Files
swift-mirror/stdlib/public/runtime/MetadataLookup.cpp
Pavel Yaskevich 10c385d1b7 [Mangling/ABI] Add special LabelList to store parameter labels
Instead of mangling parameter labels as part of the function type
move them to the end of the function name instead, to match the
language semantics.
2017-12-18 15:44:24 -08:00

272 lines
8.5 KiB
C++

//===--- MetadataLookup.cpp - Swift Language Type Name Lookup -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implementations of runtime functions for looking up a type by name.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Mutex.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/StringExtras.h"
#include "Private.h"
#include "ImageInspection.h"
using namespace swift;
using namespace Demangle;
#if SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#endif
// Type Metadata Cache.
namespace {
struct TypeMetadataSection {
const TypeMetadataRecord *Begin, *End;
const TypeMetadataRecord *begin() const {
return Begin;
}
const TypeMetadataRecord *end() const {
return End;
}
};
struct TypeMetadataCacheEntry {
private:
std::string Name;
const Metadata *Metadata;
public:
TypeMetadataCacheEntry(const llvm::StringRef name,
const ::Metadata *metadata)
: Name(name.str()), Metadata(metadata) {}
const ::Metadata *getMetadata(void) {
return Metadata;
}
int compareWithKey(llvm::StringRef aName) const {
return aName.compare(Name);
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
} // end anonymous namespace
struct TypeMetadataState {
ConcurrentMap<TypeMetadataCacheEntry> Cache;
std::vector<TypeMetadataSection> SectionsToScan;
Mutex SectionsToScanLock;
TypeMetadataState() {
SectionsToScan.reserve(16);
initializeTypeMetadataRecordLookup();
}
};
static Lazy<TypeMetadataState> TypeMetadataRecords;
static void
_registerTypeMetadataRecords(TypeMetadataState &T,
const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
ScopedLock guard(T.SectionsToScanLock);
T.SectionsToScan.push_back(TypeMetadataSection{begin, end});
}
void swift::addImageTypeMetadataRecordBlockCallback(const void *records,
uintptr_t recordsSize) {
assert(recordsSize % sizeof(TypeMetadataRecord) == 0
&& "weird-sized type metadata section?!");
// If we have a section, enqueue the type metadata for lookup.
auto recordBytes = reinterpret_cast<const char *>(records);
auto recordsBegin
= reinterpret_cast<const TypeMetadataRecord*>(records);
auto recordsEnd
= reinterpret_cast<const TypeMetadataRecord*>(recordBytes + recordsSize);
// Type metadata cache should always be sufficiently initialized by this
// point. Attempting to go through get() may also lead to an infinite loop,
// since we register records during the initialization of
// TypeMetadataRecords.
_registerTypeMetadataRecords(TypeMetadataRecords.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void
swift::swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
auto &T = TypeMetadataRecords.get();
_registerTypeMetadataRecords(T, begin, end);
}
// copied from ProtocolConformanceRecord::getCanonicalTypeMetadata()
template<>
const Metadata *TypeMetadataRecord::getCanonicalTypeMetadata() const {
switch (getTypeKind()) {
case TypeMetadataRecordKind::UniqueDirectType:
return getDirectType();
case TypeMetadataRecordKind::NonuniqueDirectType: {
const ForeignTypeMetadata *FMD =
static_cast<const ForeignTypeMetadata *>(getDirectType());
return swift_getForeignTypeMetadata(const_cast<ForeignTypeMetadata *>(FMD));
}
case TypeMetadataRecordKind::UniqueDirectClass:
if (auto *ClassMetadata =
static_cast<const ::ClassMetadata *>(getDirectType())) {
return getMetadataForClass(ClassMetadata);
}
else
return nullptr;
default:
return nullptr;
}
}
// returns the type metadata for the type named by typeNode
const Metadata *
swift::_matchMetadataByMangledTypeName(const llvm::StringRef typeName,
const Metadata *metadata,
const NominalTypeDescriptor *ntd) {
if (metadata != nullptr) {
assert(ntd == nullptr);
ntd = metadata->getNominalTypeDescriptor();
}
if (ntd == nullptr || ntd->Name.get() != typeName)
return nullptr;
// Call the accessor if there is one.
