Files
swift-mirror/lib/SILOptimizer/IPO/GlobalPropertyOpt.cpp
John McCall ab3f77baf2 Make SILInstruction no longer a subclass of ValueBase and
introduce a common superclass, SILNode.

This is in preparation for allowing instructions to have multiple
results.  It is also a somewhat more elegant representation for
instructions that have zero results.  Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction.  Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.

A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.

Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
2017-09-25 02:06:26 -04:00

532 lines
18 KiB
C++

//===--- GlobalPropertyOpt.cpp - Optimizes global array properties --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "globalpropertyopt"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Allocator.h"
using namespace swift;
STATISTIC(NumPropertiesReplaced, "Number of array property calls replaced");
namespace {
/// The GlobalPropertyOpt performs an analysis on the whole module to determine
/// the values of high-level properties.
///
/// Currently only one property is handled and that's the isNativeTypeChecked
/// property for arrays. If the property can be proved to be true, the
/// corresponding semantics-call is replaced by a true-literal.
class GlobalPropertyOpt {
/// An entry in the dependency graph. An entry can represent
/// *) a value of type Array,
/// *) a value of type tuple, which contains an Array,
/// *) an AllocStack instruction which allocates an Array or
/// *) a struct or class field of type Array.
struct Entry {
Entry(SILValue Value, VarDecl *Field) :
Value(Value), Field(Field), isNativeTypeChecked(true) {
}
/// Non-null if the entry represents an array value, a tuple with an array
/// or an AllocStack of an array.
SILValue Value;
/// Non-null if the entry represents a struct or class field.
VarDecl *Field;
/// The property which we want to track: is the value/field a native swift
/// array which doesn't need deferred type check.
bool isNativeTypeChecked;
/// The edges in the dependency graph, i.e. entries, which depend on this
/// entry.
SmallVector<Entry *, 8> Dependencies;
#ifndef NDEBUG
friend raw_ostream &operator<<(raw_ostream &os, const Entry &entry) {
if (entry.Field)
return os << "field " << entry.Field->getName() << '\n';
if (!entry.Value)
return os << "unknown-address\n";
if (auto *Inst = entry.Value->getDefiningInstruction())
return os << Inst->getFunction()->getName() << ": " << entry.Value;
if (auto *Arg = dyn_cast<SILArgument>(entry.Value))
return os << Arg->getFunction()->getName() << ": " << entry.Value;
return os << entry.Value;
}
#endif
};
/// The module that we are optimizing.
SILModule &M;
NominalTypeDecl *ArrayType;
/// All entries of the dependency graph, which represent values or AllocStack.
llvm::DenseMap<SILValue, Entry *> ValueEntries;
/// All entries of the dependency graph, which represent fields.
llvm::DenseMap<VarDecl *, Entry *> FieldEntries;
llvm::SpecificBumpPtrAllocator<Entry> EntryAllocator;
/// Represents an address of an unknown array.
Entry unknownAddressEntry = Entry(SILValue(), nullptr);
/// All found calls to get-property semantic functions.
std::vector<ApplyInst *> propertyCalls;
llvm::SetVector<SILFunction *> ChangedFunctions;
/// Contains entries with a false property value, which must be propagated
/// to their dependencies.
llvm::SmallVector<Entry *, 32> WorkList;
bool isArrayType(SILType type) {
return type.getNominalOrBoundGenericNominal() == ArrayType &&
!type.isAddress();
}
bool isArrayAddressType(SILType type) {
return type.getNominalOrBoundGenericNominal() == ArrayType &&
type.isAddress();
}
/// Returns true if the type is a tuple which contains at least one array
/// (we don't check for arrays in nested tuples).
bool isTupleWithArray(CanType type) {
if (auto tuple = dyn_cast<TupleType>(type)) {
for (Type subType : tuple->getElementTypes()) {
if (CanType(subType).getNominalOrBoundGenericNominal() == ArrayType)
return true;
}
}
return false;
}
bool isVisibleExternally(VarDecl *decl) {
AccessLevel access = decl->getEffectiveAccess();
SILLinkage linkage;
switch (access) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
linkage = SILLinkage::Private;
break;
case AccessLevel::Internal:
linkage = SILLinkage::Hidden;
break;
case AccessLevel::Public:
case AccessLevel::Open:
linkage = SILLinkage::Public;
break;
}
return isPossiblyUsedExternally(linkage, M.isWholeModule());
}
static bool canAddressEscape(SILValue V, bool acceptStore);
/// Gets the entry for a struct or class field.
