncTy;
SubstitutionList Subs;
if (CanSILFuncTy->isPolymorphic()) {
// Create a substituted callee type.
assert(CanSILFuncTy == ReInfo.getSpecializedType() &&
"Types should be the same");
// We form here the list of substitutions and the substituted callee
// type. For specializations with layout constraints, we claim that
// the substitution T satisfies the specialized requirement
// 'TS : LayoutConstraint', where LayoutConstraint could be
// e.g. _Trivial(64). We claim it, because we ensure it by the
// method how this call is constructed.
// This is a hack and works currently just by coincidence.
// But it is not quite true from the SIL type system
// point of view as we do not really cast at the SIL level the original
// parameter value of type T into a more specialized generic
// type 'TS : LayoutConstraint'.
//
// TODO: Introduce a proper way to express such a cast.
// It could be an instruction similar to checked_cast_br, e.g.
// something like:
// 'checked_constraint_cast_br %1 : T to $opened("") <TS : _Trivial(64)>',
// where <TS: _Trivial(64)> introduces a new archetype with the given
// constraints.
if (ReInfo.getSpecializedType()->isPolymorphic()) {
Subs = ReInfo.getCallerParamSubstitutions();
CalleeSubstFnTy = CanSILFuncTy->substGenericArgs(
Builder.getModule(), ReInfo.getCallerParamSubstitutions());
assert(!CalleeSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!CalleeSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
}
}
auto CalleeSILSubstFnTy = SILType::getPrimitiveObjectType(CalleeSubstFnTy);
SILFunctionConventions fnConv(CalleeSILSubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
bool isNonThrowing = false;
// It is a function whose type claims it is throwing, but
// it actually never throws inside its body?
if (CanSILFuncTy->hasErrorResult() &&
CalleeFunc->findThrowBB() == CalleeFunc->end()) {
isNonThrowing = true;
}
// Is callee a non-throwing function according to its type
// or de-facto?
if (!CanSILFuncTy->hasErrorResult() ||
CalleeFunc->findThrowBB() == CalleeFunc->end()) {
return Builder.createApply(CalleeFunc->getLocation(), FuncRefInst,
Subs, CallArgs, isNonThrowing);
}
return emitApplyWithRethrow(Builder, CalleeFunc->getLocation(),
FuncRefInst, CalleeSubstFnTy, Subs,
CallArgs,
EmitCleanup);
}
/// Returns the thick metatype for the given SILType.
/// e.g. $*T -> $@thick T.Type
static SILType getThickMetatypeType(CanType Ty) {
auto SwiftTy = CanMetatypeType::get(Ty, MetatypeRepresentation::Thick);
return SILType::getPrimitiveObjectType(SwiftTy);
}
namespace {
/// Helper class for emitting code to dispatch to a specialized function.
class EagerDispatch {
SILFunction *GenericFunc;
const ReabstractionInfo &ReInfo;
const SILFunctionConventions substConv;
SILBuilder Builder;
SILLocation Loc;
// Function to check if a given object is a class.
SILFunction *IsClassF;
public:
// Instantiate a SILBuilder for inserting instructions at the top of the
// original generic function.
EagerDispatch(SILFunction *GenericFunc,
const ReabstractionInfo &ReInfo)
: GenericFunc(GenericFunc), ReInfo(ReInfo),
substConv(ReInfo.getSubstitutedType(), GenericFunc->getModule()),
Builder(*GenericFunc), Loc(GenericFunc->getLocation()) {
Builder.setCurrentDebugScope(GenericFunc->getDebugScope());
IsClassF = Builder.getModule().findFunction(
"_swift_isClassOrObjCExistentialType", SILLinkage::PublicExternal);
assert(IsClassF);
}
void emitDispatchTo(SILFunction *NewFunc);
protected:
void emitTypeCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy);
void emitTrivialAndSizeCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout);
void emitIsTrivialCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout);
void emitRefCountedObjectCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout);
void emitLayoutCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy);
SILValue emitArgumentCast(CanSILFunctionType CalleeSubstFnTy,
SILFunctionArgument *OrigArg, unsigned Idx);
SILValue emitArgumentConversion(SmallVectorImpl<SILValue> &CallArgs);
};
} // end anonymous namespace
/// Inserts type checks in the original generic function for dispatching to the
/// given specialized function. Converts call arguments. Emits an invocation of
/// the specialized function. Handle the return value.
void EagerDispatch::emitDispatchTo(SILFunction *NewFunc) {
SILBasicBlock *OldReturnBB = nullptr;
auto ReturnBB = GenericFunc->findReturnBB();
if (ReturnBB != GenericFunc->end())
OldReturnBB = &*ReturnBB;
// 1. Emit a cascading sequence of type checks blocks.