if (metadata == nullptr && !ntd->GenericParams.isGeneric()) {
if (auto accessFn = ntd->getAccessFunction())
metadata = accessFn();
}
return metadata;
}
// returns the type metadata for the type named by typeName
static const Metadata *
_searchTypeMetadataRecords(const TypeMetadataState &T,
const llvm::StringRef typeName) {
unsigned sectionIdx = 0;
unsigned endSectionIdx = T.SectionsToScan.size();
const Metadata *foundMetadata = nullptr;
for (; sectionIdx < endSectionIdx; ++sectionIdx) {
auto &section = T.SectionsToScan[sectionIdx];
for (const auto &record : section) {
if (auto metadata = record.getCanonicalTypeMetadata())
foundMetadata = _matchMetadataByMangledTypeName(typeName, metadata, nullptr);
else if (auto ntd = record.getNominalTypeDescriptor())
foundMetadata = _matchMetadataByMangledTypeName(typeName, nullptr, ntd);
if (foundMetadata != nullptr)
return foundMetadata;
}
}
return nullptr;
}
static const Metadata *
_classByName(const llvm::StringRef typeName) {
size_t DotPos = typeName.find('.');
if (DotPos == llvm::StringRef::npos)
return nullptr;
if (typeName.find('.', DotPos + 1) != llvm::StringRef::npos)
return nullptr;
Demangle::NodeFactory Factory;
NodePointer ClassNd = Factory.createNode(Node::Kind::Class);
NodePointer ModuleNd = Factory.createNode(Node::Kind::Module,
typeName.substr(0, DotPos));
NodePointer NameNd = Factory.createNode(Node::Kind::Identifier,
typeName.substr(DotPos + 1));
ClassNd->addChild(ModuleNd, Factory);
ClassNd->addChild(NameNd, Factory);
std::string Mangled = mangleNode(ClassNd);
StringRef MangledName = Mangled;
const Metadata *foundMetadata = nullptr;
auto &T = TypeMetadataRecords.get();
// Look for an existing entry.
// Find the bucket for the metadata entry.
if (auto Value = T.Cache.find(MangledName))
return Value->getMetadata();
// Check type metadata records
T.SectionsToScanLock.withLock([&] {
foundMetadata = _searchTypeMetadataRecords(T, MangledName);
});
// Check protocol conformances table. Note that this has no support for
// resolving generic types yet.
if (!foundMetadata)
foundMetadata = _searchConformancesByMangledTypeName(MangledName);
if (foundMetadata) {
T.Cache.getOrInsert(MangledName, foundMetadata);
}
#if SWIFT_OBJC_INTEROP
// Check for ObjC class
// FIXME does this have any value? any ObjC class with a Swift name
// should already be registered as a Swift type.
if (foundMetadata == nullptr) {
std::string prefixedName("_Tt" + typeName.str());
foundMetadata = reinterpret_cast<ClassMetadata *>
(objc_lookUpClass(prefixedName.c_str()));
}
#endif
return foundMetadata;
}
/// Return the type metadata for a given name, used in the
/// implementation of _typeByName().
///
/// Currently only top-level classes are supported.
/// \param typeName The name of a class in the form: <module>.<class>
/// \return Returns the metadata of the type, if found.
/// internal func _getTypeByName(_ name: UnsafePointer<UInt8>,
/// _ nameLength: UInt) -> Any.Type?
#define _getTypeByName \
MANGLE_SYM(s14_getTypeByNameyypXpSgSPys5UInt8VG_SutF)
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const Metadata *
_getTypeByName(const char *typeName, size_t typeNameLength) {
llvm::StringRef name(typeName, typeNameLength);
return _classByName(name);
}