Entry *getFieldEntry(VarDecl *Field) {
Entry * &entry = FieldEntries[Field];
if (!entry) {
entry = new (EntryAllocator.Allocate()) Entry(SILValue(), Field);
if (isVisibleExternally(Field))
setAddressEscapes(entry);
}
return entry;
}
/// Gets the entry for a value at an address, e.g. a struct/class field or
/// an alloc_stack.
Entry *getAddrEntry(SILValue value) {
ValueBase *def = value;
if (auto *MDI = dyn_cast<MarkDependenceInst>(def)) {
return getAddrEntry(MDI->getOperand(0));
}
if (auto *RAI = dyn_cast<RefElementAddrInst>(def)) {
return getFieldEntry(RAI->getField());
}
if (auto *SEI = dyn_cast<StructElementAddrInst>(def)) {
return getFieldEntry(SEI->getField());
}
if (isa<AllocStackInst>(def)) {
Entry * &entry = ValueEntries[value];
if (!entry) {
entry = new (EntryAllocator.Allocate()) Entry(value, nullptr);
if (canAddressEscape(value, true))
setAddressEscapes(entry);
}
return entry;
}
return &unknownAddressEntry;
}
/// Gets the entry for a SIL value, e.g. an array-value or a tuple containing
/// an array.
Entry *getValueEntry(SILValue value) {
Entry * &entry = ValueEntries[value];
if (!entry) {
entry = new (EntryAllocator.Allocate()) Entry(value, nullptr);
}
return entry;
}
void setAddressEscapes(Entry *entry) {
DEBUG(llvm::dbgs() << " address escapes: " << *entry);
setNotNative(entry);
}
void setNotNative(Entry *entry) {
if (entry->isNativeTypeChecked) {
DEBUG(llvm::dbgs() << " set not-native: " << *entry);
entry->isNativeTypeChecked = false;
WorkList.push_back(entry);
}
}
void addDependency(Entry *from, Entry *to) {
DEBUG(llvm::dbgs() << " add dependency from: " << *from <<
" to: " << *to);
from->Dependencies.push_back(to);
}
void scanInstruction(swift::SILInstruction *Inst);
void scanInstructions();
void propagatePropertiesInGraph();
void replacePropertyCalls();
public:
GlobalPropertyOpt(SILModule &Module) :
M(Module), ArrayType(nullptr) {}
void run(SILModuleTransform *T);
};
/// Checks if an address value does escape. If \p acceptStore is false, then
/// we handle a store to the address like if the address would escape.
bool GlobalPropertyOpt::canAddressEscape(SILValue V, bool acceptStore) {
for (auto UI : V->getUses()) {
auto *User = UI->getUser();
// These instructions do not cause the address to escape.
if (isa<LoadInst>(User) ||
isa<DebugValueInst>(User) ||
isa<DebugValueAddrInst>(User) ||
isa<StrongReleaseInst>(User) ||
isa<StrongRetainInst>(User) ||
isa<DeallocBoxInst>(User) ||
isa<DeallocStackInst>(User))
continue;
if (acceptStore) {
if (auto *Store = dyn_cast<StoreInst>(User)) {
if (Store->getDest() == UI->get())
continue;
}
}
// These instructions only cause the value to escape if they are used in
// a way that escapes. Recursively check that the uses of the instruction
// don't escape.
if (isa<StructElementAddrInst>(User) || isa<TupleElementAddrInst>(User) ||
isa<AddressToPointerInst>(User) || isa<PointerToAddressInst>(User)) {
// We don't handle these instructions if we see them in store addresses.
// So going through them lets stores be as bad as if the address would
// escape.
auto value = cast<SingleValueInstruction>(User);
if (canAddressEscape(value, false))
return true;
continue;
}
if (auto markDependence = dyn_cast<MarkDependenceInst>(User)) {
unsigned opNum = UI->getOperandNumber();
if (opNum == 0 && canAddressEscape(markDependence, acceptStore))
return true;
continue;
}
if (auto apply = dyn_cast<ApplyInst>(User)) {
// Check if the value is the this-argument of the array method.