// First split the entry BB, moving all instructions to the FailedTypeCheckBB.
auto &EntryBB = GenericFunc->front();
SILBasicBlock *FailedTypeCheckBB = EntryBB.split(EntryBB.begin());
Builder.setInsertionPoint(&EntryBB, EntryBB.begin());
// Iterate over all dependent types in the generic signature, which will match
// the specialized attribute's substitution list. Visit only
// SubstitutableTypes, skipping DependentTypes.
auto GenericSig =
GenericFunc->getLoweredFunctionType()->getGenericSignature();
auto SubMap = GenericSig->getSubstitutionMap(
ReInfo.getClonerParamSubstitutions());
for (auto ParamTy : GenericSig->getSubstitutableParams()) {
auto Replacement = Type(ParamTy).subst(SubMap);
assert(!Replacement->hasTypeParameter());
if (!Replacement->hasArchetype()) {
// Dispatch on concrete type.
emitTypeCheck(FailedTypeCheckBB, ParamTy, Replacement);
} else if (auto Archetype = Replacement->getAs<ArchetypeType>()) {
// If Replacement has a layout constraint, then dispatch based
// on its size and the fact that it is trivial.
auto LayoutInfo = Archetype->getLayoutConstraint();
if (LayoutInfo && LayoutInfo->isTrivial()) {
// Emit a check that it is a trivial type of a certain size.
emitTrivialAndSizeCheck(FailedTypeCheckBB, ParamTy,
Replacement, LayoutInfo);
} else if (LayoutInfo && LayoutInfo->isRefCounted()) {
// Emit a check that it is an object of a reference counted type.
emitRefCountedObjectCheck(FailedTypeCheckBB, ParamTy,
Replacement, LayoutInfo);
}
}
}
static_cast<void>(FailedTypeCheckBB);
if (OldReturnBB == &EntryBB) {
OldReturnBB = FailedTypeCheckBB;
}
// 2. Convert call arguments, casting and adjusting for calling convention.
SmallVector<SILValue, 8> CallArgs;
SILValue StoreResultTo = emitArgumentConversion(CallArgs);
// 3. Emit an invocation of the specialized function.
// Emit any rethrow with no cleanup since all args have been forwarded and
// nothing has been locally allocated or copied.
auto NoCleanup = [](SILBuilder&, SILLocation){};
SILValue Result =
emitInvocation(Builder, ReInfo, Loc, NewFunc, CallArgs, NoCleanup);
// 4. Handle the return value.
auto VoidTy = Builder.getModule().Types.getEmptyTupleType();
if (StoreResultTo) {
// Store the direct result to the original result address.
Builder.createStore(Loc, Result, StoreResultTo,
StoreOwnershipQualifier::Unqualified);
// And return Void.
Result = Builder.createTuple(Loc, VoidTy, { });
}
// Ensure that void return types original from a tuple instruction.
else if (Result->getType().isVoid())
Result = Builder.createTuple(Loc, VoidTy, { });
// Function marked as @NoReturn must be followed by 'unreachable'.
if (NewFunc->isNoReturnFunction() || !OldReturnBB)
Builder.createUnreachable(Loc);
else {
auto resultTy = GenericFunc->getConventions().getSILResultType();
auto GenResultTy = GenericFunc->mapTypeIntoContext(resultTy);
auto CastResult = Builder.createUncheckedBitCast(Loc, Result, GenResultTy);
addReturnValue(Builder.getInsertionBB(), OldReturnBB, CastResult);
}
}
// Emits a type check in the current block.
// Advances the builder to the successful type check's block.
//
// Precondition: Builder's current insertion block is not terminated.
//
// Postcondition: Builder's insertion block is a new block that defines the
// specialized call argument and has not been terminated.
