Files
swift-mirror/lib/SILOptimizer/Mandatory/GuaranteedARCOpts.cpp
John McCall ab3f77baf2 Make SILInstruction no longer a subclass of ValueBase and
introduce a common superclass, SILNode.

This is in preparation for allowing instructions to have multiple
results.  It is also a somewhat more elegant representation for
instructions that have zero results.  Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction.  Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.

A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.

Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
2017-09-25 02:06:26 -04:00

233 lines
7.2 KiB
C++

//===--- GuaranteedARCOpts.cpp --------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-guaranteed-arc-opts"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SIL/SILVisitor.h"
#include "llvm/ADT/Statistic.h"
using namespace swift;
STATISTIC(NumInstsEliminated, "Number of instructions eliminated");
namespace {
struct GuaranteedARCOptsVisitor
: SILInstructionVisitor<GuaranteedARCOptsVisitor, bool> {
bool visitSILInstruction(SILInstruction *I) { return false; }
bool visitDestroyAddrInst(DestroyAddrInst *DAI);
bool visitStrongReleaseInst(StrongReleaseInst *SRI);
bool visitDestroyValueInst(DestroyValueInst *DVI);
bool visitReleaseValueInst(ReleaseValueInst *RVI);
};
} // end anonymous namespace
static SILBasicBlock::reverse_iterator
getPrevReverseIterator(SILInstruction *I) {
return std::next(I->getIterator().getReverse());
}
bool GuaranteedARCOptsVisitor::visitDestroyAddrInst(DestroyAddrInst *DAI) {
SILValue Operand = DAI->getOperand();
for (auto II = getPrevReverseIterator(DAI), IE = DAI->getParent()->rend();
II != IE;) {
auto *Inst = &*II;
++II;
if (auto *CA = dyn_cast<CopyAddrInst>(Inst)) {
if (CA->getSrc() == Operand && !CA->isTakeOfSrc()) {
CA->setIsTakeOfSrc(IsTake);
DAI->eraseFromParent();
NumInstsEliminated += 2;
return true;
}
}
// destroy_addrs commonly exist in a block of dealloc_stack's, which don't
// affect take-ability.
if (isa<DeallocStackInst>(Inst))
continue;
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the destroy_addr past interesting instructions.
if (Inst->mayHaveSideEffects())
break;
}
// If we didn't find a copy_addr to fold this into, emit the destroy_addr.
return false;
}
static bool couldReduceStrongRefcount(SILInstruction *Inst) {
// Simple memory accesses cannot reduce refcounts.
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
isa<RetainValueInst>(Inst) || isa<UnownedRetainInst>(Inst) ||
isa<UnownedReleaseInst>(Inst) || isa<StrongRetainUnownedInst>(Inst) ||
isa<StoreWeakInst>(Inst) || isa<StrongRetainInst>(Inst) ||
isa<AllocStackInst>(Inst) || isa<DeallocStackInst>(Inst) ||
isa<BeginAccessInst>(Inst) || isa<EndAccessInst>(Inst) ||
isa<BeginUnpairedAccessInst>(Inst) || isa<EndUnpairedAccessInst>(Inst))
return false;
// Assign and copyaddr of trivial types cannot drop refcounts, and 'inits'
// never can either. Nontrivial ones can though, because the overwritten
// value drops a retain. We would have to do more alias analysis to be able
// to safely ignore one of those.
if (auto *AI = dyn_cast<AssignInst>(Inst)) {
SILType StoredType = AI->getOperand(0)->getType();
if (StoredType.isTrivial(Inst->getModule()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
// Initializations can only increase refcounts.
if (CAI->isInitializationOfDest())
return false;
SILType StoredType = CAI->getOperand(0)->getType().getObjectType();
if (StoredType.isTrivial(Inst->getModule()) ||
StoredType.is<ReferenceStorageType>())
return false;
}
// This code doesn't try to prove tricky validity constraints about whether
// it is safe to push the release past interesting instructions.
return Inst->mayHaveSideEffects();
}
bool GuaranteedARCOptsVisitor::visitStrongReleaseInst(StrongReleaseInst *SRI) {
SILValue Operand = SRI->getOperand();
// Release on a functionref is a noop.
if (isa<FunctionRefInst>(Operand)) {
SRI->eraseFromParent();
++NumInstsEliminated;
return true;
}
// Check to see if the instruction immediately before the insertion point is a
// strong_retain of the specified operand. If so, we can zap the pair.
for (auto II = getPrevReverseIterator(SRI), IE = SRI->getParent()->rend();
II != IE;) {
auto *Inst = &*II;
++II;
if (auto *SRA = dyn_cast<StrongRetainInst>(Inst)) {
if (SRA->getOperand() == Operand) {
SRA->eraseFromParent();
SRI->eraseFromParent();
NumInstsEliminated += 2;
return true;
}
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce strong refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, return false.
return false;
}
bool GuaranteedARCOptsVisitor::visitDestroyValueInst(DestroyValueInst *DVI) {
SILValue Operand = DVI->getOperand();
for (auto II = getPrevReverseIterator(DVI), IE = DVI->getParent()->rend();
II != IE;) {
auto *Inst = &*II;
++II;
if (auto *CVI = dyn_cast<CopyValueInst>(Inst)) {
if (SILValue(CVI) == Operand || CVI->getOperand() == Operand) {
CVI->replaceAllUsesWith(CVI->getOperand());
CVI->eraseFromParent();
DVI->eraseFromParent();
NumInstsEliminated += 2;
return true;
}
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
return false;
}
bool GuaranteedARCOptsVisitor::visitReleaseValueInst(ReleaseValueInst *RVI) {
SILValue Operand = RVI->getOperand();
for (auto II = getPrevReverseIterator(RVI), IE = RVI->getParent()->rend();
II != IE;) {
auto *Inst = &*II;
++II;
if (auto *SRA = dyn_cast<RetainValueInst>(Inst)) {
if (SRA->getOperand() == Operand) {
SRA->eraseFromParent();
RVI->eraseFromParent();
NumInstsEliminated += 2;
return true;
}
// Skip past unrelated retains.
continue;
}
// Scan past simple instructions that cannot reduce refcounts.
if (couldReduceStrongRefcount(Inst))
break;
}
// If we didn't find a retain to fold this into, emit the release.
return false;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
namespace {
struct GuaranteedARCOpts : SILFunctionTransform {
void run() override {
GuaranteedARCOptsVisitor Visitor;
bool MadeChange = false;
SILFunction *F = getFunction();
for (auto &BB : *F) {
for (auto II = BB.begin(), IE = BB.end(); II != IE;) {
SILInstruction *I = &*II;
++II;
MadeChange |= Visitor.visit(I);
}
}
if (MadeChange) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
};
} // end anonymous namespace
SILTransform *swift::createGuaranteedARCOpts() {
return new GuaranteedARCOpts();
}