ArraySemanticsCall Call(apply);
if (Call && Call.hasSelf() && &Call.getSelfOperand() == UI)
continue;
}
return true;
}
return false;
}
/// Scan an instruction and build dependencies for it.
void GlobalPropertyOpt::scanInstruction(swift::SILInstruction *Inst) {
if (auto *AI = dyn_cast<ApplyInst>(Inst)) {
ArraySemanticsCall semCall(AI);
switch (semCall.getKind()) {
case ArrayCallKind::kArrayInit:
case ArrayCallKind::kArrayUninitialized:
case ArrayCallKind::kMutateUnknown:
case ArrayCallKind::kMakeMutable:
// The return value of those calls (if any) do not return a non-native
// swift array.
DEBUG(llvm::dbgs() << " array semantics call: " << *AI);
return;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
// Remember the property-calls for later.
DEBUG(llvm::dbgs() << " property check: " << *AI);
propertyCalls.push_back(AI);
break;
default:
break;
}
} else if (auto *LI = dyn_cast<LoadInst>(Inst)) {
if (isArrayType(LI->getType())) {
// Add a dependency from the value at the address to the loaded value.
SILValue loadAddr = LI->getOperand();
assert(loadAddr->getType().isAddress());
addDependency(getAddrEntry(loadAddr), getValueEntry(LI));
return;
}
} else if (auto *SI = dyn_cast<StoreInst>(Inst)) {
SILValue src = SI->getSrc();
if (isArrayType(src->getType())) {
// Add a dependency from the operand to the value at the store-address.
//
SILValue dst = SI->getDest();
assert(dst->getType().isAddress());
addDependency(getValueEntry(src), getAddrEntry(dst));
return;
}
} else if (isa<RefElementAddrInst>(Inst) || isa<StructElementAddrInst>(Inst)) {
auto projection = cast<SingleValueInstruction>(Inst);
if (isArrayAddressType(projection->getType())) {
// If the address of an array-field escapes, we give up for that field.
if (canAddressEscape(projection, true)) {
setAddressEscapes(getAddrEntry(projection));
DEBUG(llvm::dbgs() << " field address escapes: " << *projection);
}
return;
}
} else if (auto *SEI = dyn_cast<StructExtractInst>(Inst)) {
if (isArrayType(SEI->getType())) {
// Add a dependency from the field to the extracted value.
VarDecl *Field = SEI->getField();
addDependency(getFieldEntry(Field), getValueEntry(SEI));
return;
}
} else if (auto *TEI = dyn_cast<TupleExtractInst>(Inst)) {
if (isArrayType(TEI->getType())) {
// Add a dependency from the tuple itself to the extracted element.
SILValue tuple = TEI->getOperand();
addDependency(getValueEntry(tuple), getValueEntry(TEI));
return;
}
} else if (auto *TI = dyn_cast<TupleInst>(Inst)) {
if (isTupleWithArray(TI->getType().getSwiftRValueType())) {
// Add dependencies from array elements to the tuple itself.
for (Operand &Op : TI->getAllOperands()) {
SILValue V = Op.get();
if (isArrayType(V->getType())) {
addDependency(getValueEntry(V), getValueEntry(TI));
}
}
return;
}
} else if (auto *SI = dyn_cast<StructInst>(Inst)) {
// Add dependencies from the array operands to the struct array-fields.
StructDecl *S = SI->getStructDecl();
NominalTypeDecl::StoredPropertyRange Range = S->getStoredProperties();
auto Operands = SI->getAllOperands();
unsigned Index = 0;
for (auto I = Range.begin(), E = Range.end(); I != E; ++I, ++Index) {
VarDecl *VD = *I;
const Operand &Op = Operands[Index];
if (isArrayType(Op.get()->getType())) {
addDependency(getValueEntry(Op.get()), getFieldEntry(VD));
}
}
} else if (isa<AllocStackInst>(Inst)) {
// An alloc_stack itself does not introduce any non-native swift arrays.
return;
}
// TODO: handle enums with array data.