//
// The type check is emitted in the current block as:
// metatype $@thick T.Type
// %a = unchecked_bitwise_cast % to $Builtin.Int64
// metatype $@thick <Specialized>.Type
// %b = unchecked_bitwise_cast % to $Builtin.Int64
// builtin "cmp_eq_Int64"(%a : $Builtin.Int64, %b : $Builtin.Int64)
// : $Builtin.Int1
// cond_br %
void EagerDispatch::
emitTypeCheck(SILBasicBlock *FailedTypeCheckBB, SubstitutableType *ParamTy,
Type SubTy) {
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
// Instantiate a thick metatype for <Specialized>.Type
auto SpecializedMT = Builder.createMetatype(
Loc, getThickMetatypeType(SubTy->getCanonicalType()));
auto &Ctx = Builder.getASTContext();
auto WordTy = SILType::getBuiltinWordType(Ctx);
auto GenericMTVal =
Builder.createUncheckedBitwiseCast(Loc, GenericMT, WordTy);
auto SpecializedMTVal =
Builder.createUncheckedBitwiseCast(Loc, SpecializedMT, WordTy);
auto Cmp =
Builder.createBuiltinBinaryFunction(Loc, "cmp_eq", WordTy,
SILType::getBuiltinIntegerType(1, Ctx),
{GenericMTVal, SpecializedMTVal});
auto *SuccessBB = Builder.getFunction().createBasicBlock();
Builder.createCondBranch(Loc, Cmp, SuccessBB, FailedTypeCheckBB);
Builder.emitBlock(SuccessBB);
}
void EagerDispatch::emitIsTrivialCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout) {
auto &Ctx = Builder.getASTContext();
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
auto BoolTy = SILType::getBuiltinIntegerType(1, Ctx);
Substitution Sub(ContextTy, {});
// Emit a check that it is a pod object.
auto IsPOD = Builder.createBuiltin(Loc, Ctx.getIdentifier("ispod"), BoolTy,
Sub, {GenericMT});
auto *SuccessBB = Builder.getFunction().createBasicBlock();
Builder.createCondBranch(Loc, IsPOD, SuccessBB, FailedTypeCheckBB);
Builder.emitBlock(SuccessBB);
}
void EagerDispatch::emitTrivialAndSizeCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy,
Type SubTy,
LayoutConstraint Layout) {
if (Layout->isAddressOnlyTrivial()) {
emitIsTrivialCheck(FailedTypeCheckBB, ParamTy, SubTy, Layout);
return;
}
auto &Ctx = Builder.getASTContext();
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
auto WordTy = SILType::getBuiltinWordType(Ctx);
auto BoolTy = SILType::getBuiltinIntegerType(1, Ctx);
Substitution Sub(ContextTy, {});
auto ParamSize = Builder.createBuiltin(Loc, Ctx.getIdentifier("sizeof"),
WordTy, Sub, { GenericMT });
auto LayoutSize =
Builder.createIntegerLiteral(Loc, WordTy, Layout->getTrivialSizeInBytes());
const char *CmpOpName = Layout->isFixedSizeTrivial() ? "cmp_eq" : "cmp_le";
auto Cmp =
Builder.createBuiltinBinaryFunction(Loc, CmpOpName, WordTy,
BoolTy,
{ParamSize, LayoutSize});
auto *SuccessBB1 = Builder.getFunction().createBasicBlock();
Builder.createCondBranch(Loc, Cmp, SuccessBB1, FailedTypeCheckBB);
Builder.emitBlock(SuccessBB1);
// Emit a check that it is a pod object.
// TODO: Perform this check before all the fixed size checks!
auto IsPOD = Builder.createBuiltin(Loc, Ctx.getIdentifier("ispod"),
BoolTy, Sub, { GenericMT });
auto *SuccessBB2 = Builder.getFunction().createBasicBlock();
Builder.createCondBranch(Loc, IsPOD, SuccessBB2, FailedTypeCheckBB);
Builder.emitBlock(SuccessBB2);
}
void EagerDispatch::emitRefCountedObjectCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy,
Type SubTy,
LayoutConstraint Layout) {
auto &Ctx = Builder.getASTContext();
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
auto Int8Ty = SILType::getBuiltinIntegerType(8, Ctx);
auto BoolTy = SILType::getBuiltinIntegerType(1, Ctx);
Substitution Sub(ContextTy, {});
// Emit a check that it is a reference-counted object.
// TODO: Perform this check before all fixed size checks.
// FIXME: What builtin do we use to check it????
auto CanBeClass = Builder.createBuiltin(
Loc, Ctx.getIdentifier("canBeClass"), Int8Ty, Sub, {GenericMT});
auto ClassConst =
Builder.createIntegerLiteral(Loc, Int8Ty, 1);
auto Cmp1 =
Builder.createBuiltinBinaryFunction(Loc, "cmp_eq", Int8Ty,
BoolTy,
{CanBeClass, ClassConst});
auto *SuccessBB = Builder.getFunction().createBasicBlock();
auto *MayBeCallsCheckBB = Builder.getFunction().createBasicBlock();
Builder.createCondBranch(Loc, Cmp1, SuccessBB,
MayBeCallsCheckBB);
Builder.emitBlock(MayBeCallsCheckBB);
auto MayBeClassConst =
Builder.createIntegerLiteral(Loc, Int8Ty, 2);
auto Cmp2 =
Builder.createBuiltinBinaryFunction(Loc, "cmp_eq", Int8Ty,
BoolTy,
{CanBeClass, MayBeClassConst});
auto *IsClassCheckBB = Builder.getFunction().createBasicBlock();
Builder.createCondBranch(Loc, Cmp2, IsClassCheckBB,
FailedTypeCheckBB);
Builder.emitBlock(IsClassCheckBB);
auto *FRI = Builder.createFunctionRef(Loc, IsClassF);
auto IsClassRuntimeCheck = Builder.createApply(Loc, FRI, {Sub}, {GenericMT},
/* isNonThrowing */ false);
// Extract the i1 from the Bool struct.
StructDecl *BoolStruct = cast<StructDecl>(Ctx.getBoolDecl());
auto Members = BoolStruct->lookupDirect(Ctx.Id_value_);
assert(Members.size() == 1 &&
"Bool should have only one property with name '_value'");
auto Member = dyn_cast<VarDecl>(Members[0]);
assert(Member &&"Bool should have a property with name '_value' of type Int1");
auto BoolValue =
Builder.emitStructExtract(Loc, IsClassRuntimeCheck, Member, BoolTy);
Builder.createCondBranch(Loc, BoolValue, SuccessBB, FailedTypeCheckBB);
Builder.emitBlock(SuccessBB);
}
/// Cast a generic argument to its specialized type.
SILValue EagerDispatch::emitArgumentCast(CanSILFunctionType CalleeSubstFnTy,
SILFunctionArgument *OrigArg,
unsigned Idx) {
SILFunctionConventions substConv(CalleeSubstFnTy,
Builder.getModule());
auto CastTy = substConv.getSILArgumentType(Idx);
assert(CastTy.isAddress()
== (OrigArg->isIndirectResult()
|| substConv.isSILIndirect(OrigArg->getKnownParameterInfo()))
&& "bad arg type");
if (CastTy.isAddress())
return Builder.createUncheckedAddrCast(Loc, OrigArg, CastTy);
return Builder.createUncheckedBitCast(Loc, OrigArg, CastTy);
}
/// Converts each generic function argument into a SILValue that can be passed
/// to the specialized call by emitting a cast followed by a load.
///
/// Populates the CallArgs with the converted arguments.
///
/// Returns the SILValue to store the result into if the specialized function
/// has a direct result.
SILValue EagerDispatch::
emitArgumentConversion(SmallVectorImpl<SILValue> &CallArgs) {
auto OrigArgs = GenericFunc->begin()->getFunctionArguments();
assert(OrigArgs.size() == substConv.getNumSILArguments()
&& "signature mismatch");
// Create a substituted callee type.
auto SubstitutedType = ReInfo.getSubstitutedType();
auto SpecializedType = ReInfo.getSpecializedType();
auto CanSILFuncTy = SubstitutedType;
auto CalleeSubstFnTy = CanSILFuncTy;
if (CanSILFuncTy->isPolymorphic()) {
CalleeSubstFnTy = CanSILFuncTy->substGenericArgs(
Builder.getModule(), ReInfo.getCallerParamSubstitutions());
assert(!CalleeSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!CalleeSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
SubstitutedType = CalleeSubstFnTy;
SpecializedType =
ReInfo.createSpecializedType(SubstitutedType, Builder.getModule());
}
assert(!substConv.useLoweredAddresses()
|| OrigArgs.size() == ReInfo.getNumArguments() &&
"signature mismatch");
CallArgs.reserve(OrigArgs.size());
SILValue StoreResultTo;
for (auto *OrigArg : OrigArgs) {
unsigned ArgIdx = OrigArg->getIndex();
auto CastArg = emitArgumentCast(SubstitutedType, OrigArg, ArgIdx);
DEBUG(dbgs() << " Cast generic arg: "; CastArg->print(dbgs()));
if (!substConv.useLoweredAddresses()) {
CallArgs.push_back(CastArg);
continue;
}
if (ArgIdx < substConv.getSILArgIndexOfFirstParam()) {
// Handle result arguments.
unsigned formalIdx =
substConv.getIndirectFormalResultIndexForSILArg(ArgIdx);
if (ReInfo.isFormalResultConverted(formalIdx)) {
// The result is converted from indirect to direct. We need to insert
// a store later.
assert(!StoreResultTo);
StoreResultTo = CastArg;
continue;
}
} else {
// Handle arguments for formal parameters.
unsigned paramIdx = ArgIdx - substConv.getSILArgIndexOfFirstParam();
if (ReInfo.isParamConverted(paramIdx)) {
// An argument is converted from indirect to direct. Instead of the
// address we pass the loaded value.