// For everything else which we didn't handle above: we set the property of
// the instruction value to false.
for (auto result : Inst->getResults()) {
SILType Type = result->getType();
if (isArrayType(Type) || isTupleWithArray(Type.getSwiftRValueType())) {
DEBUG(llvm::dbgs() << " value could be non-native array: "
<< *result);
setNotNative(getValueEntry(result));
}
}
}
/// Scans all instructions of the module and builds the dependency graph.
void GlobalPropertyOpt::scanInstructions() {
for (auto &F : M) {
DEBUG(llvm::dbgs() << " scan function " << F.getName() << "\n");
for (auto &BB : F) {
DEBUG(llvm::dbgs() << " scan basic block " << BB.getDebugID() << "\n");
// Add dependencies from predecessor's terminator operands to the block
// arguments.
int argIdx = 0;
for (auto *BBArg : BB.getArguments()) {
bool hasPreds = false;
SILType Type = BBArg->getType();
if (isArrayType(Type) || isTupleWithArray(Type.getSwiftRValueType())) {
for (auto *Pred : BB.getPredecessorBlocks()) {
hasPreds = true;
auto *Term = Pred->getTerminator();
SILValue PredArg;
if (auto *BI = dyn_cast<BranchInst>(Term)) {
PredArg = BI->getArg(argIdx);
} else if (auto *CBI = dyn_cast<CondBranchInst>(Term)) {
PredArg = CBI->getArgForDestBB(&BB, BBArg);
}
if (PredArg) {
addDependency(getValueEntry(PredArg), getValueEntry(BBArg));
} else {
// Some unknown terminator instruction.
setNotNative(getValueEntry(BBArg));
break;
}
}
if (!hasPreds) {
// This is the case for the function entry block.
setNotNative(getValueEntry(BBArg));
DEBUG(llvm::dbgs() << " unknown entry argument " << *BBArg);
}
}
++argIdx;
}
// Go through all instructions of the block.
for (auto &Inst : BB) {
scanInstruction(&Inst);
}
}
}
}
/// Propagates the properties through the graph.
void GlobalPropertyOpt::propagatePropertiesInGraph() {
DEBUG(llvm::dbgs() << " propagate properties\n");
setAddressEscapes(&unknownAddressEntry);
while (!WorkList.empty()) {
Entry *entry = WorkList.pop_back_val();
DEBUG(llvm::dbgs() << " handle non-native entry: " << *entry);
assert(!entry->isNativeTypeChecked);
// Propagate the false-value to the dependent entries.
for (Entry *depEntry : entry->Dependencies) {
setNotNative(depEntry);
}
}
}
/// Replaces all get-property calls, which we can prove to be true, with
/// true-literals.
void GlobalPropertyOpt::replacePropertyCalls() {
for (ApplyInst *AI : propertyCalls) {
SILFunction *F = AI->getFunction();
// Don't optimize functions that are marked with the opt.never attribute.
if (!F->shouldOptimize())
continue;
ChangedFunctions.insert(F);
SILValue array = AI->getArgument(0);
// Is the argument a native swift array?
if (ValueEntries.count(array) != 0 &&
getValueEntry(array)->isNativeTypeChecked) {
ArraySemanticsCall semCall(AI);
assert(
(semCall.getKind() == ArrayCallKind::kArrayPropsIsNativeTypeChecked) &&
"invalid semantics type");
DEBUG(llvm::dbgs() << " remove property check in function " <<
AI->getParent()->getParent()->getName() << ": " << *AI);
SILBuilder B(AI);
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
auto C1 = B.createIntegerLiteral(AI->getLoc(), IntBoolTy, 1);
auto TrueStruct = B.createStruct(AI->getLoc(), AI->getType(), {C1});
AI->replaceAllUsesWith(TrueStruct);
semCall.removeCall();
NumPropertiesReplaced++;
}
}
}
/// The main entry point to the optimization.
void GlobalPropertyOpt::run(SILModuleTransform *T) {
assert(WorkList.empty());
assert(FieldEntries.empty() && ValueEntries.empty());
ArrayType = M.getASTContext().getArrayDecl();
// Step 1: scan the whole module and build the dependency graph.
scanInstructions();
// Step 2: propagate the flags through the dependency graph.
propagatePropertiesInGraph();
// Step 3: replace get-property calls with literals.
replacePropertyCalls();
for (SILFunction *ChangedFn : ChangedFunctions) {
T->invalidateAnalysis(ChangedFn,
SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
/// The module pass, which runs the optimization.
class GlobalPropertyOptPass : public SILModuleTransform {
void run() override {
SILModule *M = getModule();
DEBUG(llvm::dbgs() << "** GlobalPropertyOpt **\n");
GlobalPropertyOpt(*M).run(this);
}
};
} // end anonymous namespace
SILTransform *swift::createGlobalPropertyOpt() {
return new GlobalPropertyOptPass();
}