// FIXME: If type of CastArg is an archetype, but it is loadable because
// of a layout constraint on the caller side, we have a problem here
// We need to load the value on the caller side, but this archetype is
// not statically known to be loadable on the caller side (though we
// have proven dynamically that it has a fixed size).
// We can try to load it as an int value of width N, but then it is not
// clear how to convert it into a value of the archetype type, which is
// expected. May be we should pass it as @in parameter and make it
// loadable on the caller's side?
SILValue Val = Builder.createLoad(Loc, CastArg,
LoadOwnershipQualifier::Unqualified);
CallArgs.push_back(Val);
continue;
}
}
CallArgs.push_back(CastArg);
}
return StoreResultTo;
}
namespace {
// FIXME: This should be a function transform that pushes cloned functions on
// the pass manager worklist.
class EagerSpecializerTransform : public SILModuleTransform {
public:
EagerSpecializerTransform() {}
void run() override;
};
} // end anonymous namespace
/// Specializes a generic function for a concrete type list.
static SILFunction *eagerSpecialize(SILFunction *GenericFunc,
const SILSpecializeAttr &SA,
const ReabstractionInfo &ReInfo) {
DEBUG(dbgs() << "Specializing " << GenericFunc->getName() << "\n");
DEBUG(auto FT = GenericFunc->getLoweredFunctionType();
dbgs() << " Generic Sig:";
dbgs().indent(2); FT->getGenericSignature()->print(dbgs());
dbgs() << " Generic Env:";
dbgs().indent(2); GenericFunc->getGenericEnvironment()->dump(dbgs());
dbgs() << " Specialize Attr:";
SA.print(dbgs()); dbgs() << "\n");
IsSerialized_t Serialized = IsNotSerialized;
if (GenericFunc->isSerialized())
Serialized = IsSerializable;
GenericFuncSpecializer
FuncSpecializer(GenericFunc, ReInfo.getClonerParamSubstitutions(),
Serialized, ReInfo);
SILFunction *NewFunc = FuncSpecializer.trySpecialization();
if (!NewFunc)
DEBUG(dbgs() << " Failed. Cannot specialize function.\n");
return NewFunc;
}
/// Run the pass.
void EagerSpecializerTransform::run() {
if (!EagerSpecializeFlag)
return;
// Process functions in any order.
for (auto &F : *getModule()) {
if (!F.shouldOptimize()) {
DEBUG(dbgs() << " Cannot specialize function " << F.getName()
<< " marked to be excluded from optimizations.\n");
continue;
}
// Only specialize functions in their home module.
if (F.isExternalDeclaration() || F.isAvailableExternally())
continue;
if (!F.getLoweredFunctionType()->getGenericSignature())
continue;
// Create a specialized function with ReabstractionInfo for each attribute.
SmallVector<SILFunction *, 8> SpecializedFuncs;
SmallVector<ReabstractionInfo, 4> ReInfoVec;
ReInfoVec.reserve(F.getSpecializeAttrs().size());
// TODO: Use a decision-tree to reduce the amount of dynamic checks being
// performed.
for (auto *SA : F.getSpecializeAttrs()) {
auto AttrRequirements = SA->getRequirements();
ReInfoVec.emplace_back(&F, AttrRequirements);
auto *NewFunc = eagerSpecialize(&F, *SA, ReInfoVec.back());
notifyAddFunction(NewFunc);
SpecializedFuncs.push_back(NewFunc);
if (SA->isExported()) {
NewFunc->setKeepAsPublic(true);
continue;
}
}
// TODO: Optimize the dispatch code to minimize the amount
// of checks. Use decision trees for this purpose.
bool Changed = false;
for_each3(F.getSpecializeAttrs(), SpecializedFuncs, ReInfoVec,
[&](const SILSpecializeAttr *SA, SILFunction *NewFunc,
const ReabstractionInfo &ReInfo) {
if (NewFunc) {
Changed = true;
EagerDispatch(&F, ReInfo).emitDispatchTo(NewFunc);
}
});
// Invalidate everything since we delete calls as well as add new
// calls and branches.
if (Changed) {
invalidateAnalysis(&F, SILAnalysis::InvalidationKind::Everything);
}
// As specializations are created, the attributes should be removed.
F.clearSpecializeAttrs();
}
}
SILTransform *swift::createEagerSpecializer() {
return new EagerSpecializerTransform();
}